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Preface

The term “finite Fermi systems” usually refers to systems where the fermionic
nature of the constituents is of dominating importance but the finite spatial extent
also cannot be ignored. Historically the prominent examples were atoms, molecules,
and nuclei. These should be seen in contrast to solid-state systems, where an infinite
extent is usually a good approximation. Recently, new and different types of finite
Fermi systems have become important, most noticeably metallic clusters, quantum
dots, fermion traps, and compact stars.

The theoretical description of finite Fermi systems has a long tradition and devel-
oped over decades from most simple models to highly elaborate methods of many-
body theory. In fact, finite Fermi systems are the most demanding ground for theory
as one often does not have any symmetry to simplify classification and as a possibly
large but always finite particle number requires to take into account all particles. In
spite of the practical complexity, most methods rely on simple and basic schemes
which can be well understood in simple test cases.

We therefore felt it a timely undertaking to offer a comprehensive view of the
underlying theoretical ideas and techniques used for the description of such sys-
tems across physical disciplines. The book demonstrates how theoretical can be
successively refined from the Fermi gas via external potential and mean-field mod-
els to various techniques for dealing with residual interactions, while following the
universality of such concepts like shells and magic numbers across the application
fields.

We assume a familiarity with electrodynamic and quantum theory as presented
in the usual introductory theory courses. Many-body techniques are for the most
part developed in the book itself, although some prior acquaintance might be useful.
They are, however, kept at a relatively low level throughout the book, staying within
the confines of elementary second quantization without any resort to field theoretic
techniques.

The accompanying software allows applying some of the models in simplified
scenarios that are still sophisticated enough to contain all the essential qualitative
ingredients, on which more refined models may be built even by the creative reader.

The authors would like to acknowledge the numerous fruitful discussions with
several colleagues on teaching topics related to this book. One of us (E. Suraud)
would make a special mention to P.M. Dinh and P. Quentin who were especially
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close in these teaching topics. Two of us (P.-G. Reinhard and E. Suraud) would
also like to thank the Humboldt foundation and the French ministry of research
through the Gay-Lussac prize for generous support allowing close collaboration
which helped work out this book.

The authors are also indebted to Mrs. A. Steidl for competent assistance in pro-
ducing figures.

Frankfurt, Germany J.A. Maruhn
Erlangen, Germany P.-G. Reinhard
Toulouse, France E. Suraud
July 2009
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Chapter 1
The Variety of Finite Fermion Systems
and Their Basic Properties

Many-fermion systems are all around us. Any form of massive matter is a discrete
assembly of atoms, each of them constituted of a dense nucleus surrounded by a
diffuse electron cloud. Nuclei themselves are built from interacting neutrons and
protons, which are ultimately small compounds of quarks. Electrons, neutrons, pro-
tons, and quarks are fermions. Atoms themselves may also be fermions, if their
total spin, built from those of electrons, neutrons, and protons, is half-integer (in
units of �), otherwise they are bosons. There are a few other bosonic particles in
nature, especially the particles mediating elementary interactions but, apart from
exceptions, most assemblies of massive particles are built from fermions.

Theoretical methods describing matter thus primarily have to deal with interacting
fermions. Because of the variety and complexity of the systems under study, these
methods require elaborate approximation schemes. A key aspect is the finiteness of
the system under study. In particular the extent of the system fixes its long-range
behavior and thus the boundary conditions of the problem. This has consequences
for the development of a theoretical description. In this book, we focus on the case
of finite systems composed of Fermions. We will discuss generic methods to treat
such systems and illustrate them in terms of simple models, which allow to track
the basic mechanisms in detail without being blinded by the complexity of a real-
istic simulation. The modeling covers a variety of physical systems, atoms, some
atomic compounds (e.g., molecules), nuclei, but also compact stars, quantum dots
and fermion traps. We will not address the case of elementary particles and quarks,
which for a proper treatment requires elaborate relativistic approaches. Most of our
discussions are restricted to non-relativistic models.

Nuclei are built from neutrons and protons. They are self-bound and stable per
se, with no external field. The situation is different in atoms where the binding of the
electron cloud is provided by the external attractive Coulomb field of the nucleus.
Electrons are also the basic fermionic degrees of freedom of molecules. These cover,
in fact, a huge world of different compounds, varying largely in bonding type,
composition, and size. A particular class therein are clusters, which are composed
of N -fold repeated small building blocks, so to say finite pieces of bulk material.
Among these of special importance are the metal clusters. These are distinguished
by a cloud of valence electrons which belongs to the system as a whole (metal
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2 1 The Variety of Finite Fermion Systems and Their Basic Properties

bonding) and which thus provides the most pronounced fermionic effects, as we
will see later on.

Quantum dots are electronic systems tailored by a proper arrangement of semi-
conductors to yield a dedicated (and tunable) confining potential. There is a different
class of atomic compounds where the whole atoms represent the basic degrees of
freedom. One example are 3He droplets with 3He atoms as elementary building
blocks (remember that helium is an especially inert rare gas with an extremely small
binding capability). Helium droplets are dense, self-bound objects. Another quite
different example are assemblies of fermionic atoms confined by dedicated external
fields in an electromagnetic trap. Whole atoms here are the basic degrees of freedom
because the systems are very dilute and thus involve only very low energies.

In this book we shall cover many-fermion systems constituted of electrons
(atoms, molecules, metal clusters, quantum dots), of neutrons and protons (nuclei),
and of fermionic atoms (3He droplets, atomic traps). These are all interacting many-
fermion systems which can only be treated by approximate solutions of the N -body
Schrödinger equation. Many-body theory has developed a rich toolbox of powerful
and efficient methods for that. We will here focus on a few generic methods, demon-
strate their basic mechanisms in simple, analytically solvable models, and establish
connections to the above-mentioned systems. Even with that restriction of scope,
both in terms of constituents and in terms of finiteness, there remains a vast field of
possible topics and one needs a guiding principle to organize the discussions.

The most useful sorting scheme for our purposes is given by the complexity of
the approximation. We will thus successively consider models in which the interac-
tion is treated at increasingly detailed levels. Predominant is the picture of fermions
which move independently in a common mean field. The most advanced approach
here are the self-consistent mean-field models, which incorporate the interaction
as well as possible. There are, of course, several simplifications to that elaborate
treatment. On the other side are the even more advanced methods which take care
of correlations, i.e., of effects which cannot be incorporated into a mean-field pic-
ture. The outline thus is as follows: We start in Chap. 2 from non-interacting par-
ticles, continue in Chap. 3 to a description inside a common external field, and
in the subsequent chapters proceed to the various elaborate methods where the
interaction is taken into account explicitly. Chapter 4 briefly presents a treatment
in highly reduced spaces. Chapter 5 discusses the widely used self-consistent mean-
field methods. Chapter 7 presents the family of quasispin models, which provide
powerful tools for testing many-body theories. Chapter 8 continues with mean-field
methods for collective dynamics. Approaches beyond the mean field will be briefly
addressed in Chap. 9 (coherent correlations).

A clarifying word is in order here about the notion of “correlations.” We will
use it here in the sense of many-body quantum theory. We define correlations as
everything which cannot be accounted for by an independent-particle picture, how-
ever, elaborate it may be. Let us consider a many-fermion problem. As we shall
see in many places all over this book, it can often be described to first order by
considering that the fermions evolve in a common potential well, stemming either
from an external agent or from an average of interactions between themselves, or



1.1 Fermions in the Universe 3

both. This covers what is meant by independent-particle picture. But even if this
independent-particle picture often provides an even quantitatively correct descrip-
tion of the fermion system, it usually overlooks some subtle details as soon as one
truly wants to account for interactions between constituents. There thus remains the
so-called residual interaction effects reflecting the difference between the average
and the exact treatment of interactions. These differences may sometimes lead to
huge effects in some observables, even at a qualitative level. The term “correlations”
thus gathers all the various mechanisms induced by the residual interactions, i.e.,
interaction effects not accounted for in the mean field.

1.1 Fermions in the Universe

1.1.1 The Four Elementary Interactions

There are four elementary interactions in the universe: the gravitational, electro-
magnetic, and the strong and weak nuclear interaction. These interactions act under
different physical conditions and on different particles. Figure 1.1 provides a gross
schematic picture of interactions and scales of objects on which they act. Histori-
cally the longest known interaction is gravitation, which acts on any massive particle
everywhere. It is the weakest of all forces and becomes effective only when huge
masses are involved. Apart from compact stars, which we will discuss in the context
of the Fermi-gas model, gravitation will not be considered further here. Next in the
scale of strength comes what is called the “weak interaction.” It is involved in rare
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reactions at the nuclear or particle scale like, β-decay [66]. It will not be discussed
further here. In the center of the discussion will stay the electromagnetic interac-
tions, especially the Coulomb interaction, which act on any charged particle. The
Coulomb interaction dominates in most systems ranging from atoms to macroscopic
objects and also plays a role in atomic nuclei. It is thus at the core of nuclear, atomic,
and molecular physics as well as chemistry and material science. The Coulomb
interaction has infinite range, which makes its handling delicate. Effects of positive
and negative charges compensate at large distances reducing often the cumbersome
long-range effects. The strong interaction is responsible for the nuclear forces. It has
short range and is confined inside atomic nuclei. In principle, the strong interaction
applies to the quarks constituting neutrons and protons. In practice, one derives
from that an effective nucleon–nucleon force to deal with protons and neutrons as
“elementary” building blocks of the nucleus. Besides these four basic interactions,
we often find “derived interactions” for an effective description of systems made
of composite, but inert, constituents. A prominent example is given here by the
atom–atom interaction between rare gases, see Sect. 1.1.7.

This usual sorting of interactions into gravity, weak, Coulombic, and strong has
to be taken with a grain of salt. The actual impact of an interaction does also depend
on the size and density of a system. A simple example is the Coulomb force whose
effect depends critically on system size due to the long range. For example, small
atoms can be treated very well by a self-consistent mean field with a few correla-
tion corrections in perturbation theory. Perturbation theory with Coulomb forces,
however, becomes invalid for large systems [43]. More dramatic is gravity which is
usually ignorable, but becomes the leading agent if stellar masses are involved (see
Sects. 1.1.8 and 2.4). We will distinguish here from a practical perspective: An inter-
action is considered strong if it does not allow a self-consistent mean-field approach
as zeroth-order description. That happens to be the case, e.g., for the nuclear force
and the interaction between 3He atoms.

1.1.2 Basics of Nuclei

Nuclei constitute the cores of atoms and are themselves composite systems, con-
stituted of protons and neutrons. The latter were identified only in the early 1930s.
More recently, in the 1960s, it was realized that both protons and neutrons are them-
selves composite objects constituted of quarks. Quarks are fermions but need such
high energies to be studied/identified that they require a fully relativistic quantum
treatment, well beyond the scope of this book. Thus here we consider nuclei in
terms of neutrons and protons as effectively being the elementary constituents of a
non-relativistic nuclear many-body problem.

The nuclear interaction binding nucleons together is attractive at medium range
(about 1 fm = 10−15 m) and strongly repulsive at shorter distance (due to the
Pauli principle between the quarks constituting the nucleons). The attractive part
is sufficiently strong to provide a net binding of several nucleons to one compact
nucleus. The strong repulsion produces huge correlations between the nucleons
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which renders the detailed structure of the bound state very involved requiring the
most advanced many-body theories for a nearly appropriate description [90, 78].
For the description of ground-state and low-energy processes, the short-range cor-
relations can be eliminated. The interacting nucleon problem can thus be reformu-
lated in terms of a softer “effective” nuclear interaction in the nuclear medium.
This explains the long mean-free path of nucleons inside the nucleus (typically of
the order of the nuclear radius) and makes the nuclear many-body problem much
simpler than originally envisioned. Indeed, the long mean-free path provides a key
justification for the mean-field picture of nuclei in which nucleons move quasi freely
inside the global field created by all nucleon–nucleon interactions. In a similar way,
the success of the shell-model picture in which an ad hoc external field mocking up
the mean field is used, also finds its origin in this quasi independence of nucleons
inside the nucleus.

Nuclei are self-bound objects not requiring any external confining field. The aver-
age nuclear potential which is felt by each nucleon is thus totally self-consistent.
The strong repulsive core of the nuclear interaction defines a closest packing which
applies to nuclei of any size. This means that the average distance between the
nucleons, and correspondingly the central density, is about the same in all nuclei.
This is called a saturating system. It allows to view nuclei in a simplest picture as
finite drops of a (hardly compressible) nuclear fluid somewhat like water. Saturation
has an immediate consequence for the scaling of the nuclear extent with nucleon
number A. Figure 1.2 shows the systematics of nuclear radii R as determined in
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electron scattering experiments. They exhibit a remarkable scaling law with nucleon
number A: R � r0 A1/3 where r0 � 1.14 fm is a constant almost identical for all not
too small nuclei. This scaling property is related to the saturation property. It means
that each nucleon occupies the same elementary “volume” V0 = 4πr3

0 /3. Adding a
nucleon to a nucleus will lead to a typical increase of its volume by V0, independent
of possible internal rearrangements. This implies that the average density inside
nuclei is about the same for all nuclei ρ0 = 3/(4πr3

0 ) ≈ 0.16 fm−3. This value of the
nuclear density is known as nuclear matter equilibrium density, namely the density
of the ground state of a hypothetical infinite phase of proton–neutron symmetric
nuclear matter (without Coulomb effects).

Saturation also has consequences for the spatial distribution of the density: it
becomes basically constant inside the nucleus. Figure 1.3 shows detailed charge
density distributions for a variety of nuclei. It is obvious that the central charge
density for the larger nuclei approaches a nearly constant value in the nuclear inte-
rior, still allowing for a smooth transition zone at the surface. Smaller nuclei are
dominated by the surface such that the “constant” interior region is very small.

Neutrons and protons have nearly the same mass and, once Coulomb effects are
set aside, exhibit nearly identical binding properties between each other. This is
reflected in several physical quantities, such as spectroscopic properties of nuclei
in which one proton is replaced by one neutron or vice versa. This approximate
symmetry is known as the isospin symmetry and widely used in nuclear and par-
ticle physics [92]. We shall use it at many places in this book and often treat
nucleons generically, not specifying whether we consider neutrons or protons. The
major difference lies in the fact that protons are charged and neutrons not. This has
consequences for the stability of nuclei. The strong interaction alone would prefer
nuclei with equal number of protons Z and neutrons N . Increasing Z enhances
the Coulomb repulsion and eventually destabilizes the nucleus. On the other hand,
increasing the neutron number N at frozen Z stabilizes the nucleus. This explains
why heavier nuclei have a large neutron excess. However, one cannot enhance N
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arbitrarily. There thus exists an upper limit to observable Z because Coulomb pres-
sure renders (super-)heavy nuclei unstable against fission.

Having identified both the nuclear density and the nuclear radius finally fixes the
gross characteristics of the nuclear potential. The average depth of the potential can
be estimated from infinite nuclear matter. It is fixed by the nuclear density and thus,
up to details, about the same for all nuclei. The spatial extent is related to the nuclear
radius, as the nucleon–nucleon interaction is short range. The emerging picture is
thus a simple potential well with about fixed depth and extent R � r0 A1/3. That
shape is generic for all saturating Fermion systems as will be shown in Fig. 1.13.
The shape strongly differs from the atomic central field. We shall come to that in the
next section.

Nucleons move in a common mean field and thus the single-nucleon spectra have
a shell structure. A simple but reasonably good approximation for the self-consistent
potential is provided by the spherical harmonic oscillator augmented by a strong
spin–orbit interaction as a crucial ingredient. Nucleons obey the Pauli principle and
thus the shells are to be filled state by state. Particularly stable configurations appear
if a spherical shell (with angular momentum degeneracy) is just being closed. This
gives rise to the well-known magic numbers and associated magic nuclei such as
16O (Z = 8,N = 8), 40Ca (Z = 20,N = 20), 48Ca (Z = 20,N = 28), or 208Pb
(Z = 82,N = 126).

Doubly magic nuclei (nuclei with both Z and N magic numbers) are spheri-
cal objects because shell closure leads to spherical distributions. Open-shell nuclei
may acquire large deformations. Nuclear shapes thus constitute a genuine quantum
effect which has focused numerous studies. One was even able to identify super-
deformed nuclei with typical axis ratios of 2 to 1. The microscopic description of
such deformed nuclei is quite involved but gross effects can be understood on the
basis of deformed oscillator potentials which exhibit, for specific values of axes
ratios, new shell closures and thus qualitatively explain the occurrence and the sta-
bility of strongly deformed nuclei. We will address this question in Chap. 3.

Another interesting issue is the study of nuclear dynamics, e.g., in giant reso-
nances and fission. The latter phenomenon is well known and constitutes the basis of
many applications. It corresponds to the breaking of a heavy nucleus in two smaller
nuclei. The process gains energy but is inhibited by a (fission) barrier which has to
be overcome. This can occur naturally by tunneling or through external excitation
as, e.g., neutron capture. The process is rather slow, on a nuclear timescale, and
goes through deformations with very large amplitude. It is a beautiful example of
how nuclei can reach large deformations, in a way quite similar to a charged liquid
droplet. The nuclear liquid drop model can indeed be successfully used for ana-
lyzing gross properties of fission. Quantum shell effects are, nevertheless, crucial
for establishing fission barriers. We will discuss that in Chap. 3. Other important
dynamical effects can be found in giant resonances. These (low amplitude) motions
correspond to a collective displacement or deformation of the nuclear fluid. They are
sorted according to the multipolarity of the mode. The most famous one is the Giant
Dipole Resonance (GDR) in which neutrons oscillate against protons. Next come
the Giant Monopole Resonance which is a radial density oscillation and the Giant
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Quadrupole Resonance in which the nucleus shape oscillates from oblate to prolate.1

The GDR has been particularly studied and possesses a well-studied analog in the
Mie plasmon resonance of metal clusters (Sect. 1.1.5). We will address resonance
modes in Chap. 8.

To summarize the specific features of the nuclear many-body problem: The orig-
inally singular nucleon–nucleon interaction is effectively softened inside the nuclei,
which provides a solid justification for the picture of independent nucleons mov-
ing in a common self-consistent average potential. The nuclear potential has an
almost constant depth and its extent is fixed by the nuclear radius, which scales
with nuclear mass A as R � r0 A1/3. This reflects the saturation property of nuclear
matter. The nuclear shape may be strongly deformed depending on shell filling.
Neutrons and protons have similar properties, except for the charge. The interplay
between strong interaction and Coulomb force produces the observed richness of
encountered situations.

1.1.3 Basics of the Electronic Cloud in Atoms

Atoms consist of a central, compact, charged nucleus (Sect. 1.1.2) surrounded by
a diffuse, distant, neutralizing electron cloud. The nuclear radius of the order of
several fm is negligible as compared to the extent of the electron cloud. In most
atomic problems the nucleus can thus safely be reduced to a point charge Ze acting
on electrons by its Coulomb field. The atomic number Z determines the number of
electrons in the cloud and thus the chemical properties of the element. For heav-
ier atoms, relativistic effects become important, especially the coupling between
electronic spin and angular momentum (spin–orbit). Still spin–orbit effects are rele-
vant mainly for quantitative details of bonding. We shall neglect these fine-structure
aspects in this book.

The atomic problem then reduces to a non-relativistic many-electron problem in
the central field of the nucleus. Electrons arrange themselves in a regular sequence
of shells around the nucleus. Let us start from the over-simplistic picture of the
pure nuclear Coulomb field. The single-electron energies are then sorted in shells
n with energies εn = Z2n−2 Ry and a high 2n2 degeneracy accounting for angular
momentum l = 0, 1, . . .n −1 and its z-component m = −l, . . .,+l, and for spin
σ = −1

2 , 1
2 . This pure Coulomb spectrum is shown for Z = 36 in the left part of

Fig. 1.4. Here and in the following we use the spectroscopic notation of angular
momentum identifying l = 0, 1, 2, 3, . . . with s, p, d, f , g, h, . . . as indicated in the
figure. The electronic configuration for given Z is obtained by successively filling
the single-electron states. Closed shells correspond to particularly stable systems,
the rare gases. The pure Coulomb field fails to predict the proper sequence of rare
gases. This is demonstrated in Fig. 1.4 where the last Coulomb shell n = 4 cannot be

1 In an axially deformed system, if the extent along the symmetry axis is longer than the perpen-
dicular one (cigar-like shape), the deformation is called prolate, otherwise oblate (pancake-like).
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completely filled with Z = 36 electrons, while it is known that Z = 36 corresponds
to the rare gas Kr. The repulsive electron–electron interaction has to be taken into
account. This can be done in a mean-field picture. The result of a density-functional
calculation (see Sect. 6.1) is shown in the right part of Fig. 1.4. The effect on the
single-electron energies as compared to the pure Coulomb field is dramatic. There
is a strong up-shift of single-particle energies and the extremely high degeneracy is
removed, leaving only the angular momentum and spin degeneracy of a central-field
problem. This changes the filling pattern and a substantial energy gap (not shown)
emerges above the last filled state in Kr rendering this element safely a rare gas.

To better understand the electronic structure of atoms we recall the “aufbau prin-
ciple” [114], ignoring details like the very small deviation from sphericity of the
mean field, thus always assuming a central field. We imagine that we build the
atom electron by electron successively. The first electron will feel only the pure
nuclear Coulomb field. The second electron will already experience both the nuclear
attraction and the repulsion from the first electron. A balance is finally established
between both competing effects leading to the formation of the most deeply lying
electronic level, the so-called 1s shell, which has degeneracy 2 (two electrons in the
shell with opposite spins). The third electron feels the Coulomb field of the attracting
nucleus and the repulsion from the two already present 1s electrons. This amounts
effectively to a screened nuclear charge � (Z−2)|e|, with the 1s electrons remaining
closely packed around the nucleus, and keeping the third one farther away. The case
of the fourth electron will be somewhat similar to the case of the second one. It
will form, together with the third electron, the so-called 2s electronic shell, again
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with zero angular momentum. The screening of the nuclear charge by the 1s shell
makes the 2s shell much less bound than the 2s shell of the pure nuclear field (see
Fig. 1.4). This effect is even enhanced by the Pauli principle, which tends to expel
the 2s electrons from the region already occupied by the 1s electrons. Continua-
tion of this aufbau principle will proceed similarly. Electrons do gather in shells,
characterized by a so-called principal quantum number (n = 1, 2, 3, . . .) and an
orbital one (s, p, d, f , . . .). Each shell may contain up to 2(2l + 1) electrons, the
factor 2 allowing for pairs of opposite spins. Shell filling remains simple in light
atoms (lighter than Ca (Z = 20)), but becomes more involved in heavy systems. It
leads to the well-known sequence 1s|2s, 2p|3s, 3p|4s, 3d, 4p| . . .. Each major shell
closure (indicated by a vertical bar) leads to the appearance of a peculiar class of
especially bound atoms: the so-called rare gases known to be especially inert from
the chemical point of view. The gain in electronic binding associated to shell closure
explains the enhanced stability and corresponds to a particularly high value of the
ionization potential (IP) indicating that it is very costly to remove one electron from
a closed shell.

The filling of electrons in shells becomes more and more involved when consid-
ering larger atomic numbers, because polarization effects may lead to “irregular”
behaviors: some shells may be left partially empty while less bound ones start to
be filled. Hund’s rules here provide, fortunately enough, robust guidelines for an
estimate of the successive occupation of electronic levels [114]. The first rule states
that electrons successively occupy the levels 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d,
5p, 6s, extending the above-mentioned sequence in light atoms. When d states are
involved that monotonous shell filling is perturbed and tends to oscillate between
d and s with increasing atomic number. The second rule gives some clues on the
impact of degeneracy, which becomes larger and larger with increasing atomic num-
ber due to increasing angular momenta in electronic shells. But the problem already
shows up in a small atom such as carbon. The occupied levels in carbon are 1s,
2s, and 2p with the corresponding electronic structure 1s22s22p2. The 2p state
is 2×3-fold degenerate (2px , 2py, 2pz times spin), which for 2 electrons implies
15 equivalent choices of 2 occupied levels out of 6. The second Hund’s rule helps
solving that dilemma by stating that electrons occupy all degenerate sub-shells once
before occupying any level twice. This means that, for example, in the case of C,
the 2 2p electrons will occupy two different orbitals, say 2px and 2py , rather than
twice 2px . There remains to decide what is the relative orientation of spins in such
sub-shells and this is fixed by the third Hund’s rule which states that the ground-state
configuration of an atom is the one with maximum net spin (namely aligned spins).
This means that the spin-polarized structure emerges as more favorable as compared
to a spin-saturated configuration. Hund’s rules thus provide a guideline for predict-
ing the electronic structure and the level filling in an atom, especially in light atoms,
heavier atoms leading to many exceptions, foremost in relation to the polarization
of the d shell. The case of noble metals such as Ag, Au, or Pt is quite typical in
this respect. The discussion of such details is nevertheless somewhat specific and
we shall not further discuss this point. It is sufficient to remember that in such noble
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metals the least-bound electronic shell (s shell) is significantly affected by the only
slightly more bound d shell which, with its large degeneracy (a d shell may accept
up to 10 electrons), may lead to strong polarization effects, thus making the overall
picture quite complicated.

The filling sequence is also reflected in the systematics of atomic radii shown in
Fig. 1.5. The last elements before shell closure (the halogens F, Cl, Br, J) have the
smallest radii, while the first elements after closure (the alkalies Li, Na, K, Rb, Cs)
have largest. It is, furthermore, noteworthy that atomic radii stay in the same range
throughout, much different as compared to nuclei where radii scale with a power of
system size (see Sect. 1.1.2).

Electrons in an atom thus constitute an interacting Fermion system in which the
external nuclear Coulomb field plays the major role, responsible for the binding of
the whole atom and strongly influencing the shell structure of atoms. The repulsive
electron–electron interaction can be handled to first order in terms of a central mean
field which then allows to deduce simple rules for the sequence of elements and
their basic properties. Spin–orbit effects are essential for explaining the details of
electronic structure, but will not be discussed much in this book.

He

Ar
Kr

Xe Rn

0

3.0

2.6

2.2

1.8

1.4

1.0

0.6

0.2

R
ad

iu
s (

A
)

°

168 3224 40 48 56 64 8072 88 Z

Fig. 1.5 Atomic radii (in Å) as a function of atomic number Z up to Z = 92. The overall evolution
is a soft increase of radii as a function of Z . This evolution is strongly modulated by shell effects,
whence the marked oscillatory pattern. Halogens have consistently small radii, while alkalies with
their weakly bound s valence electron, have consistently large radii. The positions of the noble
gases are indicated in the figure
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1.1.4 Basics of Molecular Binding

As is well known, the successive filling of electronic shells provides the micro-
scopic basis for the understanding of chemical properties of elements and also a
simple understanding of the simplest dimer molecules binding together two atoms.
To understand such features is one of the goals of the Mendeleev classification [95],
which explains the regularity observed in the chemical reactivity of apparently dif-
ferent atoms. Because chemical binding is by nature a low-energy phenomenon,
involving at most a few eV energy, these chemical similarities reflect the behavior
of the tiny fraction of least-bound electrons in atoms, called valence electrons. The
Mendeleev classification, based on valence electron properties, thus provides a gross
map of which atoms may possibly bind with which other and how. Atoms with
valence electrons belonging to shells with the same angular momenta (s, p, d. . .

shells) behave similarly at the chemical level, which is not so surprising as the
angular momentum fixes the shape of the electronic wave functions and thus the
way electrons from two distinct atoms can interact with each other. The degree of
filling also plays an important role by determining the capability of an atom to accept
or to release valence electrons. Rare gases (He (Z = 2), Ne (Z = 10), Ar (Z = 18),
Kr (Z = 36), Xe (Z = 54), and Rn (Z = 86)) with electronic shell closures are thus
especially stable, chemically inert, and have a high ionization potential. In spite of
this, rare gases can bind with each other. The bonding is faint and arises from the
polarization of one atom’s electronic cloud by the other one. It is known as rare
gas or van der Waals bonding and is, e.g., responsible for the formation of helium
droplets as discussed in this book. Nevertheless, apart from this example of helium
we shall only little consider this type of system in the following.

Next to the rare gases there are two categories of especially active atoms with
one electron more or one electron less than the neighboring rare gas. These atoms
have a strong tendency either to grab or to release an electron, in order to attain a
closed-shell electronic configuration. The alkaline atoms (Li (Z = 3), Na (Z = 11),
K (Z = 19), Rb (Z = 37), Cs (Z = 55), Fr (Z = 87)) have one weakly bound
valence electron belonging to a s shell on top of a rare gas “core.” This valence
electron has a small IP and prefers to leave its parent atom. Halogen atoms (F (Z =
9), Cl (Z = 17), Br (Z = 35), I (Z = 53), At (Z = 85)), in turn, exhibit a
valence p-shell missing one electron for closure and tend to capture this electron
from their surroundings. Halogens and alkalies thus have a strong tendency, when
in each other’s presence, to bind together by electron exchange, leading to the most
robust chemical bond, the so-called ionic bond associating one negatively charged
halogen to one positively charged alkaline. In ionic bonds electrons are exchanged
between the two atomic partners and play little role as such. In this book, we shall
not consider such systems in which there is no specific many-electron problem, at
variance with other molecules or clusters.

Up to here, we have discussed 3 columns of elements (rare gas, alkalies, halo-
gens), while the Mendeleev classification contains up to 18 columns. In fact, halo-
gens and alkalies as “ends” of each row represent the extreme cases of tenden-
cies which actually develop along each row of the classification. Starting from an
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alkaline atom and successively adding electrons (namely going in the direction of
the next heavier halogen) will progressively attenuate the tendency of the atom to
release electrons and increase its tendency to capture them from its surrounding,
up to the extreme case of halogens. There is thus a continuous path, along a given
row, between electron donors and electron acceptors. In the middle of the path lie
atoms with an “equal” tendency to capture or to release electrons. These atoms play
a central role in nature. Indeed the typical representatives of this class are carbon (C,
Z = 6) and silicon (Si, Z = 14), which are building blocks of organic molecules
(carbon) and electronic devices (silicon). These atoms bind together in a specific
way known as covalent binding. In this case electrons neither stay on their parent
atom (rare gas bond) nor are transferred to the partner atom (ionic bond) because
there is no energetic reason to do so. Still, because the electrons are not too strongly
bound to their parent atom (as in rare gases) they have a possibility to effectively
“connect” to neighbor atoms. Electrons are finally shared between two atoms offer-
ing them the access to levels of comparable energy (whence the term “covalent”)
and the electron cloud binding the two atoms together gathers along the line joining
the two atoms, again in a fashion to establish a maximum shell gap for these now
molecular spectra.

If the valence electrons are sufficiently weakly bound to their parent atom the
electronic wave functions can easily spread outside the parent atoms. The electronic
wave functions may even become delocalized all around the two atoms and one
then speaks of a metallic bond (as a precursor of the behavior of such systems in
the bulk, discussed below). Alkaline atoms are the typical elements which estab-
lish metallic bonds between each other. They are called simple metals because the
valence electron is well separated in energy from the more deeply bound (core) elec-
trons. They thus provide a generic test case of metallic systems. Metallic binding is
also observed in some other metals such as Cu, Ag, Au, or Pt, but binding is more
complicated in such cases due to the presence of an energetically close d shell next
to the valence s shell and causes strong polarization effects. We shall thus mostly
refer, in the following, to the case of simple metals when speaking of metallic bond.

Bonding can even be directly visualized by means of scanning tunneling micro-
scopy (STM) which provides detailed images of the electronic density. An example
is provided in Fig. 1.6 for the case of O2 molecules deposited on a TiO2 surface,
a prototypical transition metal-oxide model system in surface science. The figure
exhibits a clear alternation of dark and light rows which can be attributed to the
alignment of O (dark rows) and Ti (light rows) atoms. The continuous rows indicate
electrons spreading between atoms and ensuring bonding. Figure 1.6 focuses on the
diffusion of oxygen molecules on transition metal-oxide surfaces, an effect which
plays a vital role for the understanding of catalysis and photo-catalysis on these
materials. STM images are time resolved which allows to explicitly follow in time
the diffusion process, as can be seen from the figure. These experiments show that
when properly heated the system exhibits numerous O vacancies (here missing O
atoms at the surface, open squares in the figure) on surfaces which trap electrons
and act as adsorption sites for simple molecules such as CO and O2. The time-
resolved STM images then reveal that O2 molecules reside on top of the Ti atoms
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Model Experiments

Fig. 1.6 Scanning tunneling microscopy (STM) time resolved images (two right panels) of the
diffusion of O2 molecules on a TiO2 surface. The left panel provides a schematic ball model of the
TiO2 (110) surface. The two STM images are separated by about 0.45 s. Adapted from [112]

that constitute the troughs along the [001] direction in between the protruding O
rows and diffuse (circles) only along the [001] direction.

The differences between the various types of bonding are, to a large extent,
related to the energies of the valence electrons of the two atoms being bound. The
more strongly bound the electrons, the less likely is a bonding between the two
atoms. Note that this energy is directly connected to the degree of localization of
the electrons, the deeper bound the electron the more localized its wave function,
which brings a complementing viewpoint to this question and on the bonding clas-
sification. This also points out the fact that the classification into four bonding types
(rare gas, ionic, covalent, metallic) is, to some extent, conventional. There are con-
tinuous paths between the various types of bonding, especially between rare gas,
covalent, and metallic. In this book we are interested in finite fermion systems and
thus concerned mostly with one type of bonding, namely metallic systems (except
for the specific case of helium). It turns out that electrons in a metallic system
indeed behave as many-fermion systems, requiring for their description the typical
techniques for many-body problems. Metallic systems will thus constitute prime
examples for finite electron systems and be used throughout this book. One of their
simplest realizations is the so-called metal clusters discussed in Sect. 1.1.5. Simple
approaches to other sorts of chemical bonding will also be discussed in Chap. 4.

1.1.5 Basics of Metal Clusters

Clusters are a special class of molecules. They are built from arbitrary repetition
of the same building blocks, similar to bulk crystals, but finite. They constitute an
intermediate state of matter between molecules and bulk matter. Clusters have been
applied for centuries as dispersed metallic material in glass or as deposited pieces in
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photographic emulsions. Cluster physics was strongly developed as an independent
field at the interface between physics and chemistry during the last few decades,
once cluster production in dedicated sources had been made practical. One of the
major features of clusters is the fact that their size can be varied almost at will,
from a few through several hundreds of thousands of atoms up to the bulk material.
They are usually constituted of one type of atom, sometimes of two for mixed sys-
tems, and possibly more in molecular clusters like water clusters (H2O)N . Clusters
are classified according to the type of binding between their constituents. We have
outlined in Sect. 1.1.4 that one can distinguish four basic types of chemical bonding.

Figure 1.7 shows examples of clusters for the four different binding types. The
structure of the mixed system Na5F4 with ionic binding is involved, but the typi-
cal alternation of positively and negatively charged sites and the associated regular
arrangement of ionic crystals is already visible. C60 is an example for a predom-
inantly covalent cluster and shows the famous Fullerene pattern. The Ar cluster
exemplifies a van der Waals system which requires extremely low temperatures
to stay stable. Finally, Na4 stands for a metallic cluster. Here we show produced
the electron cloud explicitly to demonstrate how it extends smoothly all over the
cluster.

Fig. 1.7 Different geometrical views of four different clusters as indicated. Upper left: electronic
density in the x–y-plane for Na4; the positions of the four Na+ are indicated by rhombi. Lower left:
configuration of Ar atoms in Ar561; the dashed lines indicate the emerging cuts through bulk fcc
structure. Upper right: configuration of the mixed cluster Na5F4; the Na positions are indicated by
filled circles and the F positions by open circles; the shaded area around the outer Na ion indicates
a concentration of the electron cloud. Lower right: configuration of the C60 cluster; the gray balls
indicate the C atoms and the bridges in between the leading covalent bonds
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Among the four types, metallic clusters will play an important role in this book
because the electrons move freely throughout the whole cluster, similar to nucleons
inside a nucleus. This property is also responsible for similar scaling laws and trends
observed in metal clusters. In a metal atom the valence electron is only weakly
bound and has a large spatial extent. If several metal atoms are put together the elec-
tronic wave functions of these valence electrons will strongly overlap and recouple
to explore the whole available space of the system together composing its binding
properties. The valence electrons interact via the repulsive Coulomb interaction, but
this repulsion is compensated by the attraction provided by the positively charged
background of the remaining ionic cores (= atoms without valence electron). Alto-
gether, the net classical Coulomb effect almost vanishes and only subtle quantum
corrections, linked in particular to the exchange interaction (see Chap. 5), lead to
a net binding of the system. Thus the valence electrons in such metallic systems
effectively interact only weakly with each other and can be considered as a quasi-
free electron system. The situation thus differs from the nuclear case to the extent
that there exists an external confining field from the ionic cores. It also differs from
the atomic case because the confining field is much softer and because the electron
cloud determines the ionic configuration in a decisive manner.

The valence electrons move with momenta near the Fermi momentum, which
corresponds to a spatial resolution of the order of the Wigner–Seitz radius rs (typ-
ically 3–5 a0). The fine details of the ionic background (typically at scales of
≈ 0.3 − 0.8 a0) are thus seen by the electrons only in an average manner. This
motivates the jellium approximation, in which the ionic background is smeared out
to a constant positive background charge. It is a standard approach in the theory
of bulk metals [3], and the adaptation to a finite cluster is straightforward. From
the bulk a finite element of constant positive charge is carved out. The roughest
approach is a homogeneously charged sphere with sharp surface. More versatile,
more realistic, and still easy to handle is a Woods–Saxon profile for the jellium
density

ρjel(r) = 3

4πr3
s

[
1 + exp

( |r| − R(ϑ, φ)

σjel

)]−1

, (1.1)

R(ϑ, φ) = Rjel

(
1 +

∑
lm

αlmYlm(ϑ, φ)

)
,

where the overall extent R0 is to be adjusted such that the total charge is repro-
duced, i.e.,

∫
d3r ρjel = Nion. The central density is determined by the bulk density

ρ0 = 3/(4πr3
s ) of the given metal. To give an impression of the surface width: the

transition from 90 to 10% bulk density is achieved within typically 4σjel.
Possible deformations are parametrized in R(ϑ, φ) through the coefficients αlm .

The most important of these is α20 which produces axially symmetric deforma-
tion, where positive values lead to prolate (cigar-like) and negative values to oblate
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(pancake-like) shapes. The additional parameters lead to more complicated shapes,
e.g., α2±2 allows three different radii in the three coordinate directions (see Sect. 3.2).

The similarity between metal clusters and nuclei has played an important role in
the study of clusters. Modeling the cluster as a cloud of weakly interacting electrons
inside an external confining potential immediately suggests that the electrons will
gather in shells. This was indeed observed experimentally. Early measurements on
small alkaline clusters have identified a series of “magic” electron numbers corre-
sponding to enhanced stability and abundances. The observed series 2, 8, 20, 40, 58,
92. . . matches spherical harmonic oscillator shells up to 40 and can be explained
by more realistic model potentials for the larger numbers. That will be discussed
in Chap. 3.

One of the specificities of metal clusters is the fact that one can vary their size
N deliberately, a parameter whose variations are rather limited both in atoms and
in nuclei. Indeed the heaviest element has atomic number 114 and accounting for
the various neutron/proton combinations in nuclei leads to about 3000 stable nuclei.
Metal clusters, in contrast, can have sizes between about 2 and hundreds of thou-
sands of atoms. For example, regularity (or irregularity) in abundance spectra (which
is closely connected to stability) can thus be explored on a very large scale. Such
studies have been performed and have exhibited several interesting features. First,
one indeed observes strong electronic shell effects and this up to any size range.
Second, for moderate sizes the amplitude of shell effects (in particular the shell sep-
aration) has a tendency to decrease for increasing system size. This is very similar
to what has been observed in both atoms and nuclei. The surprise comes from the
fact (impossible to explore in atoms or nuclei) that when further increasing the size
one observes a revival of the amplitude of shell effects. There appears in fact a beat
in the amplitude of the shell separation with increasing size [19], an effect predicted
on a purely theoretical basis in the early 1970s [6, 20]. As a third point one should
note that ions may also play a key role for the shell structure. Indeed while small to
moderate sizes are dominated by electronic shell effects one can show that atomic
shell effects play an increasing role with increasing size. The building blocks have
a tendency to arrange themselves in a more or less regular way, somewhat like a
precursor of the bulk solid and when a particularly compact and regular arrangement
with flat surfaces is attained this leads to an enhanced stability. The occurrence of
atomic shell effects is known in almost all materials, metals or non-metals. But while
cluster geometry is observed whatever the material, electronic quantum effects are
only possible in metals where the electronic mean-free path is typically larger than
the cluster diameter.

An interesting property of clusters is their ionization potential (IP), which can
be rather easily determined by irradiation with a tunable laser, and provides valu-
able information on electronic structure, especially in the case of simple metal
clusters. Ionization potentials of Na and K metal clusters are shown as examples
in Fig. 1.8. The curves exhibit clear jumps for well-defined values of the electron
numbers, which correspond to electronic shell closures. At shell closure a gain in IP
is observed and it drops sharply when adding one extra atom or electron (remember
that Na and K are alkalies with one single valence electron per atom). These jumps
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Fig. 1.8 Ionization potentials (IP) of Na and K clusters as a function of cluster size. The steps in
the IP reflect electronic shell closures [117]

reflect the fact that the extra electron in the new open shell is much less bound
that the ones belonging to closed shells. The amplitude of the effect decreases with
increasing cluster size.

Ions also play a key role in metal clusters for determining cluster shapes. While
in atoms the central nuclear field plays a key role and in nuclei the shapes result
from pure nucleonic effect, the case of metal clusters lies somewhat in between in
this respect. Indeed, a balance is established between electronic and ionic effects
to reach the most stable structure for a given size. The basic mechanism is well
known in simple molecules but becomes complicated in metal clusters. The number
of possible ionic/electronic configurations (=isomers) increases very quickly with
size, because the rather soft metallic binding allows rearrangements at almost no
energetic cost. Thus a proper discussion of metal cluster shapes requires to take
the ionic background into account. We are interested here mostly in the electrons
(as being the active Fermions) and thus when necessary take the shape for granted,
being obtained from more sophisticated calculations.

The metallic bond and associated long electronic mean-free path also leads to an
important phenomenon in the optical response: the Mie plasmon resonance. When
an electric field is applied to a metal cluster it tends to polarize the system by displac-
ing the whole electron cloud with respect to the ionic background. When left free
the cloud will then oscillate with respect to the ionic background with a well-defined
frequency, which in simple metals lies in the range of visible light. The seminal
work on this question goes back to the early twentieth century with the paper of
Mie [71], in which the author proposed to study how small metal particles react to
light and can be analyzed that way. Indeed the optical response characterizes both
the constituent material and its size. It is nowadays a key tool to analyze cluster
properties, not only size effects but also shapes. A remarkable feature of the Mie
plasmon resonance is the collective character of the electronic motion, in which the



1.1 Fermions in the Universe 19

electronic cloud oscillates coherently as one whole unit. Although dominating the
entrance channel of an optical excitation, the lifetime of the resonance is limited by
coupling to individual single-electron excitations and to possible ionic motion.

The notion “plasmon” for the Mie resonance is taken from plasma physics in
which similar collective electronic oscillations are well known and called plasmons.
The usage in metal clusters requires a word of precision. In an infinite plasma, elec-
tronic oscillations correspond to oscillations of the local electronic density through-
out the volume. In finite systems the dominating oscillations result from a global
displacement of the electron cloud, creating a charge enhancement or depletion on
the surface. One thus distinguishes volume from surface plasmons. It should also be
noted that the Mie plasmon resonance is pretty similar to the nuclear dipole giant
resonance discussed above in which neutrons oscillate against protons. We shall
come back to this point at several places in this book.

In summary, cluster physics covers several interesting mechanisms from a fun-
damental physical point of view. Clusters allow to deliberately vary the system size
and so help to understand how matter builds up between atom and bulk and how
bonding evolves with system size. Metal clusters, in particular, are perfect laborato-
ries for a finite Fermion cloud of electrons with their pronounced shell effects and
Mie plasmon resonance in the optical response.

1.1.6 Quantum Dots

Quantum dots are nanometer-sized dedicated structures in semiconductors in which
a finite (possibly small) number of electrons can be trapped. They have something in
common with atoms and are often called “artificial atoms”. They have been studied
in many physical devices such as transistors or diode lasers and it is even hoped that
they might be used as elementary pieces for quantum computers. Before quickly
describing them as finite fermion assemblies we briefly recall how they can be
manufactured.

Bulk crystals exist as conductors or insulators. The difference is explained by
the band structure. In solids, levels are very close to each other (at variance with
finite systems) and gather in “continuous” bands rather than sets of discrete lev-
els forming shells. The last occupied electron states build the valence band (these
are usually the valence electrons of individual atoms forming the crystal). The first
unoccupied electronic states form the conduction band. An insulator results if there
exists a large energy gap between these two bands which inhibits electron transport.
A conductor, on the other hand, is a system where there is no energetic distinction
between occupied and unoccupied states. The resistivity of an insulator depends
quantitatively on the size of the gap. For insulators with not too large a gap (typically
below 2 eV), there appears some conductance through thermal agitation of electrons
or appropriate doping. This is then called a semiconductor. The value of the gap
varies from one semiconductor to the next. Let us now imagine that we combine
different semiconductors with different gaps to what is called a semi-conducting
heterostructure. One standard option is to build a “quantum well” from a layer of
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one material with low band gap embedded into surrounding layers of material with
higher band gap. The electrons are more mobile in the low-gap region and feel a
barrier toward the high-gap bounds. A sufficiently thin embedded layer then allows
to create a 2D electron gas thus reducing dimensionality from 3D to 2D. By applying
external electrical fields and/or special etching techniques, one can further reduce
the dimension of the electron gas to 1D (quantum wire) and eventually 0D (quantum
dot). All in all, it is nowadays possible to confine a (possibly very small) finite num-
ber of electrons in a virtually 0D potential well. The notion of “zero dimension” here
does not strictly mean a point-like object. Quantum dots have typical extents in the
nanometer range, but they can contain a very small number of electrons inside the
confining well, whence the term “quantum dot.” Figure 1.9 shows the STM image
of a quantum dot with a schematic inset of the piling-up of constituting materials.
The dot has electric contacts on its top and bottom.

Quantum shell effects play, of course, a key role in quantum dots and it was soon
discovered that electrons indeed occupy discrete states. The number of electrons in
the dot can also be controlled, and it is observed that some particular numbers of
electrons are strongly favored, which is typical of shell closure effects. The many
studies of these systems confirm that the confining potential is very close to a har-
monic oscillator. There is additionally the electron–electron interaction to be taken
into account as strong correlation patterns have also been observed. A quantum dot
thus provides an interesting and versatile electron system. It has some similarity with
atoms because of the dominant confining external field and the still non-negligible
interactions between the electrons, but it goes far beyond that in flexibility. There
is scalability, namely the capability to vary at will the number of electrons in the
dot (somewhat like the variation of the number of atoms in clusters). There are also
important effects connected to the impact of external magnetic fields which may
strongly affect electronic energies. One should also mention that the shape of the

Fig. 1.9 Scanning electron micrograph image showing etched quantum dots. (The white bars have
a length of 0.5 μm.) A schematic drawing of the double-barrier dot structure is shown as an inset.
Adapted from [87]



1.1 Fermions in the Universe 21

dot is tunable (at least in two directions) by varying the values of the confining
fields.

At first glance, quantum dots look like very complicated objects with all these
different materials and interfaces. As already indicated above, however, the treat-
ment can be reduced to the dynamics of a few interacting electrons in a harmonic
well. One concentrates on the few mobile electrons in the semiconductor material.
These move in a conduction band with a single-particle energy ε(p) which is a
function of the momentum p. Only low p come into play such that we can expand
ε(p) � ε0 + p2/2m∗ which defines an effective mass (m∗)−1 = ∇2

pε
∣∣
p=0/3. To a

very good approximation, the active electrons thus move with the effective mass m∗

of the given semi-conductor material [3]. This means that the semiconductor envi-
ronment can be effectively taken into account for the electrons inside the quantum
dot by attributing such an effective mass to them. Similarly, the Coulomb inter-
action is modified by the corresponding dielectric constant of the material, which
can be accounted for by renormalizing the Coulomb coupling constant e2 of elec-
trons inside the quantum dot. For completeness and in order to recover relations
between typical constants similar to the set of atomic units one also redefines the
Bohr radius a0 (see Appendix B.1) to an effective aB and the Rydberg energy scale
to an effective Ry∗. These renormalized constants are often referred to as dot units
(du) in the literature. A typical material is GaAs with the properties m∗/m = 0.07
and e∗2 = e2/ε = 0.08 which yields an effective Bohr radius of a∗

B = 9.8 nm and
effective hydrogen binding energy Ry∗= 6 meV [87].

1.1.7 Basics of 3He Droplets

Helium droplets are a particular class of clusters constituted of helium atoms.
Helium, which is the lightest rare gas, is, like all rare gases, a rather inert mate-
rial, among rare gases even the most inert one, with minimal interactions. Binding
may still be possible though between two helium atoms, even if the bond length
is tremendously large (several tens of times the hydrogen or carbon bond length),
because of the very small binding energy. Helium was first studied in bulk phase and
was the subject of many investigations due to its peculiar properties at zero temper-
ature. Helium is the only material which does not crystallize at low temperatures
under normal pressure, because He is a light atom and the ensuing larger quantum
fluctuations inhibit localization. It shows superfluid behavior at sufficiently small
temperatures of a few K. The dominant helium isotope is 4He (99.99986%) which
is a boson, composed of six fermions (two protons, two neutrons, two electrons).
There also exists 3He in small amounts which is a fermion being composed of five
fermions (two protons, one neutron, two electrons). The total spin 3He is half-integer
as it should be for a fermion.

In recent decades helium has also been studied in finite pieces in the form of
droplets. Most studies were performed on 4He but a few also on 3He. In the follow-
ing we shall only discuss droplets of 3He, as this is a fermionic object, alternative
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Fig. 1.10 Density profiles for 3He clusters. It illustrates the evolution toward bulk properties. The
large surface energy makes the convergence much slower than for nuclei or metal clusters

to nucleonic or electronic ones. The theoretical description of 3He clusters can
ignore the intrinsic degrees of freedom of the atoms and treat them as “elemen-
tary” particles with a given atom–atom interaction, which has many similarities
to the nucleon–nucleon interaction. It also consists of a medium range attraction
(van der Waals force) and a huge short-range repulsion (Pauli principle of He
electrons). Thus we also encounter a saturating Fermi system with a well-defined
bulk equilibrium density which is successively approached in the interior of large
clusters.

Figure 1.10 shows a sequence of density profiles for 3He droplets, estimated by
a self-consistent mean-field model (unfortunately, there exist very few experimental
results for 3He droplets). The two largest systems nicely show the approach to bulk
density (indicated by the horizontal line). The surface binding, however, is much
weaker than for nuclei such that small systems tend to dissolve (compare with the
nuclear density distributions in Fig. 1.3). The 3He droplets constitute, in fact, the
softest self-bound fermion systems. The experimental minimal observed size of 3He
droplets is still under debate. A typical order of magnitude is assumed to be around
30 atoms, in accordance with the theoretical results. More detailed observables have
not yet been truly accessed. We shall thus discuss 3He only occasionally as examples
of fermion assemblies.

1.1.8 Degenerate Fermion Gas: Atom Traps, White Dwarfs,
Neutron Stars

The fermion systems considered up to now cover different stages of interaction
effects. Quantum dots to some extent offer adjustable interaction scenarios, but the
most versatile tool in this respect are atomic clouds in traps, in which all physi-
cal parameters can be tuned in a wide range. The density can be adjusted by the
filling conditions and external fields and the atom–atom interaction can be varied
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by cleverly exploiting the quickly changing cross sections of scattering resonances
[14, 38]. A large interest lies in the design of an almost interaction-free system,
close to the ideal of a fermion gas.

The interest in producing a model fermion gas is, in fact, not purely theoretical.
One usually considers some forms of compact stars as practically non-interacting
fermion systems. It is thus desirable to create some prototypes of fermion gases in
the laboratory. Before considering atomic traps in more detail, let us briefly dis-
cuss the celestial case. One class of such stars close to fermion gases are White
Dwarfs (WD) which constitute the final stage of evolution of low mass stars, like
our sun. For these after the initial burning of hydrogen into helium, nucleosynthesis
is bound to stop because of the small mass and the star starts to collapse. A stabi-
lizing pressure against gravity is provided by the quantum pressure of the electron
gas, namely the pressure due to the Fermi motion of a highly degenerate fermion
gas. That Fermi pressure suffices to counterweight gravitation if the star mass is
small enough (see Sect. 2.4). White dwarfs are mostly composed of hydrogen and a
helium core with typical electron binding energies of a few eV. The star temperature
is low, well below the eV range. Typical mass densities are of order 106g cm−3. This
corresponds to a typical nucleon density of ρp,n ∼ 0.5 × 1030 cm−3 = 0.5 × 105 a−3

0
where a0 ≈ 0.53 Å is the Bohr radius (see Appendix B.1). Assuming equal frac-
tions of proton and neutrons, the typical electron density is half of that, i.e., about
104 a−3

0 . According to (2.19) this means that each electron on an average occupies
a sphere with a radius (Wigner–Seitz radius) of about rs ∼ 0.03 a0. This value is
far below typical distances in matter under earth pressure (rs ∼ 2 − 6 a0). In that
extremely dense matter, the electrons are delocalized and form a Fermi gas with
a Fermi energy of order εF ∼ 50 keV. The electron gas is thus practically at zero
temperature, deep in what is called the degenerate regime where the Pauli principle
determines the occupancies. The Coulomb energy also increases with density but
more slowly than the kinetic energy. One can then safely consider that the electrons
are non-interacting from a Coulomb perspective. Of course, the electron system is
bound by the gravitational interaction together with all other constituents to form
the star. The WD electrons thus constitute a degenerate fermion gas confined by an
external potential.

Neutron stars are another sort of stars which are often discussed as an infinite
phase of stabilizing fermions. They also constitute the latest stage of evolution of
some stars, but this time much more massive ones. Again, the mother star has con-
sumed all its nuclear fuel and runs into gravitational collapse. This latest phase of
evolution leads to a neutralization of matter and the core of the finally exploding
star gives birth to an extremely dense (about 10 times the density inside a terres-
trial nucleus) star mostly composed of neutrons. With different energy scales, the
sequence of arguments developed for the WD electrons can almost completely be
transferred to the neutron star case, and the pressure stabilizing gravitational col-
lapse is again mostly due to the fermionic nature of neutrons. This is thus again
an almost infinite fermion gas confined by gravitational interaction. Nevertheless,
there remains a major difference to WD: The neutron–neutron interaction has a huge
repulsive core (as discussed in Sect. 1.1.2) which is never negligible. It is only the
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effective neutron–neutron interaction after eliminating the short-range correlations
which becomes negligibly weak under neutron star conditions and which allows to
consider neutron stars as a fermion gas similarly to WD.

Figure 1.11 illustrates the density and mass range for these two compact stars.
There exists some variety in the predictions for the case of neutron stars [63] which,
however, does not play a role at the huge scale of the present figure. The mass of
neutron stars ranges up to 3–5 solar masses, while WD are limited to about 1.5 solar
masses (Chandrasekhar mass). The density ranges are quite different with the WD
still “dilute” enough to have electrons as major agents while neutron stars are domi-
nated by nucleons. The figure also indicates the density of two other fermion gases,
the electron gas in a metal (or metal cluster, respectively) which represents normal
matter density under earth conditions and the typical density ranges in atomic traps
which is extremely low.

Energy scales vary as much as the length scales shown in Fig. 1.11. Fermi ener-
gies are in the keV–MeV range for compact stars, in the eV range for the metallic
electron gas, and shrink to the sub-Kelvin range for atomic traps (1 K ∼ 10−4 K).
Constructing a degenerate gas of fermionic atoms hence requires very low temper-
atures. The physics of low temperatures has developed since the beginning of the
twentieth century and received a substantial boost with the advent of traps. Bose–
Einstein condensation of trapped atoms was attained in 1995. In that case bosonic
atoms form a macroscopic state within a macroscopic fraction of the system, congre-
gating in the lowest energy level of the system. Only a few years later, in 1999, the
first (almost fully) degenerate gas of fermionic atoms in traps was experimentally
observed. The production proceeds by confining a (non-degenerate) gas of fermionic
atoms in a magnetic trap and progressively cooling it down (by laser cooling and
finally evaporative cooling) in order to reach a temperature in the range of the Fermi
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Fig. 1.11 Mass of two dense star types, neutron stars, and white dwarfs, versus inter-particle
distance in terms of the Wigner–Seitz radius rs . (The particle density is ρ = 3/(4πr3
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Fig. 1.12 Quantum degeneracy effects in trapped Fermi gases of 40K atoms. The temperature is
given in units of the Fermi temperature TF = εF/kB . The average energy per particle, extracted
from absorption images, is shown for two-spin mixtures (filled and open circles). In the quantum
degenerate regime (T < TF), the data agree well with the ideal Fermi-gas prediction (solid line).
The horizontal dashed line corresponds to the result of a classical gas. Adapted from [65]

energy εF (Sect. 2.2). This is illustrated in Fig. 1.12, showing the average energy
per atom as a function of the system temperature. The deviation from the classical
estimate is obvious for sufficiently low temperatures, T < TF/2, which corresponds
to the expected transition regime where one reaches the degenerate fermion gas. The
density of the system is tunable through the external confining potential and it is
easy to reach a regime in which interactions are vanishingly small, all the more with
overall neutral constituents.

Even more interesting is the fact that the interaction between constituents can
be modified by an external magnetic field, which allows to tune the interaction
from attractive to repulsive in a broad range of strengths. This delivers a labo-
ratory for studying the influence of interactions in the formation of compound
fermion systems. For zero interaction, we have the Fermi gas like in compact stars.
Other regimes are equally interesting, e.g., the regime of pairing correlations (see
Sect. 9.4).

As a final remark it should be noted that the tuning of the interaction in traps
also allows to reach a quite particular regime for a fermion gas, the so-called unitary
or resonant regime. By exploiting resonant scattering, one can design a situation
where the scattering cross sections suddenly become very large, for then the details
of the interaction do not matter anymore and its length scale characteristic can be
taken as a “universal” infinite length. Such phenomena occur even in a very dilute
system. This is then a very peculiar situation of a dilute (in which the range of the
interatomic potential is small as compared to the interatomic distance) but strongly
interacting (because the effective interaction length becomes much larger than the
interatomic distance) system. All specific length scales associated to the interactions
then disappear from the problem and the system is expected to exhibit a universal
behavior. This unitary regime is also expected to occur in neutron stars which makes
model studies in traps even more interesting. We shall discuss the unitary regime in
the Fermi gas in Sect. 6.5.2.
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1.2 Similar and Different

The presentations of Sect. 1.1 have unfolded the great diversity of fermion sys-
tems. There are, however, many profound similarities. It is the aim of this section
to analyze these similarities and differences, as well as to put on a wider basis the
theoretical approaches to be discussed in the following.

1.2.1 Overview of Many-Fermion Systems

Table 1.1 summarizes the fermion systems under consideration and introduced in
Sect. 1.1. The column “Fermion” shows the quantum-mechanically active con-
stituent. Note that some systems also have classically treated counterparts like the
ionic cores in molecules or clusters. The column “size” provides typical constituent
numbers and the last column indicates the possibility of a corresponding “bulk”
material, i.e., the arbitrary scalability of a system. The ideal scalable systems are
clusters which, indeed, have been produced at any size [59, 44]. That also includes
droplets of 3He which are special clusters, distinguished by the fact that the whole
atoms are the active Fermions and that the bulk limit ends up in a Fermi liquid rather
than in a solid. The bulk limit is somewhat ambiguous for molecules. They can grow
huge, but in irregular manner. Everything which is composed of regularly repeated
building blocks would belong to the category of clusters. Note that in practice clus-
ters are often in a liquid state because they are produced at finite temperature. For
then the bulk limit is also liquid-like. But remember that electrons, whatever the
temperature at which the cluster has been produced (some hundreds of K at most),
can always be considered to be at zero temperature because electronic energies lie
in the eV range (1 eV ∼ 104 K).

Table 1.1 Schematic overview over many-Fermion systems. Typical sizes N are indicated as well
as constituents. The bulk limit is indicated in a key word and explained in the text

Self-bound fermion systems

System Fermion Size(N) Bulk

Nucleon Quark N = 3 Limited by color confinement
Nucleus Nucleon N ≤∼ 300 Limited by Coulomb
Neutron star Neutron 1057−58 Practically bulk
White dwarf Electron 1057−58 Practically bulk
3He droplet 3He 30 <∼ N Quantum liquid

Fermion systems bound by an external field

Atom Electron N ≤ 112 Limited by nuclei
Molecule Electron Irregular
Cluster Electron 3 ≤ N ≤ 105−7 Corresponding solid

Artificially stabilized systems

Quantum dots Electron Defined by construction Limited by construction
Atoms in traps Atom Defined by construction Limited by trap size
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Nuclear matter is often considered as the bulk limit of nuclei. That, however, has
to be taken with care. The steadily increasing Coulomb energy sets an upper limit of
nuclear stability [18, 42]. Nuclear matter, although very useful for characterization,
is a theoretical construction from which the Coulomb force has been removed to
allow the bulk limit. Neutron matter exists at any size and is realized in neutron
stars [39]. These are bound by gravitation which, being a long-range force, does not
generate a universal equilibrium density (saturation). Atoms and nucleons exist only
as finite systems. The atomic size is limited by the available nuclear charges and the
nucleons are limited to three quarks by color confinement. Both artificially bound
systems (Quantum dots, fermion traps) can, in principle, be extended to any size.
The quantum dots tend to constant electron densities if the same carrier material is
used for the different sizes while the trapped clouds can be squeezed and expanded
deliberately by tuning the external fields.

In the following, we will not address the nucleon as an assembly of fermions
(quarks), because that is touching the regime of particle physics and the relativistic
domain. All other systems will show up here and there as examples (we shall take
WD as examples for compact stars, leaving out the quite similar neutron stars). Most
models are so generic that they can be applied for several of the above-listed cases.

1.2.2 Scales and Interactions

Table 1.2 gathers the typical length, momentum, and energy scales for the fermion
systems of interest. The dominant interaction is also indicated for completeness.
Scales show enormous variations, by 7 order of magnitude for length (rs) and up to
20 for energy. One may thus wonder how it is possible to consider so different
systems on a similar footing. Table 1.2 already contains the clue to resolve the
apparent paradox. In most of these systems a characteristic length scale rs exists,
usually known as the Wigner–Seitz radius. It provides a scaling of the radius R
of a finite system of N fermions as R ∼ rs N 1/3. This trend with nearly constant
rs is called saturation as it means that the system tends to have the same aver-
age density for all sizes. This is valid in particular for nuclei, metal clusters, and
helium droplets. Interestingly these three systems scan the range of sizes/energies
by providing extreme cases, small (fm) tightly bound (MeV) nuclei, and large (nm)
loosely bound (sub meV) helium droplets, as well as a typical intermediate regime
case with (0.1 to hundreds of nm) softly bound (eV) metal clusters representative of
most electronic systems in materials. The Wigner–Seitz radius, furthermore, allows
to introduce a typical momentum scale in terms of the Fermi momentum �kF which
is the momentum of the least-bound fermion, and the Fermi energy εF which is the
corresponding kinetic energy (see Sect. 2.2) and which thus sets a reference value
for the energies in the system. From the Fermi momentum one can estimate the
de Broglie wavelength in the ground state λB ∼ 2π/kF ∼ πrs , the large value
confirming the essentially quantal nature of these systems. Indeed the de Broglie
wavelength typically spreads over two interparticle distances which means that the
typical wave function contains several tens of constituents within its quantal width.
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Table 1.2 Orders of magnitudes for the gross properties of typical fermion systems, Wigner–Seitz
radius rs , Fermi momentum kF, Fermi energy εF, and type of interaction. a0 denotes the Bohr radius
(see Appendix B.1). For systems which do not have a bulk limit, the overall radius R is given in
place of rs

System Fermion rs kF εF Interaction

Self-bound fermion systems

Neutron star Neutron 1.1 fm 1.8 fm−1 ≈ 60 MeV Gravitation
White dwarf Electron 0.01 a0 2 102 a−1

0 3 keV Gravitation
Nucleus Nucleons 1.2 fm 1.35 fm−1 ≈35 MeV Nuclear strong
3He droplet 3He atom 12 a0 0.16 a−1

0 2.7 K Atom–atom

Fermion systems bound by an external field

Atom Electron R ≈ 3 a0 0.4–0.8 a−1
0 2–20 eV Coulomb

Molecule Electron R > 1 a0 0.4–0.8 a−1
0 2–20 eV Coulomb

Metal cluster Electron 3–5 a0 0.4–0.6 a−1
0 2–5 eV Coulomb

Artificially stabilized systems

Quantum dot Electron ≈ 200 a0 ≈ 0.01 a−1
0 1.4 meV Coulomb

Atomic trap Atom ≈ 200 a0 10−2a−1
0 nK Atom–atom

Most fermion systems under consideration here are described in first order as
independent particles moving in a common mean field. At first glance this seems
surprising, as almost all systems have interactions which are, in principle, singular at
small distances. The Coulomb singularity is in practice moderate as it immediately
allows a mean-field treatment (Hartree–Fock). Nonetheless, long-range correlations
can grow large. They can effectively be included through density functional the-
ory, see Sect. 6.1. Nucleons (in nuclei and neutron stars) and 3He atoms have an
interaction with a huge repulsive core which inhibits a direct mean-field treatment
with the bare interaction. The strong short-range correlations have to be dealt with
by elaborate many-body theories (Brückner–Hartree–Fock, hypernetted chain, etc.
[90]). In the end, they can be eliminated effectively leaving a moderate in-medium
interaction (see Sect. 1.1.2). As a consequence systems like nuclei, metal clusters,
or helium droplets can be safely viewed as finite systems of moderately interacting
fermions which evolve in a common average (mean-field) potential built from the
piling-up of (effective) interactions between the constituents. This can be quantified
in terms of the mean-free paths. In all cases, they turn out to be of the order of
magnitude of the actual size of the system, so that one can adopt the view that the
fermions evolve nearly independent from each other throughout the whole system,
motivating a mean-field approach.

The simplest idea to understand how a finite system can be self-bound is to imag-
ine that the constituent particles are bound inside a confining potential. Some cases
are obvious, as for example atoms, in which electrons are bound in the field of the
central nucleus if one neglects repulsive Coulomb effects between the electrons. In
turn the case of nuclei is less obvious, as neutrons and protons bind together as
a whole to form a nucleus without any “external agent”. As we shall see below,
though, the idea of a container is in fact quite physical, whatever the system, even if
we shall have to discuss its origin in detail in some cases. We thus start the discussion
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Fig. 1.13 The mean-field potentials for a Na cluster, a nucleus, and a helium droplet, for 40 par-
ticles (the results are only shown for the neutron part in the nuclear case). Natural units are used:
lengths in units of rs and potentials in units of εF . Adapted from [73]

on the basis of this simple picture of fermions inside a container potential, whatever
its origin. The basic idea here is to average out the interactions to produce an average
field. This is usually called a mean-field picture and it will constitute the foundation
of numerous discussions in this book.

Rescaling distances by rs and energies by εF , one can now compare such aver-
age potentials from apparently very different systems. A comparison is presented
in Fig. 1.13 for the cluster Na40, the nucleus 78Sr (with 40 neutrons), and a helium
droplet with 40 3He atoms. The results are plotted using “natural” units rs and εF .
The first point to be noted is that all three systems fit into one figure, i.e., have
about the same scales when expressed in natural units. They moreover have the
same spatial extent, which is directly connected to the “saturation scale” introduced
by rs . There are, of course, also some differences, especially in the depth of the
potential wells and in the asymptotic behaviors. While the cluster and nucleus
share a comparably deep potential, the helium droplet exhibits a much more shallow
potential well reflecting the faintness of the interaction between two He atoms and
the fact that N = 40 is at the lower bounds of binding for 3He droplets. On the other
hand, the helium droplet and the nucleus share the same exponential asymptotic
behavior characteristic of a system dominated by a relatively short-range interaction
(nuclear interaction for the nucleus, van der Waals for helium). On the contrary, the
cluster exhibits a typical long-range Coulomb behavior. Still, up to these details, the
comparison shows the overall similarity between the various systems.

1.2.3 Shells in Finite Systems

The occurrence of shells is a generic feature of finite fermion systems. Let us thus
start with the general problem of a set of (effectively non-interacting) fermions in
a potential. The potential sets definite boundary conditions to the wave functions
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so that only discrete energies are possible. This is the well-known quantization of
energy levels in a potential. The sequence of energy levels (or spectrum) is in most
cases non-trivial and requires elaborate numerical techniques to be worked out in
detail. These energy levels often gather in bunches of degenerate energy values,
called energy shells, the more so the higher the symmetry of the system. At very
large energies or very large fermion numbers so many and so closely lying energy
levels appear that one progressively switches from a discrete to a continuous picture.
This is the path to band theory in bulk material involving a virtually infinite num-
ber of electrons and corresponds to continuum (unbound) states in finite systems.
Apart from these extreme cases the energy spectra of finite systems thus usually
exhibit pronounced shell structure. The details of the shell structure, especially the
sequence of numbers corresponding to shell closures, is characteristic of the con-
tainer potential and thus of the physical system under consideration. As mentioned
above, symmetries here also play a key role.

Shell closure corresponds to the fact that a given number of particles completely
fill all possible sub-levels in a shell of degenerate energies. This is associated to an
energy gap to the next shell (the existence of such a gap actually defines the shells
themselves). The appearance of an energy gap induces an extra stability at shell
closure. The effect is well known in many systems. These are, for example, rare
gases in atoms associated to electronic shell closures or magic nuclei associated
to neutron or proton shell closures. But similar effects are also observed in metal
clusters or quantum dots as this corresponds to a genuine quantum effect not specific
to a particular system. Shell closures and associated shell effects will thus constitute
a major issue in this book and will be discussed at many places both from a generic
and specific point of view. We shall see in particular their role in the shape of the
systems we shall study.

Shell effects are illustrated in Fig. 1.14 for four typical fermion systems discussed
in this book: atoms, nuclei, metal clusters, and quantum dots. Except for nuclei,
in which the fermions are neutrons and protons, the three other cases correspond
to electronic shell closures. The associated “magic” numbers of course vary from
one system to the next, due to different confining potentials. In the case of atoms
(upper left panel of Fig. 1.14) shell closures can be directly read from the pro-
nounced maxima of the ionization energies of neutral atoms for atomic numbers
Z = 2, 10, 18. . . which correspond to noble gases He, Ne, Ar . . . In this case
the spectra are “structured” by the dominating spherical symmetry imposed by the
strong (confining) Coulomb potential of the nucleus (which leads to large degenera-
cies). The case of nuclei is illustrated in the lower left panel of Fig. 1.14 in terms
of nucleon separation energies (the analogue to ionization potentials in electronic
systems). The steps in this observable reflect nuclear shell closures (2, 8, 20, 28
. . . ), in a way very similar to atoms. Remember that nuclei are self-bound so that
the “confining” potential directly stems from the nucleon–nucleon interaction with
no external factor. The upper right panel of Fig. 1.14 shows an example in simple
(Na) metal clusters, this time considering as observable the abundance of species
as a function of cluster size. Shell closure corresponds to a gain in energy/stability
which directly translates into a larger abundance of the associated species/size. One
indeed observes pronounced maxima for clusters with 2, 8, 20, 40, and 58 atoms.
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Fig. 1.14 Illustration of shell structure and magic numbers in finite fermion systems. Upper left,
ionization potentials in atoms; lower left, separation energies in atomic nuclei (corresponding to
ionization potentials); upper right, abundance spectra of metallic clusters (counting rate in arbitrary
units, generic example of Na); lower right, differences in the chemical potential (corresponding to
ionization potentials) of disk-shaped quantum dots. Adapted from [87]

The cluster case is mixed what concerns the confining potential, which “equally”
reflects the (attractive) ionic component and the electronic contributions. The last
case of quantum dots (lower right panel), in turn, is almost exclusively associated
to a true external potential which takes a typical harmonic oscillator shape with
the associated shell closure sequence 2, 6, 12. . . , appropriate for a 2D oscillator
(remember the strongly deformed (disk-like) shape of the dot).

1.2.4 Beyond the Static Mean Field

As discussed in the previous Sect. 1.2.3 shell effects constitute a major issue in the
physics of finite fermion systems. We will complement here the general analysis
of the previous section by considering a few more observables in which again the
quantization of fermion levels plays a major role, but which require more elaborate
theoretical treatments beyond a mere static mean-field picture. We take as exam-
ples correlation effects in the electron emission from irradiated atoms, the optical
response in complex molecules, and the level density parameter in nuclei.

1.2.4.1 Electron Correlations in Irradiated Helium

The helium atom constitutes a prototypical many-body problem with two densely
packed, thus correlated electrons. It is the first rare gas, having exceptional stability
and correlatively very faint interactions with its environment. It is thus an example
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of choice to perform studies of principle. The (very) small number of electrons is
just large enough to account for possible correlation effects and still small enough
to allow highly sophisticated calculations, even in the time-dependent domain. We
consider here as illustration the case of an irradiation of an helium atom by a single
photon. The photon energy is chosen large enough to allow for double ionization
(i.e., emission of both electrons). Figure 1.15 shows the measured momentum dis-
tribution of one of the emitted electrons at fixed direction of emission of the other
electron. Neglecting the (small) photon momentum (incoming photon provoking the
double ionization), the vector momenta of the ion and both electrons have to be in
one plane, for obvious kinematic reasons. The momentum distribution of Fig. 1.15 is
plotted in this plane. The data are integrated over all orientations of the polarization
axis with respect to this plane, and the x-axis has been chosen to be the direction
of one of the electrons. The momentum distribution exhibits an interesting pat-
tern reflecting deep correlation effects between the two emitted electrons. The first
remarkable feature is the fact that the electron–electron repulsion leads to almost
no intensity for both electrons in the same half plane (namely toward the positive
x-axis). The second aspect reveals details of the wave functions. Indeed one expects
that the two emitted electrons, which are in the continuum, have to be coupled in
a very specific way which implies the appearance of a node in the square of the
wave function at the point at which electron momenta are opposite. The effect can
be directly spotted from the figure (“node” circle in the figure) . The latter aspect, in
particular, proves the strong correlation effects observed in this electronic emission
following a single-photon excitation.

Fig. 1.15 Cross sections of the double ionization of He at 1 and 20 eV above threshold following
one photon ionization by linearly polarized light [28]. The momentum distribution of electron 2 for
fixed direction of electron 1 is plotted in the plane of the two electrons + ion. Data are integrated
over all orientations of the polarization axis with respect to this plane. The outer circle corresponds
to the maximum possible electron momentum, while the inner one to the case of equal energy
sharing. From (“R. Dörner, 2009, Private communication”)
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1.2.4.2 Optical Response in Guanine

The optical response, i.e., the distribution of photo-absorption strength over photon
energies, is a key tool for the investigation of structure and dynamics of electronic
systems (atom/molecule/cluster). The observable is called optical response, as it
often concerns frequencies in the visible part of the electromagnetic spectrum, i.e.,
when irradiated by light the system appears with certain colors. The optical response
brings decisive information on the structure of the studied species. In metal clus-
ters, for example, the dominant absorption stems from the Mie surface plasmon
(Sect. 1.1.5), i.e., which corresponds to a collective oscillation of the electronic
valence cloud against the ionic background, and consequently exhibits interesting
systematic trends with size. In complex molecules it shows the various (individual)
electronic contributions in a more subtle way. In all cases it can be viewed as the
summed up response of individual electronic excitations (see Chap. 8 for details).

Figure 1.16 shows an example of optical response in the case of guanine, which is
one of the main nucleobases found in the nucleic acids DNA and RNA. The figure
exhibits an experimental spectrum which is compared to a theoretical calculation
(with methods as explained in Chap. 8). The spectrum exhibits a series of peaks
which result from the combination of electronic excitations (promotion of electrons
from occupied to unoccupied levels). Two particular such levels are also shown in
the figure, the HOMO (highest occupied molecular orbital) and the LUMO (lowest
unoccupied molecular orbital) in terms of the corresponding electronic density (see
also Fig. 1.19). Keep in mind that the resulting optical response is not a mere super-
position of such elementary excitations. As, for example, in the case of an assembly
of coupled strings, the system exhibits eigenfrequencies, indeed built out of the ele-
mentary excitations, but non-trivially re-coupled through interactions. The optical
response in a complex molecule such as guanine is thus an involved landscape of
strongly fragmented peaks which carry valuable information about the underlying
molecular structure whose proper analysis is, however, a non-trivial task.

Fig. 1.16 Optical response of guanine (C5 H5 N5 O). Experimental results (bars) are compared to
theoretical estimates obtained from linearized time-dependent DFT (Chap. 8). For completeness
maps of electronic densities are plotted as inserts for the HOMO (highest occupied molecular
orbital) and LUMO (lowest unoccupied molecular orbital) levels of guanine. Adapted from [107]
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1.2.4.3 Level Density Parameter in Nuclei

The level density parameter provides a direct measure of the nature of least-bound
(occupied and unoccupied) levels of the nucleon spectrum in nuclei. Given a
quantum system one can characterize its spectrum by introducing the level den-
sity D(ε) which is defined as the number of single-particle levels per unit energy
D(ε) = dnlevel/dε. For a discrete spectrum D is a sequence of individual peaks. For
a continuum spectrum D becomes a smooth function. When levels are close to each
other, like inside a shell, D becomes large, while in between two levels D vanishes.
The level density can be explicitly measured in a variety of physical systems, for
example, in solids. In nuclei one further focuses on the least-bound levels, close
to the Fermi energy εF (Sect. 2.2). The level density parameter a = π2D(εF )/6
then provides a direct measure of the degree of occupation of levels near the ion-
ization threshold (see also the precise definition of the associated Fermi energy εF

in Sect. 2.2). The level density parameter has been measured in a systematic way
in nuclei and is presented for illustration in Fig. 1.17. It exhibits a remarkable sys-
tematic trend, taking on the average a value well represented by the simple formula
a � A/8, where A is the total nucleon number, on which are superimposed some
structures, especially strong minima. The sequence of minima is easy to identify and
interpret, as it is simply the set of magic numbers. The effect is easy to understand.
As already discussed above, nucleon shell closures are associated to a gain in stabil-
ity which is reflected in particular in a larger separation between the last occupied
and the first unoccupied level. At shell closure the level density is thus necessarily
particularly small, whence the corresponding small values of a. The effect is espe-
cially large for doubly magic nuclei such as 208 Pb in which both neutron and proton
numbers are magic.

Mass number A

A
 (

M
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)-
1

Fig. 1.17 Systematics of the level density parameter a in nuclei, as a function of nucleon number
A. The smooth A/8 trend is plotted as a solid line to guide the eye. The experimental values
exhibit fluctuations around the smooth trend and are attributed to nucleonic shell closures. The
case of doubly magic 208Pb is exemplary in this respect. Adapted from [17]
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Surprisingly enough the general trend a � A/8 is much more difficult to recover
quantitatively by simple arguments. It is a well-known problem in nuclear theory
and requires elaborate many-body techniques. Simple estimates can be attained, for
example, with the help of the Fermi gas (Sect. 2) or with mean-field techniques
(Chap. 5). But such approaches miss the value typically by a factor of 2 (Fermi gas)
or by 50% (mean-field approaches). The level density parameter is thus by no means
a trivial quantity to estimate and has led to numerous elaborate theoretical investi-
gations. It is also important to note here that a plays a crucial role for analyzing
many experimental nuclear data. Indeed when nuclei are excited, for example, in
the course of a nuclear collision, the excitation energy is (as in any other systems)
primarily stored in least-bound levels, especially for small to moderate perturba-
tions. It is thus a key issue to know in detail how many levels are accessible to
the system, and one can easily show that the statistical de-excitation of the excited
system strongly depends on a, whence the key importance of evaluating it properly.
This point is further investigated in Sect. 2.3.

1.3 Basic Theoretical Tools

After having introduced the various fermion systems of interest, both in specific and
is generic ways, we now want to introduce some basic theoretical tools which will
be used all over this book. A key question in quantum mechanics, and for many-
fermion systems in particular, is the choice of a proper representation for the system
under study. The standard approach in elementary quantum mechanics is based on
a wave function representation of the quantum state of a particle. Many-fermion
systems add the complication that their wave function is antisymmetric with respect
to the exchange of any two particles, a condition which renders the actual writing of
wave functions, even in the simplest cases somewhat cumbersome. Thus alternative
approaches were developed, from which we will use two techniques both based
on operators. The fermion operator formalism relies on a description in terms of
creation and annihilation operators, similar to the well-known formalism used to
describe the elementary harmonic oscillator. The other approach is based on density
operators, which can be defined from wave functions but can also be used on their
own. The latter are quite helpful, especially for formal manipulations, as they pro-
vide a compact representation of the system. They also allow a clean formulation of
the semi-classical approximation which can be very useful especially in the case of
large systems at high excitations. We briefly outline the basic content of these three
approaches in the forthcoming sections and take the opportunity to define notations
for the following chapters.

1.3.1 The Wave Function Approach

Starting from the usual Schrödinger picture, the a priori natural way to describe
particles is by means of wave functions which will constitute the building blocks
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Fig. 1.18 Lowest four eigenfunctions (left panels) of the 1D harmonic oscillator and the corre-
sponding density distributions

of the many-body state. For sake of simplicity, let us first start with a well-defined
problem, namely a single-particle Hamiltonian. It exhibits a series of eigenstates of
increasing eigenenergies. The point is illustrated in Fig. 1.18 in the case of a 1D har-
monic oscillator (see also Chap. 3). In this figure we show both the eigenfunctions
and the corresponding densities (square moduli of the wave functions). As long as
only one particle is involved, a stationary state of the system is fully defined from
one of these eigenstates and the nature of the particle (boson, fermion) is irrelevant,
but the difficulty shows up as soon as we consider two or more identical particles.

Let us start with the simplest case of two independent particles of wave functions
ϕαi (i){i = 1, 2} where αi denotes a certain state in the single-particle spectrum
and the “i” in the brackets summarizes space and spin dependencies. This already
exhibits the crucial difficulties to be overcome. Furthermore assume that these two
particles interact only with an external field. In terms of the Schrödinger equation
this amounts to say that the total Hamiltonian of the system is just the sum of the
separate Hamiltonians for each particle, each piece acting on its own particle only.
Then the total energy of the system is just the sum of the two single-particle ener-
gies εαi . The simplest choice for the two-body wave function is the product of the
two single-particle wave functions Φα1α2 (1, 2) = ϕα1 (1)ϕα2 (2). This choice would
be correct for distinguishable particles, such as an electron plus a proton. It is not
valid for indistinguishable fermions because the total wave function Φ(1, 2) has to
be antisymmetric with respect to the exchange of particles 1 and 2. The simplest
solution is to explicitly antisymmetrize by writing

Φ(1, 2) = 1√
2

[ϕ1(1)ϕ2(2) − ϕ1(2)ϕ2(1)] = 1√
2

∣∣∣∣ϕ1(1)ϕ2(1)
ϕ1(2)ϕ2(2)

∣∣∣∣ (1.2)

which is a 2×2 determinant, up to a normalization factor 1/
√

2. This wave function
is called a Slater determinant and explicitly fulfills antisymmetrization requirements
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for fermions. It can be generalized to any number of fermions by using the determi-
nantal form as

Φα1...αN (1, 2, . . . , N ) = 1√
N !

∣∣∣∣∣∣∣∣

ϕα1 (1) ϕα2 (1) . . . ϕαN (1)
ϕα1 (2) ϕα2 (2) . . . ϕαN (2)

. . .

ϕα1 (N ) ϕα2 (N ) . . . ϕαN (N )

∣∣∣∣∣∣∣∣
= 1√

N !
A[
∏
1...N

ϕαi (i)] (1.3)

where an even more compact formulation was introduced through the N-body anti-
symmetrizing operator A applied to the product of single-particle wave functions.
The ground state of the system is the Slater determinant where the N lowest levels
are filled successively, i.e., where αi = i . Slater determinants will play a key role
in the following discussions. Still the picture is valid only for strictly independent
particles, namely when neglecting interactions between particles. As we have seen
in Sect. 1.1, most fermion systems can be described, at least to lowest order, by
assuming that fermions do feel a common average potential in which they move
more or less independently from each other. It thus a priori makes sense to consider
Slater determinants as a relevant ansatz for the many-body wave functions.

In realistic situations interactions may have to be taken into account. To go
beyond the simple Slater-determinant picture one can envision two general strate-
gies. One is to refine the wave function itself, for example, by considering excited
states built on a given Slater state and linear combinations thereof, i.e., dealing with
a sum of Slater determinants Ψ = ∑

α1...αN
Φα1...αN cα1...αN where the cα1...αN are

expansion coefficients. This is a typical strategy followed in quantum chemistry.
Another strategy consists in implementing the correlations into the Hamiltonian
(which thus becomes “effective”) to preserve the simple nature of the Slater state.
This is achieved by means of density functional theory (DFT) (Sect. 6.1) and widely
used in electronic systems, to some extent also in nuclear physics. Both strategies
have their virtues and defects and both have led to remarkable successes. The “effec-
tive Hamiltonian” approach will be used in several places in this book as it provides
the simpler treatment. The treatment of correlations will be addressed briefly in
Chap. 9. In any case, expressing quantities by means of explicit wave functions
may soon become cumbersome when the number of particles grows too large. The
technique of fermion operators which we discuss in the next section provides a sub-
stantial simplification of the handling, at least for most physically relevant operators.

1.3.2 Creation and Annihilation Operators

The fermion operator technique was developed in the late 1920s to provide a formal
basis for the quantization of fields. It allows to treat in a simple way the (in fact
quite generic) case of a particle inside an assembly whose state changes due either
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to an external perturbation or to an interaction with a neighboring particle. An intu-
itive insight into the fermion operator technique can be gained by remembering the
algebraic treatment of the harmonic oscillator in terms of creation and annihilation
operators [24].

The construction of fermion creation and annihilation operators starts from book-
keeping Slater states in an occupation number representation. We start from a given
complete basis set of single-particle states {|αi 〉} from which one will build the Slater
states. In the previous section, we have specified a full state by the N occupied
single-particle states α1. . .αN . It could equally well be characterized by attributing
occupation ni = 0 or ni = 1 to every one of the states |αi 〉. The fermion creator
â†

α is then defined as that operator which increases the occupancy nα by one, and
the annihilator âα correspondingly reduces nα −→ nα − 1. In order to preserve
the fermionic nature of the particles these creation (and associated annihilation)
operators have to fulfill the anticommutation relations

{âα, â†
β} = âα â†

β + âβ â†
α = δα,β , {âα, âβ} = {â†

α, â†
β} = 0 . (1.4)

These relations state that as long as α and β are different one can create or anni-
hilate particles in the corresponding states independently from each other. When
α = β the anti-commutators express the fermion statistics, e.g., they imply that
â†

α â†
α = 0 which means that one cannot create two particles in the same α state

(Pauli principle).
The fermion operators change the number of particles in the state (one up or one

down). Observables are usually related to operators which conserve the number of
particles. The definition of the “particle-number” operator illustrates this. Let us first
consider the operator N̂α = â†

α âα . When applied to a state with nα = 0, it will give 0
because applying âα tries to annihilate a particle in state α which is not present. On
the other hand, if nα = 1 the âα will “empty” this state and the subsequent action
of â†

α repopulates it. The net result of the action of N̂α is thus, not surprisingly, 1 for
nα = 1 and 0 otherwise. Summing up the N̂α defines the particle-number operator
N̂ = ∑

α â†
α âα which exactly counts the number of occupied states in the system

and thus the number of particles N .
A similar â†

α âβ sequence also naturally enters the expression of any one-body
operator. Indeed one can easily show that a one-body operator K̂ , like the kinetic
energy operator, can be expanded as

K̂ =
∑
α,β

Kαβ â†
α âβ , Kαβ = 〈α|K̂ |β〉 . (1.5)

Two-body operators, like typical interaction potentials, involve two states and thus
are expanded in terms of pairs of fermion annihilators and creators, â†

α â†
β âγ âδ .

The fermion operator formalism is a quite useful tool in the theoretical description
of many-fermion systems. We shall use it in many places throughout this book.
More details and derivations of some of properties of the operators are given in
Appendix A.4.
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Fig. 1.19 Level schemes for the Ne and Na atoms. Open circles and/or dashed lines indicate empty
states, crosses occupied states. The same energy scale is used for all the two atoms for better com-
parison. The spectroscopic notation is given for each atom. Also are indicated typical particle–hole
transitions, also expressed through creation and annihilation operators and the HOMO–LUMO gap
in Ne. In Na there exists no HOMO–LUMO gap as the 3s level is only half filled

The notion of creation and annihilation operators can be simply visualized in
practical examples of many-body systems. Examples are shown in Fig. 1.19 in the
case of two simple atoms, Na and Ar. The single-particle levels of both atoms are
indicated on the figure (for the notation see Sect. 1.1.3). The electronic structure of
the alkaline Na is 1s22s22p63s and that of the rare gas Ne is 1s22s22p6. These two
atoms also provide two nice examples of very different HOMO–LUMO gaps. The
HOMO–LUMO gap is the energy difference between the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). In a rare
gas shell closure leads to a very large gap, while in the alkaline case it simply van-
ishes because the HOMO is not fully occupied (one more electron can still occupy
the 3s level in Na). One usually calls hole (h) states as the ones initially occupied (to
become unoccupied after action of the annihilation operator ah) and which thus lie
below the HOMO in the ground state. Particle (p) states are the unoccupied states
(to become occupied by a particle after action of the creation operator a†

p) which lie
above the LUMO. An excitation is produced by transitions from hole (occupied) to
particle (unoccupied) levels. That is called a one-particle–one-hole 1ph excitation.
It is described by the operator â†

pâh where p stands for the particle state and h for
the hole. Any excitation of the system can then be formulated on the basis of such
1ph excitations. We shall often come back to these terms in the following. Typical
1ph excitations are illustrated in Fig. 1.19 in the simple case of Na and Ar and
are indicated by up-oriented arrows. Conversely, de-excitation mechanisms can be
formulated in terms of hole to particle transitions â†

hâp depopulating a particle level
p (populated by a former excitation) to populate a hole level h (depopulated by



40 1 The Variety of Finite Fermion Systems and Their Basic Properties

a former excitation). These transitions are indicated graphically by down-oriented
arrows.

1.3.3 Density Matrices

Density matrices provide a third, alternative, description of a system of identi-
cal fermions. The one-body density matrix can be defined, starting from a gen-
eral (not necessarily Slater determinant) N-body wave function Ψ (1, . . ., N ) =
Ψ (x1, . . ., xN ), as

�(x, x ′) = N
∫

dx2. . .

∫
dxN Ψ (x, x2, . . ., xN )Ψ ∗(x ′, x2, . . ., xN ), (1.6)

which represents an average over all degrees of freedom but one. Note that the nota-
tion xi ≡ (ri , σi ) is to be understood as covering all degrees of freedom including
spin. It should also be stressed that �̂ is an operator, and �(x, x ′) corresponds to
its coordinate-space representation. This operator is Hermitian as can be seen by
exchanging x and x ′. The diagonal elements of the density matrix represent the
local density of matter at a given point and the integral over them yields the total
number of particles in the system (Tr�̂ = N ). Where “Tr{. . .}” stands for the trace,
the sum of diagonal elements of the operator. It reads, e.g., in coordinate space
Tr{�̂} = ∫ d3r �̂(r, r).

If the many-body wave function Ψ (x1, x2, . . ., xN ) is chosen to be a Slater state
(which is a frequent practical choice) built out of the single-particle wave functions
ϕi (r), the density matrix can be expressed in the simpler form

�(r, r′) =
N∑

i=1

ϕi (r)ϕ∗
i (r′) . (1.7)

It is easy to show that �̂ in this case becomes a projector: �̂2 = �̂, and then the
density operator has eigenvalues 0 or 1, corresponding to the occupation numbers
nα . The expectation value of one-body operators also takes an especially simple
form, namely

〈Ψ |K̂ |Ψ 〉 = Tr{�̂K̂ }, (1.8)

One can also consider more general definitions in which the integration is per-
formed on all but two (or three, or . . .) particles thus leading to two-body, three-
body, . . . density matrices. The two-body density matrix is thus defined as

�(x1, x2; x ′
1x ′

2) = N (N − 1)

2

∫
dx3. . .

∫
dxN

Ψ (x1, x2, x3, . . ., xN )Ψ ∗(x ′
1, x ′

2, x3, . . ., xN ), (1.9)
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which is antisymmetric with respect to the exchange x1 ↔ x2 and x ′
1 ↔ x ′

2 and
hermitian. The one-body density matrix can be obtained from the two-body density
matrix by integration

∫
dx2�(x1, x2; x ′

1x2) = N − 1

2
�(x1, x ′

1) . (1.10)

Note that we are using the same symbol for one- and two-body matrices. The num-
ber of arguments serves to distinguish.

In the following, as we shall see, the one-body matrix will play a major role.
We shall thus often omit the term “one-body,” especially when dealing with the
diagonal part of the local one-body density. The local one-body density distribution
is especially interesting as it can be measured experimentally in certain systems. The
nuclear charge density is for example measured by electron scattering. Analyzing
the differential cross section for electron scattering, one can deduce the charge form
factor F(q) which is simply the Fourier transform of the charge density with respect
to real space

F(q) =
∫

d3rρc(r) exp (iq · r) . (1.11)

The local charge density distribution ρc(r) can then be recovered by Fourier back
transformation compared to theoretical predictions. A simple example is presented
in Fig. 1.20 in the case of 16O (other nuclei were shown in Fig. 1.3). In the case
of the light nucleus 16O the wave functions can be well represented by harmonic
oscillator wave functions (assuming that the nuclear potential for that small system
is very close to a harmonic oscillator, see Chap. 3). With its doubly magic structure
(8 neutrons and 8 protons) 16O is furthermore spherical and the problem can thus
be reduced to a spherical harmonic oscillator. Only the first two levels (shells) are
occupied having angular momentum 0 (2 protons with spin up and down) and 1 (6
protons for the three m = 0,±1 degenerate sublevels). The proton density is then
immediately obtained as

ρp(r) = 1

4π
[2R2

00 + 6R2
01], (1.12)

where the Rnl are radial wave functions for the spherical oscillator, see Appendix
A.1.2. This leads to a very simple form of the density

ρp(r) = 2α3

π3/2
[1 + 2α2r2] exp(−α2r2), (1.13)

with the width parameter α = (mω/�)1/2 (where m is the proton mass). By Fourier
transform, which because of spherical symmetry takes a simple form, one immedi-
ately obtains the form factor as
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Fig. 1.20 The absolute value of the electromagnetic form factor of 16O as a function of momentum
transfer q. A comparison is done between experimental data points and a theoretical estimate in
terms of the harmonic oscillator potential (see text for detail)

F(q) =
∫

d3rρc(r) exp(iq · r) = 4π

∫ ∞

0
drρp(r)

sin qr

qr
r2

= [8 − q2

α2
] exp(−q2/(4α2)), (1.14)

whose absolute values are compared to the experimental ones in Fig. 1.20, assuming
that the proton density ρp can be identified with the charge density ρc. Electron scat-
tering in nuclei thus provides an almost direct access to nuclear density. Note that
this technique has also been extensively used to deduce nuclear radii as presented in
Fig. 1.2.

1.4 Concluding Remarks

As stated at the beginning of this chapter, fermions and fermion assemblies are
everywhere around us. They constitute very different systems from the smallest ones
like nuclei to the largest ones like stars. This means that the many-fermion problems
covers an impressive range of distance and energy scales, not to mention time. Most
of the four elementary interactions play a key role in these systems, even aside from
the possibilities offered by artificial devices such as traps to tune the strength of
the interaction itself. Still, in spite of such a large span of interacting systems we
have seen that they share common trends. It is possible to define universal scales
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(and sometimes even scalings) which allow to consider on the same footing systems
involving natural scales differing by several (even sometimes several tens of) orders
of magnitude. This is the major justification for trying to understand and describe
many-fermion systems by means of common universal tools and this is precisely the
goal of this book. The major fermion constituents we shall consider in the following
are nucleons and electrons with some excursions to atoms. The dominant interac-
tions at work will then be the nuclear strong and Coulomb interactions, again with
excursions, for example, to the gravitational interaction. As already mentioned our
central theme will be the progressive account of interactions in the description of the
system. We shall thus start with non-interacting particles to terminate with strongly
interacting ones.



Chapter 2
The Fermi-Gas Model

The simplest quantum-mechanical systems are free particles. There is no spatial
variation in the potential and the relevant Hamiltonian is given merely by the kinetic
energy operator. Eigenstates are plane waves labeled by their eigenmomentum k
with eigenenergies εk = �

2k2/(2m). An interaction-free, continuous many-fermion
system is called a Fermi gas. All plane-wave states are occupied up to a certain
Fermi energy εF , or corresponding Fermi momentum kF. The density of each plane
wave is constant and so is the total density. This, in turn, means that interacting bulk
matter when treated at the level of a mean-field approximation (Hartree–Fock or
density functional approach, see Chaps. 5 and 6) still has plane waves as eigenstates
for the single particle wavefunctions. This allows to use the Fermi gas as an instruc-
tive and powerful lowest-order approximation to a great variety of many-fermion
systems. The most prominent example for a Fermi gas comes from bulk metals. An
example from a quite different regime is given by compact stars (neutron star, white
dwarf, see Sect. 1.1.8). A dilute gas is realized for large clouds of fermions in traps
(see Sect. 1.1.8).

Bound finite fermion systems differ in that the occupied states reside in the
regime of discrete spectra. Nonetheless, the Fermi gas is also a useful starting
point for examining volume properties and orders of magnitude. For sufficiently
large particle numbers, the spectrum becomes dense and can be approximated by
a continuum (as will be discussed in Sect. 2.1). The complementing view comes
from the spatial density distribution ρ(r). A homogeneous gas has, by definition,
a homogeneous density, ρ = constant. As an example, Fig. 1.3 shows nuclear
charge densities for a broad range of nuclei. All four cases indicate a region of
nearly constant density in the interior growing with increasing system size. This
suggests that from the density point of view a Fermi-gas limit can provide a rea-
sonable lowest-order approximation also for finite fermion systems (see also the
examples in Sects. 2.1.2.2, 2.1.2.3, and 2.4).

This reasoning is applicable at least to all systems which have a nearly constant
density in the interior. It holds for saturating systems, i.e., systems where the radius
grows as R ∝ N 1/3 (see e.g. Fig. 1.2) which applies to metallic nano-particles (metal
clusters), atomic nuclei, or droplets of liquid 3He. There are other systems whose
radius does not behave ∝ N 1/3 but which, nonetheless, have constant density like
compact stars (their radius results from an interplay with gravitation, see Sect. 2.4),
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electrons in quantum dots (the radius is a design property), and fermions in a trap
(the radius is tunable). All these systems can be well approximated by a Fermi gas.
For a quick quantitative overview, let us recall Table 1.2 which summarizes key
parameters for a variety of fermion systems, Wigner–Seitz radius rs , Fermi momen-
tum kF, and Fermi energy εF. The table demonstrates the wide variety of physical
dimensions for the systems of interest.

The Fermi gas also plays a crucial role in density functional theory. Many prac-
tical density functionals are derived by carefully computing the properties of the
electron gas and transferring that, so to say piecewise, to an energy-density func-
tional for inhomogeneous systems. That is the well-known local-density approxi-
mation (LDA), see Sect. 6.1.2 for the exchange functional and Sect. 6.5 about the
Thomas–Fermi approximation for the kinetic energy functional.

One often encounters the notion of a “Fermi liquid” [85]. The difference to a
Fermi gas consists in the role played by correlations. A Fermi gas applies if the
interaction can be accounted for at a mean-field level. One speaks of a Fermi liquid
if the two-body short-range interaction becomes dominant. Simple models are rare
in that regime. A profound theory of finite droplets of Fermi liquids goes far beyond
the scope of this book.

2.1 From Finite Box to Continuum States

2.1.1 Single-Fermion Wave Functions in General

The Fermi gas is a generic model for nearly homogeneous systems of independent
fermions. Let us address first the features of a finite system. Each fermion is associ-
ated with a wave function |ϕα〉. It is a state in the Hilbert space of one-particle wave
functions. It is often used in coordinate-space representation |ϕα〉 −→ ϕα(r). This
still hides the fact that fermions necessarily have spin and that the wave function is
to carry a spinor part. To make it quite explicit we write it in detailed components

|ϕα〉 ≡ ϕα(r,
1

2
)χ 1

2
+ ϕα(r,−1

2
)χ− 1

2
.

We assume here and in the following that the fermions we consider are spin 1/2
which correspond to the vast majority of physically relevant cases (electrons, nucle-
ons in particular . . .). The components ϕα(r, ν) compose a complex field in R3.
The two ν components together define a spinor. It is often advantageous to com-
bine the coordinates into a super-vector x = (r, ν). The integration and summa-
tion over the whole space is then abbreviated as

∑
ν

∫
d3r −→ ∫

dx . This can be
summarized as
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x = (r, ν), r ∈ R3, ν ∈ {− 1
2 , 1

2 }, (2.1a)

|ϕα〉 =
∫

dx |x〉ϕα(x) =
∑

ν

∫
d3r |r, ν〉ϕα(r, ν), (2.1b)

ϕα(x) = 〈x |ϕα〉, (2.1c)

〈ϕβ |ϕα〉 =
∫

dx ϕ∗
β(x)ϕα(x) =

∑
ν

∫
d3r ϕ∗

β(r, ν)ϕα(r, ν). (2.1d)

A formally sound connection is established by the Hilbert space basis of eigenstates
|r, ν〉 = |x〉 of space coordinate r and spin ν. It depends on the particular application
whether the compact notation with x or the detailed form r, ν is better suited.

The N -fermion state built from those occupied single-particle states is a Slater
determinant as given in (1.3), for details see Appendix A.3. The notion of a determi-
nant becomes impracticable for continuum states. One needs to find a more robust
definition. That is achieved by employing the operators for creation or annihilation
of a fermion in the state ϕα , i.e., the â†

α or âα , see Sect. 1.3.2 and Appendix A.4.

2.1.2 From Bound States to Plane Waves

2.1.2.1 1D Periodic Boundary Conditions – Plane Wave Limit

Here we discuss the handling of infinite systems by deriving their properties from
a continuum limit of the corresponding finite system. We do that for the simpler
case of one dimension (1D). We also ignore spin because it remains unchanged
throughout all considerations. It allows to demonstrate all essential steps with simple
sums and integrals. The generalization to realistic three dimensions (3D) is obvious
but tedious.

The homogeneous 1D system is first limited to a finite box 0 ≤ z ≤ L with
periodic boundary conditions. The normalized eigenstates thus become

ϕn(z) = 1√
L

exp(iknz), kn = 2π

L
n, n = 0,±1,±2, . . . . (2.2)

The energies are εn = �
2

2m n2. The ground state is obtained by filling the lowest
energies up to the given particle number N , which means |n| ≤ (N −1)/2 (note that
N must be odd to produce a unique ground state). The states are orthonormalized

〈ϕn|ϕn′ 〉 =
∫ L

0
dz ϕ∗

n (z)ϕn′(z) =
∫ L

0

dz

L
exp
(
i(n − n′)

2π z

L

) = δnn′ . (2.3)

The density becomes

ρ0 =
nF∑

n=−nF

exp(iknz)√
L

exp(−iknz)√
L

= N

L
, nF = N − 1

2
, (2.4)
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as it should be (remember that in 1D L plays the role of the volume V in 3D). We
now view the summation as a discrete approximation to a continuous integral, i.e.,∫

dk . . . ←→ ∑
n Δk . . . and identify Δk = kn+1 − kn = 2π/L . This suggests to

rewrite (2.4) as

ρ0 =
nF∑

n=−nF

Δk

︸ ︷︷ ︸
exp(iknz)√

2π

exp(−iknz)√
2π

, Δk = kn+1−kn = 2π

L

∑
n

Δk . . . −→
∫

dk . . .

=
︷ ︸︸ ︷∫ kF

−kF

dk
exp(ikz)√

2π

exp(−ikz)√
2π

, kF = Δk nF = 2πnF
L

= 1

2π

∫ kF

−kF

dk = N

L
.

The integral trivially becomes kF/π and allows to recover the appropriate N/L in
the limit N � 1, while N/L = constant. This shows that the factor 1/

√
2π provides

the correct normalization of the continuum states, which are then

ϕk(z) = exp(ikz)√
2π

. (2.5)

The continuum limit has an important consequence for the orthonormality relation.
Form (2.3) applies only to a discrete spectrum because the Kronecker-δ, i.e., the
δnm , is defined only for integer numbers, while the continuum limit produces the
continuous label k. The wave functions now have to be “normalized” to a Dirac
δ-distribution as

〈ϕk |ϕk ′ 〉 =
∫ ∞

−∞
dz ϕ

†
k (z)ϕk ′(z) =

∫ ∞

−∞
dz

exp(i(k ′ − k)z)

2π
= δ(k ′ − k). (2.6)

2.1.2.2 N Particles in a 1D Box – Limit for the Density ρ(z)

The periodic boundary conditions were particularly useful to explain the contin-
uum limit in terms of plane waves. Realistic situations start from bound states and
consider increasing system size. For simplicity, we stay in 1D and consider the
Schrödinger equation in a square-well potential

Ĥ = p̂2

2m
+ V (z),

V (z) =
{

0 for 0 ≤ z ≤ L
∞ for z < 0 or &z > L

, L = N

ρ0
. (2.7)
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This potential produces bound states throughout, it is very well suited for the con-
tinuum limit because it has a constant value inside the infinite walls, so that it is a
useful model for saturating many-fermion systems which develop constant potential
bottoms in the interior for large system sizes (see the discussion at the beginning
of Chap. 3). If the system were composed of N classical particles, the average
density would be constant in space with ρ = N/L , which is also the density
(2.4) in case of periodic boundary conditions. We take that as a guideline for the
quantum-mechanical result. This is why we scale the length L = N/ρ0 to sim-
ulate a saturating system which has a strong tendency to a constant equilibrium
density ρ0.

The eigenstates for the Hamiltonian (2.7) are [24]

ϕn(z) =
√

2

L
sin(knz), kn = nΔk, Δk = π

L
, (2.8)

as can be seen from the boundary conditions ϕ(0) = ϕ(L) = 0. The total density of
such a many-fermion system is the incoherent sum of the densities of the occupied
single-particle states (see Appendix A.5.1). We use

N∑
n=1

sin2(na) = N

2
− cos ((N +1)a) sin (Na)

2 sin(a)

to obtain

ρ(z) =
N∑

n=1

|ϕα|2 = 2

L

N∑
n=1

sin2(nΔkz) = N

L︸︷︷︸
ρ0

−cos ((N +1)Δkz) sin (NΔkz)

L sin(Δkz)
,

which we finally write as

ρ(z) = ρ0

[
1 − 1

N

cos ((N +1)Δkz) sin (NΔkz)

sin(Δkz)

]
. (2.9)

The resulting densities for three system sizes N are illustrated in Fig. 2.1. The con-
vergence toward a homogeneous system with increasing N is clearly apparent. The
deviation are largest at the boundaries because the step down to ρ(0) = ρ(L) = 0
has to be enforced. In the interior, however, there is soon a smooth pattern.

One can read Fig. 2.1 the reverse way and point out the irrepressible spatial fluc-
tuations in the densities. This is a quantum-mechanical effect, often referred to as
“shell fluctuations” [37]. The probability distributions of bound-state wave functions
are necessarily inhomogeneous and excited states do have large fluctuations with
zeroes, the more the higher the excitation. These fluctuations persist in the total
densities, but in fact tend to compensate each other, the better the larger the particle
number. This is why we see the nice approach to the continuum limit with constant



50 2 The Fermi-Gas Model

 0

 1

 0  5

de
ns

it
y 

ρ 
 [ρ

0]

x

N=5

105

x

N=10

 0  5  10  15  20  25  30  35  40  45  50

x

N=50

Fig. 2.1 Spatial density distributions for N -fermion states in the 1D box potential. The length of
the box scales as L ∝ N to maintain the same average density. The faint horizontal line indicates
the (classical and) continuum limit of equi-distribution

density. Consider, e.g., the nuclear charge densities in Fig. 1.3. Unlike the present
rough model of particles in a box, they show an extended surface zone, but in the
interior one can also spot small oscillations about a constant value, which are mainly
due to these shell effects. The patterns also do show up in the density of the cluster
Na+

339, see the right-hand part of Fig. 2.4.

2.1.2.3 2D Periodic Box – Limit For Eigenvalues

In the last step of illustrating the continuum limit, we are now going to discuss
the density of states and the associated level density (see Sect. 1.2.4.3). The start-
ing point is the Fermi sphere of occupied single-particle states in a homogeneous
fermion system. The Fermi “sphere” is literally true in a 3D system. For simplicity
of graphical representation, we here choose a 2D system which then will yield a
Fermi circle to describe the set of occupied states.

The homogeneous 2D system limited to a finite box 0 ≤ x, y ≤ L with periodic
boundary conditions in both directions has solutions quite similar to the 1D case
discussed in Sect. 2.1.2.1. They read

ϕn(x, y) = 1

L
exp(iknx x) exp(ikny y), (2.10a)

kn = 2π

L
n = 2π

L
(nx , ny), nx , ny = 0,±1,±2, . . . , (2.10b)

εn = �
2k2

2m
= �

2(k2
x + k2

y)

2m
. (2.10c)

We consider again systematically increasing the system size N while keeping the
average density constant, which means L = √

N/ρ0 for that 2D system. The result-
ing spectrum of quantum numbers (kx , ky) is illustrated in Fig. 2.2. The single-
particle energy (2.10c) is a function of k = √|k| only. The occupied states then
reside within a circle whose radius is called the Fermi momentum kF, as indicated
in the figure. The selection of states does not so perfectly match the circle for small
system sizes (leftmost panel), but becomes a smoother distribution and approaches
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k y
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Fig. 2.2 The momenta (kx , ky) of the eigenvalues for the 2D box with periodic boundary conditions
for different values of L (∝ √

N ), increasing from left to right

the circle quickly with increasing size (see Sect. 2.2.5 for the detailed computation
of the density of states in a 3D Fermi gas.)

2.2 Basics: Density, Fermi Momentum, Fermi Energy

2.2.1 Fermi Momentum, Fermi Energy, Density

Consider the ground state of independent fermions with the symmetries of free
space. “Independent” means that each particle can be associated with one single-
particle wave function ϕkσ (r) and “fermion” implies that each single-particle state
can be occupied only once. The “symmetries of free space” are invariance under
translation and rotation, called together homogeneity of space. Homogeneous sys-
tems are necessarily infinite. This causes no technical problems but conceptual sub-
tleties like dealing with continuum states. Translational and rotational symmetry
apply to the Hamiltonian ĥ which defines the single-particle wave functions, e.g.,
the self-consistent mean-field Hamiltonian as will be discussed in Chap. 5. For the
moment we need only the symmetry property of ĥ. The most general translationally
and rotationally invariant form is ĥ =∑n an(p2)n with constant coefficients an . The
Fermi-gas model assumes the simplest form

ĥ = p2

2m
. (2.11)

In any case, plane waves, the eigenstates of the momentum operator p̂ = −i�∇, will
also be eigenstates of ĥ. We have obtained them for the 1D case in Sect. 2.1.2.1. The
plane waves in 3D similarly read

ĥϕkσ = εkϕkσ ←→ ϕkσ (r, ν) = exp (ik·r)

(2π )3/2
δσν, εk = �

2

2m
k2, (2.12)
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where σ = ±1/2 labels the spin and ν labels the components of the Pauli–Spinor.
This form applies to a gas from a single-fermion species like the electron gas or
neutron matter. Their degeneracy factor is two due to the two-spin orientations. That
feature carries through to most formulae in the sequel. Symmetric nuclear matter
would also have a dependence on an isospinor (which treats proton and neutron as
two states of the nucleon distinguished by isospin ± 1

2 ) and consequently a degen-
eracy factor four, for details see Sect. 2.4. Note that the energies depend only on
k = |k| which is a consequence of rotational invariance. The wave-vectors k ∈ R3

constitute a continuum of quantum numbers. The orthonormality relation is the 3D
generalization of (2.6), i.e.,

〈ϕkσ |ϕk′σ ′ 〉 =
∑

ν

∫
d3r ϕ

†
kσ ϕk′σ ′ = δ3(k − k′)δσσ ′ . (2.13)

A many-fermion system occupies a large number of these states. The many-body
ground state |Φ0〉 fills the lowest kinetic energies up to a Fermi momentum kF, i.e.,

|Φ0〉 ≡ {ϕkσ , k = |k| ≤ kF, σ = ± 1
2

}
. (2.14)

The filling of occupied states may equally well be expressed in terms of the Fermi
energy εF as

εk ≤ εF = �
2

2m
k2

F. (2.15)

Fermion creation and destruction operators, see Sect. 1.3.2 and Appendix A.4, allow
a clear and compact definition of the ground state |Φ0〉 as

â†
kσ |Φ0〉 = 0 for k ≤ kF

âkσ |Φ0〉 = 0 for k > kF
(2.16)

expressing formally that all states k ≤ kF are occupied.
The spatial density for independent-Fermion systems is generally (see Appendix

A.5.1) ρ(r) = ∑
α∈occup.

∑
ν |ϕα(r, ν)|2. For the present continuum of states, we

have to replace the summation over discrete states by an integral over the continuum
states. Thus

ρ(r) =
∑

σ

∫
k≤kF

d3k
∑

ν

ϕ∗
kσ (r, ν)ϕkσ (r, ν)

= 1

(2π )3

∑
σν

∫
k≤kF

d3k δσν exp (−ik·r) exp (ik·r)︸ ︷︷ ︸
=1

δσν = 2

(2π )3

4π

3
k3

F,
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which finally yields

ρ0 = ρ(r) = k3
F

3π2
. (2.17)

The density is constant, i.e., it also obeys the symmetries of free space. From another
aspect, the density is the number of particles per volume, ρ0 = N/V . Both particle
number and volume are infinite, but the density is finite. This provides a way to regu-
late the particle number in homogeneous systems, and (2.17) is often read in reverse.
The density ρ0 is given and determines the corresponding Fermi momentum as

kF = (3π2ρ0
)1/3 � 3.18 ρ

1/3
0 . (2.18)

Consequently the Fermi energy behaves as εF ∝ ρ
2/3
0 .

A further way to characterize the density of the system is the Wigner–Seitz radius
rs . It is the radius of the sphere whose volume fits just one particle, i.e.,

1

ρ0
= 4π

3
r3

s =⇒ rs =
(

9π

4

)1/3 1

kF
� 1.92

kF
=
(

3

4πρ0

)1/3

. (2.19)

2.2.2 The One-Body Density Matrix

For finite N the one-body density matrix is defined as (see Appendix A.5)

�(x, x ′) =
∑

α∈occup.

ϕα(x)ϕ†
α(x ′).

It contains the same amount of information as the independent-fermion state |Φ0〉.
It is instructive to evaluate the one-body density matrix for the Fermi gas as a model
system. Identifying α ↔ (kσ ) this yields

�(rν, r′ν ′) =
∑

σ

∫
k≤kF

d3k

(2π )3
δνσ exp

(
ik·(r − r′)

)
δν ′σ .

The spin overlaps are trivially evaluated. The integration of the wave-vectors is per-
formed in spherical coordinates k ≡ (k, θ, φ). We align the coordinate system along
the direction of r − r′. Thus
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�(rν, r′ν ′) = δνν ′

(2π )3

∫ kF

0
dk k2

∫ 1

−1
d(cos θ )

∫ 2π

0
dφ exp

(
ik |r − r′|︸ ︷︷ ︸

y

cos(θ )
)

= δνν ′

(2π )2

∫ kF

0
dk k2 exp (iky) − exp (−iky)

iky

= δνν ′

2π2

∫ kF

0
dk k sin (ky) = δνν ′k3

F

2π2

sin(kF y) − kF y cos(kF y)

(kF y)3︸ ︷︷ ︸
j1(kF y)/(kF y)

,

where j1 is the spherical Bessel function of first order [96]. The final result is

�(rν, r′ν ′) = δνν ′

2
ρ0J (kF |r − r′|), J (x) = 3 j1(x)

x
. (2.20)

It is a rather simple universal function, depending only on |r − r′|, which expresses
translational and rotational invariance. The shape of the function is shown in
Fig. 2.3. Note that it scales with k−1

F and so applies to all densities ρ0. The larger ρ0,
the faster the decay in relative distance.

The spatial dependence can also be expressed in terms of the Wigner–Seitz radius
(2.19) as J (1.92|r − r′|/rs), which shows that exchange properties scale with rs .
The typical decay length of J is given by the first zero. That appears at a distance
of |r − r′| ≈ 1.6 rs .

J(
x)

=
3j

1/
x

kF|r-r’|

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

Fig. 2.3 The function J carrying the spatial dependence of the one-body density matrix (2.20) of
the homogeneous Fermi gas
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2.2.3 A Model for the One-Body Density Matrix
in Finite Systems

The one-body density matrix is a rather powerful quantity carrying a large deal of
information about a system. For example, it allows to compute all one-body observ-
ables directly (Sect. 1.3.3). It thus provides a rather detailed view of the state of a
system and, correspondingly, a critical analyzing instrument for the quality of the
Fermi-gas approximation. As a test case, we consider the valence electron cloud of
the metal cluster Na+

339. The ionic background is simplified in terms of the jellium
approximation (1.1). A DFT calculation (see Sect. 6.1) is performed and yields the
one-body density matrix �(r, r′) for the finite system, which is then the benchmark
result for the fully detailed description of the system.

The Fermi-gas model yields a compact expression of the one-body density matrix
with a very specific and pronounced dependence on the difference coordinate |r−r′|,
see (2.20) and Fig. 2.3. The pattern in a finite system close to a Fermi gas should
look similar in that difference coordinate while the local density has to reproduce
the finite spatial distribution. That suggests a simple model for the one-body density
matrix

�(LDA)(rν, r′ν ′) = ρ(r)
δνν ′

2
J
(
kF (r)|r − r′|), (2.21a)

kF (r) = (3π2ρ(r)
)1/3

, (2.21b)

r = 1

2

(
r + r′) , (2.21c)

which employs a local Fermi momentum kF (r) deduced from the local density
according to (2.17). It is called a Local Density Approximation (LDA) for the one-
body density matrix. (An application of LDA to the energy is at the heart of DFT as
we will see in Sect. 6.1.)

Figure 2.4 shows a comparison between the exact one-body density and the
LDA (2.21). We look at the pattern in the relative coordinate |r − r′| for a series
of average positions r and normalize to the value at |r − r′| = 0. There is nice
agreement between the exact pattern and the LDA for most reference radii. The
largest deviation is seen at the center of the cluster. A quick glance at the local
density distribution on the right side of Fig. 2.4 shows a large deviation from the
average local density just at the center. This is an effect of spatial shell fluctuations
as discussed in Sect. 2.1.2.2, which here happen to accumulate particularly at the
center. The mismatch of the LDA model in the lowest left panel of Fig. 2.4 is then
understandable considering that going along growing |r − r′| one always runs into
a regime of higher densities than those at the reference point. On the other hand,
the center occupies only a very small fraction of the total volume and thus Fig. 2.4
indicates that LDA is fairly well justified on the average. Note also that the density
matrix falls off properly to zero outside the cluster.
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Fig. 2.4 Upper right panel: The local electron-density distribution of the cluster Na+
339. The ionic

background is described in the spherical jellium model (i.e. (1.1) with deformation δ = 0). The
electronic wave functions were computed with density functional theory (DFT) in local density
approximation, see Sect. 6.1. The vertical dashed lines indicate the reference radii for the plots
in the left and the lower right panels. Left and lower right panels: The one-body density matrices
�(r, r′) are normalized to the local density at ρ(raver) (where raver = 1

2 (r + r′)) along the difference
coordinate |r − r′| for a variety of average radii raver as indicated. The full line shows the result
from the DFT calculation of the finite system and the dashed line the density matrix in Fermi-gas
approximation (2.21)

2.2.4 The Two-Body Density

The two-body density matrix �2 for a Slater state can be expressed completely
through the one-body density matrix � as (see Appendix A.5)

�2(x1, x2; x ′
1, x ′

2) = �(x1; x ′
1)�(x2; x ′

2) − �(x1; x ′
2)�(x2; x ′

1).

We consider its diagonal element, the local two-body density ρ2(x1, x2) = �2(x1, x2;
x1, x2) which in terms of the one-body density matrix becomes

ρ2(x1, x2) = �(x1; x1)�(x2; x2) − �(x1; x2)�(x2; x1). (2.22)

It represents the probability to find one particle at x1 and at the same time another
particle at x2. It thus characterizes the spatial correlations between particle 1 and
particle 2 for the various spin relations between ν1 and ν2. To evaluate the local
two-body density for the Fermi gas, we use the result (2.20) for the one-body density
matrix and very quickly obtain
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Fig. 2.5 The two-body
density ρ2(x1, x2) as given in
(2.23) for the case of aligned
spin ν1 = ν2 as function of
kF|r1 − r2|. The vertical
dashed line indicates the
radius of a sphere covering
one fermion
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ρ0
2

4

ρ2(x1, x2) = ρ2
0

4

[
1 − δν1ν2J 2(kF|r1−r2|)

]
, J (y) = 3 j1(y)

y
. (2.23)

The result sensitively depends on the spin of the two particles. The case that they
have the same spin is shown in Fig. 2.5. There is a deep hole around distance
zero which is the coordinate-space appearance of the Pauli principle: two identical
fermions cannot occupy the same position. For larger r , the function approaches
quickly the value (ρ0/2)2 which means that the two particles become independent
(no more “Pauli correlated”). The excluded volume around r = 0 is often called the
exchange hole [27]. The vertical dashed line in Fig. 2.5 indicates the phase space
volume of a sphere covering one fermion. This one-particle equivalent radius cuts
almost precisely the half-value of the correlation function. This corresponds to the
fact that the “exchange hole” excludes precisely one fermion. The local two-body
density becomes (ρ0/2)2 constantly at all r if the two particles have different spin.
For then they are distinguishable and thus independent everywhere.

2.2.5 The Kinetic Energy

The kinetic energy Ekin can be computed with the same steps as were used for
the density in the previous subsection. The plane waves are eigenstates of p̂2 with
p̂2ϕkσ = �

2k2ϕkσ . Thus we have just to modify the weight in the k-integration by a
factor �

2k2/(2m). This proceeds as
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Ekin =
∫

d3r
2

(2π )3

∫
k≤kF

d3k
�

2k2

2m

= �
2

2m

∫
d3r

2

(2π )3

∫ kF

0
dk k4

︸ ︷︷ ︸
k5

F/5

∫ π

0
d cos(θ )

∫ 2π

0
dφ

︸ ︷︷ ︸
=∫ dΩ=4π

= �
2

2m

∫
d3r

︸ ︷︷ ︸
V

k3
F

3π2

3

5
k2

F = �
2

2m

3

5
k2

Fρ0V,

where V = ∫
d3r stands for the volume of the system. It is infinite and so is the

kinetic energy. Thus it is more appropriate to discuss the energy density, which is a
finite quantity. In fact, one usually prefers to specify the energy per particle which
is related to the energy per volume through the density ρ0 = N/V . This then yields
the finite result

Ekin

N
= Ekin

V
V
N

= Ekin

V
1

ρ0
= �

2

2m

3

5
k2

F = 3

5
εF. (2.24)

The kinetic energy per particle grows ∝ k2
F. The result as such is also quite interest-

ing as it gives a typical estimate of the kinetic energy of a particle in a Fermi gas
(3εF/5). This again confirms the key importance of the Fermi energy to provide a
relevant scale in simple fermion systems.

It is interesting to reformulate the kinetic energy in terms of system density using
relation (2.18). That yields

Ekin

N
= �

2

2m

3

5
(3π2)2/3ρ

2/3
0 .

It explicitly shows the growth of the kinetic energy with system density. Let us
consider now a change the volume for fixed particle number which amounts to a
change of density. This defines a kinetic pressure

Pkin = ∂ Ekin

∂V = −ρ2
0

∂

∂ρ0

Ekin

N
= �

2

2m

2

5
(3π2)2/3ρ

5/3
0 . (2.25)

This is the Pauli pressure opposing compression of the system because it is easier to
accommodate the Pauli principle if the particles are farther apart.
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2.2.6 The Level Density

In the computation of the kinetic energy the angular integration was trivial while
the crucial integral ran over the absolute value of the momentum k = |k|. For that
very common situation, it is instructive and advantageous to replace the momentum
integration by one over the energy. This substitution uses ε as

ε = �
2k2

2me
=⇒ dε = �

2

me
k dk =⇒ dk =

√
m

�

dε√
ε

(2.26)

to yield the kinetic energy as

Ekin =
∫

d3r
︸ ︷︷ ︸

V

2

(2π )3

∫
dΩ

︸ ︷︷ ︸
4π

∫ εF

0
dε

2m3/2

�3

√
ε

︸ ︷︷ ︸∫ εF
0 dεD(ε)

ε = V 3

5
εFρ0. (2.27)

The volume element for energy integration can be expressed through one physical
quantity, the density of states D(ε), which then becomes useful for all expectation
values of functions of energy alone. Assume that we consider an observable f (ε)
which is a function of energy. The expectation value can then be written as

f

V =
∫ εF

0
dεD(ε) f (ε), D(ε) = 2m3/2

�3π3

√
ε. (2.28a)

The simplest examples are the particle number N for f = 1, and the kinetic energy
Ekin for f = ε and given in (2.27). The density of states can be rewritten in several
different forms. Recall (2.17) connecting ρ with kF and (2.15) connecting kF with
εF. Combining these two equations yields

D(ε) = 3

4

N

V

√
ε

ε
3/2
F

= 3

4
ρ0

√
ε

ε
3/2
F

, VD(ε) = 3

4

N

ε
3/2
F

√
ε. (2.28b)

It is important to note that this expression for the density of states holds for a Fermi
gas in three dimensions. For a general dimension D, one has D ∝ εD/2−1.

2.3 Fermi Gas at Finite Temperature

One of the interests of a description in terms of level density is that temperature
effects can easily be included in the picture. To that end, one introduces occupa-
tions numbers n(ε) which regulate the probability to find a particle at single-particle
energy ε. Particle number and kinetic energy can then be written as
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N = V
∫ ∞

0
dεD(ε)n(ε), E = V

∫ ∞

0
dεD(ε)n(ε)ε. (2.29)

The occupation number n(ε) for a Fermi gas at zero temperature is just a step
function

n(ε) = ϑ(ε − εF) = nT =0(ε). (2.30)

Switching to a finite temperature is achieved through replacing the step function for
zero-temperature occupation numbers (2.30) by a smooth Fermi distribution

ϑ(ε − εF) −→ nT (ε) = 1

1 + ε−μ(T )
kBT

, (2.31)

where μ = μ(T ) is the chemical potential which has to be adjusted such that the
first integral in (2.29) reproduces the desired particle number. At temperature zero,
the chemical potential merges into the Fermi energy, μ(T =0) = εF. kB = 0.8617×
10−4 eV/K is the Boltzmann factor, so that it also often called the (temperature-
dependent) Fermi energy.

The Fermi gas at finite temperature thus involves Fermi occupation numbers,
which render most calculations non-analytical, except in the case of sufficiently
small temperatures. Let us explore that case. Note first that the term “small temper-
ature” deserves some explanations. In a Fermi system the temperature, as defined in
classical kinetic theory, for example, in the case of perfect gases, has to be under-
stood with respect to the scale determined by the Fermi energy εF or rather the
associated temperature TF = εF/kB. Even at zero temperature, the Pauli exclusion
principle implies a non-vanishing kinetic energy due to the motion of the fermions
in the various occupied single-fermion states. This scales with Fermi temperature
TF, and the notion of low or high temperature is then to be defined with respect to
TF. We will confine the discussions to the case of low temperatures T � TF.

The aim of the calculation in this subsection is to compute the thermal excitation
energy E∗ stored in the system and relate it to the temperature T . This amounts
to evaluating the specific heat of the system. The excitation energy is defined as
E∗(T ) = E(T ) − E(T =0) where the energy in the Fermi gas is purely kinetic and
reads

E(T ) = V
∫ ∞

0
dεD(ε)nT (ε)ε =

∫ ∞

0
dε VD(ε)

1

1 + ε−μ(T )
kBT

εg(ε), (2.32)

where the Fermi distribution (2.31) defines the thermal occupation weights. It has
to be kept in mind that the Fermi energy μ(T ) depends on temperature. It is deter-
mined from the condition that the distribution reproduces the given total number of
particles N as
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Fig. 2.6 The Fermi distribution nT at finite temperature (dashed), the distribution at T = 0 (dotted)
and their difference (solid)

N =
∫ ∞

0
dε nT (ε)g(ε). (2.33)

The condition (2.33) and the integral (2.32) for the total energy cannot be
expressed in closed form, but the case of small temperatures (T � TF) still can
be worked out in detail. Consider the change in occupation relative to the ground
state at T = 0. The situation is sketched in Fig. 2.6. The difference

nT − nT =0 = 1

1 + ε−μ(T )
kBT

− ϑ(εF − ε)

is concentrated in a region around μ which is as narrow as T is small (remember
that for small T we have εF ≈ μ). That difference is thus a rapidly changing func-
tion, whereas all other ingredients in the integral vary smoothly. The idea is then to
approximate the smooth parts by a Taylor expansion. We do that in one stroke for the
normalization integral (2.33) and for the energy (2.32) by considering a functional

I (T )[ f ] =
∫ ∞

0
dε nT (ε) f (ε), f (ε) =

{
f = VD(ε) for N

f = εVD(ε) for E
. (2.34)

The Taylor expansion will be applied to the smooth function f (ε) ≈ f (μ) + (ε −
μ) f ′(μ). The steps read
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I (T )[ f ] =
∫ ∞

0
dεnT =0(ε) f (ε)

︸ ︷︷ ︸∫∞
0 dε f (ε)=I0

+
∫ ∞

0
dε [nT − nT =0] f (ε)

≈ I0 + f (μ)
∫ ∞

0
dε [nT − nT =0]

︸ ︷︷ ︸
=0

+ f ′(μ)
∫ ∞

0
dε [nT − nT =0] (ε − μ).

Substituting (ε − μ)/T = x the remaining integral becomes

I − I0 ≈ f ′(μ)T 2
∫ ∞

0
dx

[
1

1 + ex
− ϑ(−x)

]
= 2 f ′(μ)T 2

∫ ∞

0
dx

1

1 + ex︸ ︷︷ ︸
π2/12

,

from which finally

∫ ∞

0
dε nT f (ε)

T →0−→
∫ μ

0
dε f (ε) + π2T 2

6
f ′(μ). (2.35)

This relation is evaluated first to determine μ(T ) in lowest order. According to
(2.34) we identify f = D(ε) and, furthermore, expand μ(T ) = εF + δμ(T ). This
yields

N ≈
∫ εF

0
dε VD(ε)

︸ ︷︷ ︸
=N

+
∫ εF+δμ

εF

dε VD(ε)

︸ ︷︷ ︸
δμVD(εF)

+π2

6
T 2VD′(εF),

and thus

δμ = −T 2 π2

6

D′(εF)

D(εF)
. (2.36)

One can now use the above expression for μ(T ) in the expansion of the energy
(2.32) for the limit of small temperature. Here, we identify f = εD(ε) and insert it
into expansion (2.35). This yields

E(T ) ≈
∫ εF

0
dε εVD(ε)

︸ ︷︷ ︸
E(T=0)

+
∫ εF+δμ

εF

dε εVD(ε) + π2

6
T 2V d(εD(ε))

dε

∣∣∣
εF

≈ E(T =0) + δμεFVD(εF) + π2

6
T 2εFVD′(εF)︸ ︷︷ ︸

=0

+π2

6
T 2VD(εF).
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The first term of this latter equation is nothing but the energy of the system at zero
temperature. The excitation energy is thus directly obtained as

E∗(T ) = E(T ) − E(T =0) ≈ π2

6
VD(εF))T 2. (2.37)

It is to be noted that starting from T = 0 the energy initially grows quadratically
with the temperature. The specific heat c = ∂T E∗ of a Fermi gas thus begins with a
linear growth and becomes zero in the limit T −→ 0.

Formula (2.37) for the excitation energy is still very general as it allows to insert
different expressions for the level density D. (For an example, see the discussion in
Sect. 1.2.4.3.) The standard application is a Fermi gas in three dimensions for which
the level density (2.28b) applies. Inserting that relation for the level density yields
the excitation energy E∗, and the specific heat c, as

E∗(T ) = π2

8

N

εF
T 2, c = dE∗

dT
= π2

4

N

εF
T . (2.38)

This simple relation can serve as a quick estimate for a great variety of 3D systems
when inserting the Fermi energies as given in Table 1.2. A typical example of appli-
cation is the level density parameter in nuclei (Sect. 1.2.4.3) and its use for studying
statistical nuclear deexcitation. It holds for low temperatures T � TF. There are
systems, however, for which the temperature range of applicability is also limited
from below. A transition to a BCS condensate (see Sect. 9.4) changes the pattern
below a critical temperature TBCS. Small many-fermion systems can also experience
sizeable shell effects. Estimate (2.38) then still holds averaged over system sizes and
becomes valid for any N as soon as T is of the order of the shell gap which, in turn,
shrinks with N−1/3.

2.4 Fermi Gas in Stars: The Example of White Dwarfs

One of the probably most famous examples of a Fermi gas is provided by the elec-
tron gas in white dwarfs, for a brief introduction see Sect. 1.1.8. Chandrasekhar
showed that in order to reach stability such a self-gravitating object should have a
mass smaller than the Chandrasekhar mass MCh which is about 1.4 solar masses
[77]. We give a short outline of the derivation below. Let us denote the total number
of electrons in the star by Ne and the stellar radius by R.

2.4.1 “Low” Densities

For a particle density ρ ∼ 0.5 × 1030 cm−3 = 0.5 × 105 a−3
0 (Sect. 1.1.8) and Fermi

energy of order εF ∼ 50 keV, the electrons still move at non-relativistic velocities,
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or momenta �k � mec. The total kinetic energy is then given by (2.24). We express
the Fermi momentum therein by the Wigner–Seitz radius using (2.19), and the star
radius as rs N 1/3. For the kinetic energy this yields

Ekin = 3

5
Ne

�
2k2

F

2me
= 3

5

(
9π

4

)2/3
�

2

2me

Ne

r2
s

= 3

5

(
9π

4

)2/3
�

2

2me

N 5/3
e

R2
. (2.39)

The electron charge is neutralized by the positive proton charges. Thus the Coulomb
energy becomes negligible and the potential energy is purely gravitational. The
mass of the star mostly stems from the nucleon masses. Assuming equal number
of protons and neutrons, the total number of nucleons becomes 2Ne. We, further-
more, ignore the small mass difference between protons and neutrons. The potential
energy is then the gravitational energy of a homogeneous sphere with radius R and
mass 2Nem p which reads

Epot = −3

5
G

(2Nem p)2

R
= −12

5
G

m2
p

R
N 2

e , (2.40)

where m p is the proton (or neutron) mass and G = 6.67 × 10−11 m3/(kg s2) is the
gravitational constant. The total energy of the star then becomes

E = Ekin + Epot = 3

5

(
9π

4

)2/3
�

2

2me

N 5/3
e

R2
− 12

5
G

m2
p

R
N 2

e .

It should be minimized with respect to the radius R at constant mass M , namely
constant Ne. This leads to

Req = 1

2

(
9π

4

)2/3
�

2

2me

(2m p)1/3

Gm2
p

M−1/3, (2.41)

expressed as a function of the total mass M = 2m p Ne. Taking for M the solar mass
M� = 2 1030 kg leads to a radius R ∼ 8 × 106 m in agreement with observations.

2.4.2 Stability in the Relativistic Domain

The stability radius (2.41) shrinks with increasing total mass M . Decreasing R
means increasing density and consequently increasing Fermi momentum. The non-
relativistic procedure, as outlined in the previous section, provides a stable solution
for every M , or R, respectively. With increasing M , however, one quickly reaches
a regime where the assumption of non-relativistic momenta does not hold anymore.
In this section we want to discuss an upper limit for the mass M , i.e., a lower limit
for the radius R. To that end, we consider the relativistic case. The electronic kinetic
energy (properly subtracting the electron rest mass) then becomes
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Ekin = 2V
(2π )3

∫ kF

0
d3k

[√
(�ck)2 + (mc2)2 − mc2

]

≈ 2V4π

(2π )3

∫ kF

0
dk k2

[
�ck − mc2 + m2c3

2�k

]

= V
4π2

�ck4
F − V

3π2
mc2k3

F + V
4π2

m2c3

�
k2

F

= 3

4
Ne�ckF − Nemc2 + 3

4
Ne

m2c3

�kF

= 3

4

(
9π

4

)2/3

�c
N 4/3

e

R
− Nemc2 + 3

4

(
4

9π

)2/3

N 2/3
e

m2c3

�
R, (2.42)

where we have used that the volume V is directly linked to the electron number
by the relation Vk3

F/(3π2) = Ne and the relation kF = (4/(9π ))1/3 N 1/3
e /R. It is to

be noted that the integration starts from a regime of very small values of k where
the high-momentum expansion is grossly wrong. Looking at the whole integral,
this region is extremely small (k2 weight) and the error made therein is outweighed
by the huge region of relativistic k, thus validating the above approximation. The
potential energy remains as given before in (2.40). The leading term of the kinetic
energy now has the same trend ∝ R−1 as the potential energy. We thus write the
total energy

E = C

R
− Nemc2 + 3

4

(
4

9π

)2/3

N 2/3
e

m2c3

�
R, (2.43a)

C = 3

4

(
9π

4

)2/3

�cN 4/3
e − 12

5
Gm2

p N 2
e . (2.43b)

It has a stable minimum if C > 0. For C < 0, however, the minimal energy cor-
responds to a singularity R −→ 0 which means that the white dwarf would be
unstable and implode. The critical point lies at C = 0. It corresponds to a critical
particle number Ne,c and critical mass MCh = 2m p Ne,c, which are given by

Ne,c =
(

5

16

(
9π

4

)2/3
�c

Gm2
p

)3/2

, MCh =
(

5

16

(
9π

2

)2/3
�c

Gm4/3
p

)3/2

. (2.44)

The critical mass MCh is known as the Chandrasekhar mass [77]. The star becomes
unstable if M > MCh. On the contrary for M < MCh an equilibrium is possible.
The Chandrasekhar mass thus fixes the maximum mass a self-gravitating object may
possess. Our simple-minded calculation leads to MCh � 1.7M� (Ne,c ∼ 1.2 1057)
while more elaborate calculations give a slightly smaller value of MCh � 1.45M�
[77].
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2.5 Coulomb Energy of a Charged Fermi Gas

We now go one step beyond the Fermi-gas model and consider a homogeneous
electron gas including the repulsive Coulomb interaction between the electrons.
This is, e.g., a model for the valence electrons in bulk metal where the positive
ionic background has been smoothed to a homogeneous jellium density (1.1). The
Hamiltonian of that many-body system is the sum of kinetic energy and Coulomb
interaction:

Ĥ =
N∑

i=1

p̂2
i

2me
+ 1

2

N∑
i �= j=1

e2

|ri − r j | . (2.45)

For a finite system of independent particles the energy then reads

E = Ekin + Epot,dir + Epot,ex . (2.46a)

The kinetic energy was discussed and evaluated in Sect. 2.2.5. The potential energy
consists of two terms,

Epot,dir = 1

2

∑
αβ

∫
dx dx ′ ϕ∗

α(x)ϕ∗
β(x ′)

e2

|r − r′|ϕα(x)ϕβ(x ′)

= 1

2

∫
d3r d3r ′ ρ(r)

e2

|r − r′|ρ(r′) , (2.46b)

Epot,ex = −1

2

∑
αβ

∫
dx dx ′ ϕ∗

α(x)ϕ∗
β(x ′)

e2

|r − r′|ϕβ(x)ϕα(x ′)

= −1

2

∑
νν ′

∫
d3r d3r ′ δνν ′�(rν, r′ν ′)

e2

|r − r′|�(r′ν ′, rν). (2.46c)

The direct part of the Coulomb energy, Epot,dir, diverges dramatically. Even when
considering the energy per volume (or per particle), there remains a quadratic diver-
gence, as the long-range Coulomb force does not allow infinite amounts of charge.
The average electron charge needs to be compensated by an equally dense positively
charged background with ρback = ρ0 = constant, since the slightest amount of
finite charge density would again lead to a divergent Coulomb energy. Actually, an
electron gas in the degenerate regime (T � εF) is realized by the valence electrons
in a metal. Here, the positive metal ions serve as neutralizing background. It is not
homogeneous. But one often ignores the detailed ionic structure and smooths the
total positive charge to a homogeneous density distribution, often called the jellium
approximation, see (1.1). It is justified by the argument that the electrons have long
wavelengths which cannot resolve the ionic details anyway and thus deliver nearly
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constant density. After the approximation ρback = ρ0, we have the quite trivial
result that the total direct Coulomb energy is zero because the total charge density
(ρback − ρ0) vanishes everywhere.

The exchange energy (2.46c) requires quite a lengthy calculation. On the other
hand, it serves as a welcome example to practice a moderately lengthy formal cal-
culation in detail. Before carrying on, we first summarize a few integrals which will
be needed in the following:

∫
d3r

exp (ik·r)

r
= 4π

k2
, (2.47a)

∫
dx (ax + b)−1 = log |ax + b|

a
, (2.47b)

∫
dk ′ k ′ log

∣∣∣∣k + k ′

k − k ′

∣∣∣∣ = kk ′ + 1

2
(k ′2 − k2) log

∣∣∣∣k + k ′

k − k ′

∣∣∣∣ (2.47c)

∫
dk k3 log

∣∣∣∣kF + k

kF − k

∣∣∣∣ = 1

4
(k4 − k4

F ) log

∣∣∣∣kF + k

kF − k

∣∣∣∣+ 1

2
k2

F k2+ 1

6
kF k3.(2.47d)

Inserting the plane-wave eigenstates (2.12) and performing the continuum limit∑
α −→∑

σ

∫
d3k yields

Epot,ex = e2
∑
σσ ′

∫
d3rd3r ′d3kd3k ′

(2π )6
χ+

σ χσ ′︸ ︷︷ ︸
δσσ ′

χ+
σ ′χσ

exp i(k − k′)·(r − r′)
|r − r′| .

It is advantageous to transform to center of mass and relative coordinates as

R = 1

2
(r + r′) , r̃ = r − r′ .

The integration volume element changes as d3rd3r ′ −→ d3 Rd3r̃ . We are now in
shape to go through the steps quickly, using the integrals of (2.47). In a first step,
spatial integration is performed:

Epot,ex = − e2

(2π )6

∫
d3 R

︸ ︷︷ ︸
V

∫
d3kd3k ′

∫
d3r̃

exp i(k − k′)·r̃
r̃︸ ︷︷ ︸

(2.47a)

= − 4πe2

(2π )6
V
∫

d3kd3k ′ 1

k2 + k ′2 − 2k·k′ .

Again, it is advantageous switching from Cartesian coordinates for the wave vec-
tors to spherical ones. The choice of the polar axis is free and a proper choice can
save a huge amount of work. First, we observe that the integrand depends only
on three quantities, the absolute values of the wave vectors k as well as k ′ and
the angle between the two vectors cos(θ ) = k ·k′/(kk ′). After the d3k ′ integration
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and the change to spherical coordinates d cos(θ ′) dφ′ dk ′k ′2, the integration over d3k
may be attacked for the given k. The choice of the axis for the spherical coordi-
nates of k is still free. We choose the z-axis parallel to the vector k′. The polar
angle θ in that frame is precisely the angle between k and k′ as given above. The
azimuthal angle φ thus does not appear in the integrand because the relative distance
|k − k′| is invariant under azimuthal rotations. The angles θ ′ and φ′ also do not
appear anywhere in the integrand. This simplifies the integration greatly. The trivial
part is

∫ 1
−1 d cos(θ ′)

∫ 2π

0 dφ′ ∫ 2π

0 dφ = 2(2π )2. There remain only three non-trivial
integrals

Epot,ex = −32π3e2

(2π )6
V
∫ kF

0
dk k2

∫ kF

0
dk ′k ′2

∫ +1

−1
d(cos θ )

1

k2 + k ′2 − 2kk ′ cos θ

use (2.47b)

= − e2

2π3
V
∫ kF

0
dk k

∫ kF

0
dk ′k ′ log

∣∣∣∣k + k ′

k − k ′

∣∣∣∣
use (2.47c)

= − e2

2π3
V
∫ kF

0
dk

(
k2kF + kk2

F

1

2
log

∣∣∣∣k + kF

k − kF

∣∣∣∣− k3 1

2
log

∣∣∣∣k + kF

k − kF

∣∣∣∣
)

use (2.47d)

= −e2k4
F

2π3
V
(

1

3
+ 1

2
− 1

4
− 1

12

)
= −2e2k4

F

(2π )3
V .

This energy also grows to infinity with V like the kinetic energy, so that it is prefer-
able similarly to consider the finite energy per particle

Epot,ex

N
= Epot,ex

V
1

ρ0
= −2e2kF

(2π )3
. (2.48)

This grows ∝ kF, i.e., more slowly than the kinetic energy.
After all, the total energy becomes

E

N
= Ekin

N
+ Epot,ex

N
= �

2

2me

3

5
k2

F − 3e2

4π
kF = 0.6

�
2

2me
k2

F − 0.239 e2 kF . (2.49)

The electron–electron interaction is repulsive while the exchange term has the oppo-
site sign and so becomes attractive. That is plausible. But a quick glance at the
total energy (2.49) gives the puzzling impression that all binding comes from the
electron–electron interaction which is usually considered to be repulsive. Note that
the direct term is the one responsible for repulsion and we have seen that it is huge,
in fact, insurmountably infinite. It is, however, fully counterweighted by the equally
huge attractive contribution from the external positively charged background. The
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Fig. 2.7 The binding energy
per particle for the Fermi gas
of electrons, (2.49), and its
two constituents, the kinetic
energy and the exchange
energy
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full compensation of the leading forces leaves the small exchange effect on the final
tip in the balance and that small contribution provides the binding in the Fermi-gas
model, which is counterbalanced by the Fermi pressure from the kinetic energy. The
trends are sketched in Fig. 2.7. The linear growth of (negative) exchange energy
dominates for small Fermi momenta kF. It is overruled by the quadratic trend of the
repulsive kinetic energy for increasing kF. The turnover produces a unique mini-
mum which establishes the equilibrium state of the electron gas, having the energy
E/N = −1.295 eV at the Fermi momentum kF = 0.4/a0 corresponding to rs = 4.8
a0. It is remarkable how well this number fits typical Wigner–Seitz radii of metals,
e.g., rs = 3 a0 for Ag, rs = 4 a0 for Na, or rs = 5 a0 for K. Of course, the ionic
structure, adding core polarizability and core repulsion, determines the final detailed
value of rs , but the basic balance seems to be determined already by the electron gas,
a simple model with surprisingly realistic aspects.

2.6 Concluding Remarks

The Fermi-gas approximation, simple though it is, was shown to be surprisingly suc-
cessful in understanding many features of quite distinct systems at least in a semi-
quantitative way. The reason was that many systems are characterized by a relatively
constant density and weak correlations, which makes the approximation by a gas of
non-interacting particles trapped in a constant potential quite adequate. Through
the exploration of the thermal behavior, relativistic formulation, and the addition
of gravitational and Coulomb interactions we have shown the tremendous flexibility
that also characterizes the model. For a first basic understanding of fermion systems,
the Fermi-gas model remains an approach of choice.

The next chapters will show how to introduce more realism by discarding the
constant potential using either a phenomenological potential adapted to specific
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systems or a self-consistent one calculated from the single-particle wave functions
themselves. In both cases, the many-body state is still a wave function built out
of single-particle states that are filled up to Fermi energy, so that many qualitative
properties of the Fermi-gas model remain valid.



Chapter 3
Particles in an External Field

In the previous chapter, it was shown how the Fermi-gas model can be a useful
lowest-order description even for a finite system. It provides, e.g., correct volume
properties, scaling, or level densities, but neglects crucial quantum effects, particu-
larly quantum shell structure, related to the spatial confinement of a finite system. A
rough confinement is given by an infinite potential barrier enclosing a flat potential
region. More realistic potential wells have finite depth and a smooth transition zone
at the surface. There may also be contributions depending on spin or a coupling to
the wave functions in other more complicated ways. Each of these features influ-
ences the single-particle levels and thus the shell structure considerably.

All these effects are included, of course, in self-consistent models where the
fermion–fermion interaction is taken into account at least at the mean-field level.
These approaches will be discussed in Chaps. 5 and 6. They reach a high degree of
descriptive power, but are usually rather complicated and computationally expen-
sive. Thus for an intermediate level of description simple mean-field potentials have
been developed, which are appropriate for describing some system properties and
leave a few free parameters for fine tuning. This sort of empirically guessed mean-
field potential is often called a (phenomenological) shell model, see, e.g., [9]. The
aim is to choose, within the intuitively reasonable possibilities, a realistic potential
which is also easy to use, ideally providing analytical solutions. The simplest and
most widely used model potential is the harmonic oscillator which thus will cover
the largest portion of this chapter.

In such phenomenological models it is possible to also prescribe the shape
of the system. This is crucial because finite fermion systems often have non-
spherical ground states because of the shell structure. This will be illustrated later
in Sects. 3.2.4 and 3.2.5.

3.1 The Variety of Shell-Model Potentials

3.1.1 Saturating Fermion Systems

A first demonstration of the principal types of potentials is given in Fig. 3.1 for a Na
cluster as a typical test case for a saturating fermion system. The fully self-consistent
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Fig. 3.1 One-body potentials for a Na20 cluster. The benchmark is the self-consistent potential
from a DFT calculation denoted as “SC”. The approximate choices are: “WS” = Woods–Saxon,
“box” = spherical square well, “HO” = harmonic oscillator. The Fermi energy εF (depending on
energy) is indicated by a grey horizontal stripe

potential was obtained numerically with DFT, see Sect. 6.1, and the positive back-
ground was described in jellium approximation, (1.1). It is compared with three
widely used shell-model potentials as defined in Table 3.1. Closest to the typical
mean-field potential shape is the Woods–Saxon potential with its three parameters
depth VWS, radius RWS, and width σWS. Since it is also a good approximation to
the nuclear mean field, the Woods–Saxon potential has been widely used in many
fields of physics. Analytical solutions, however, do not exist, or only approximately
[35]. Therefore, one often resorts to even simpler models, the spherical box (also
called square well) potential (denoted “box” in Fig. 3.1) or the harmonic oscillator
(denoted “HO”). The latter is particularly useful as it has simple analytical solu-
tions. We will in this chapter mainly discuss the harmonic oscillator for this reason.

The comparison in Fig. 3.1 shows that some model potentials are not flexible
enough to follow the given mean field everywhere. Fortunately, that is not really
necessary. For most purposes, it suffices to reproduce the situation in the active
zone around the Fermi energy as sketched in Fig. 3.1. In fact, the model parameters
are usually adjusted to reproduce the single-particle levels around the Fermi energy
because the level sequence here is the crucial feature which decides shell effects

Table 3.1 Three typical spherically symmetric model potentials

Woods–Saxon : VWS(r ) =
VWS

1 + exp ((r − RWS)/σWS)

Square well : Vbox(r ) =

{−Vbox for r < Rbox

+∞ for r ≥ Rbox

Harmonic oscillator : VHO(r ) =
m

2
ω2r2 − VHO,0
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like magic numbers or deformations. The self-consistent potential (denoted “SC”)
in Fig. 3.1 falls in between the two simplest potentials (box and HO). The (almost)
flat bottom of the SC potential becomes more extended for larger systems, thus
making the spherical box preferable there, while smaller systems come much closer
to the harmonic oscillator.

The situation as sketched in Fig. 3.1 applies to all saturating systems, nuclei,
metal clusters, and 3He droplets. It is also valid for quantum dots, whose dimensions
are tunable, but where the density distribution follows the same pattern (for given
overall radius) and it is often realistic for atomic clouds in a trap. For saturating
systems the central density is always about the same, independent of the number of
particles and the system’s shape. Thus the volume grows ∝ N , where N is the total
particle number. This leads to the crucial condition of volume conservation, which
is a condition for the geometric size parameters in the potential, see Sect. 3.2.

3.1.2 Atomic Systems

The non-scalable systems, atoms and molecules, require quite different potentials
which are not so easy to model in simple terms. An attempt to reproduce the atomic
mean field is, for example, the Hulthén potential

V (r ) = − Ze2

a

1

er/a − 1
,

which becomes proportional to Ze2/r for r −→ 0 and simulates screening for
r −→ ∞. There exist analytical solutions for angular momentum l = 0 [35], but
unfortunately only approximate ones for other l so that it is of limited use. The
difficulty to develop simple model potentials for atoms becomes even more dramatic
for all-electron models of molecules. Thus the typical approximation schemes in
the realm of atoms and molecules are variational methods with simple basis wave
functions. These methods range from nice instructive schematic models like the
tight-binding model up to quite elaborate quantum chemical calculations [84]. We
will address the tight-binding approach in Chap. 4. More elaborate methods are
beyond the scope of this book.

For atoms, there is an alternative path of approximations where the aim is to
reduce the many-body problem of all electrons to an effective one- (or few-) body
problem for the valence electron(s). This leads to the pseudo-potential strategy
[101]. It is illustrated in Fig. 3.2 for the case of the Na atom, having a 1s, 2s, 2p core
and one valence electron in the 3s shell. The left part shows part of the level scheme
from an all-electron calculation (the 1s state lies too deep to fit into the plot). The
energetic separation between the core levels and the valence state is large, so that one
expects the core electrons to stay rather inert in the low-energy dynamics around the
valence shell. The pseudo-potential is now constructed such that the solution of the
one-electron problem yields a spectrum which is similar to the excitation spectrum
of the atom near the valence shell and such that the intermediate and long-range
radial extension of the valence state is also reproduced. Such a situation is shown
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in the right part of Fig. 3.2. Pseudo-potentials are calibrated carefully to atomic
properties and then extensively used for calculating electronic states and bonding
of molecules. Although they simplify quantum-chemical calculations enormously,
pseudo-potentials are rarely simple enough to allow for an analytical solution. They
thus do not belong to the sort of simple models which we are discussing in this book.
We will nevertheless deal with the simplest model for an atomic transition (e.g., the
3s −→ 3p one in Fig. 3.2), namely a two-level model which is isomorphous to a
spin 1/2 algebra, see Chap. 7.

3.2 The Harmonic Oscillator in the Various Subfields

The technically simplest case is the harmonic oscillator, so that developments start
with an oscillator model wherever possible. It turns out that a great variety of physi-
cal situations allow this. We here briefly summarize the major applications. Detailed
solutions and results will be outlined in the next section.

Volume conservation is a key feature of saturating systems. It shows up first
at the level of the spatial density distribution which is basically constant up the
boundaries where it drops to zero rather quickly. Density is N/V which means that
the enclosed volume grows proportional to system size N . The relation R3 ∝ N ∝
V then holds for the radius of spherically symmetric systems. Deformed systems
can be characterized by three different extensions Rx , Ry , Rz . Again the constancy
of density imposes Rx Ry Rz ∝ V = constant for a given particle number N . When
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using a model Hamiltonian as we do here, we are not given the density initially but
a potential. The surface of an N -fermion system can then approximately be given
by the equipotential line at the Fermi surface. Thus one takes the condition that the
Fermi energy is independent of particle number and shape for a saturating system.
This condition implies that the oscillator frequency follows a trend ω ∝ εF/N 1/3

for a 3D system, and ω ∝ εF/
√

N in 2D. These properties will be obeyed in all the
following examples.

3.2.1 The Harmonic Oscillator in Two and Three Dimensions

The general form of the harmonic oscillator Hamiltonian for the 3D case is

ĥ = p̂2

2m
+ 1

2 m
(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
. (3.1)

The 2D case can be obtained trivially by just omitting the contribution of the z-
coordinate and momentum.

There are several interesting limiting cases: if all the ω’s are equal, the oscillator
has spherical or, in the 2D case, circular symmetry. If two ω’s are equal in the
3D case, the oscillator is axially symmetric. If all ω’s are different, the oscillator
becomes triaxial. The deviation of the oscillator from spherical or circular symmetry
is determined by the ratios of the different ω’s, their absolute size is dictated by
volume conservation. The spectrum can be formulated in different ways depending
on the symmetry (details are given in Appendix A.1).

The single-particle spectrum of the pure oscillator is easy to write down in the
Cartesian basis, it is just the sum of the contributions of 1D oscillators in each coor-
dinate direction,

εnx ny nz = �ωx (nx + 1
2 ) + �ωy(ny + 1

2 ) + �ωz(nz + 1
2 ), (3.2)

where again the 2D case can be obtained by omitting the contribution of the z-
direction. This form is particularly useful for truly triaxial deformation. More sym-
metric situations allow alternative representations which display symmetry quantum
numbers explicitly.

For the spherical oscillator with ωx = ωy = ωz = ω, the spectrum can be
expressed also in a spherical basis with good angular momentum quantum numbers
(see Appendix A.1):

εnlm = �ω(n + 3
2 ) , n = 0, 1, . . . , l = n, n−2, . . . ≥ 0 , m = −l, . . . ,+l .

(3.3)
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Note that the energy does not depend on the value m of the z-component of angular
momentum. It shows the typical 2l+1 fold degeneracy of all central-field problems.
Moreover, there is a degeneracy covering different l values which is specific for the
harmonic oscillator.

The deformed axially symmetric oscillator has ωx = ωy = ωr . The z-component
of angular momentum then remains a good quantum number m. The practical solu-
tion is performed in cylindrical coordinates and the spectrum becomes

εnr mnz = �ωr (2n+|m|+1) + �ωz(nz + 1
2 ) , (3.4)

ωr = Rx

R0
ω , ωz = Rz

R0
ω ,

n = 0, 1, . . . , m = 0,±1, . . . , nz = 0, 1, . . .

These spectra provide the central part of the discussions of oscillator models in the
various applications, which introduce some differences via additional contributions
to the potential and also through the notation used for the coefficients. We now give
a brief overview of these applications before going into a more detailed discussion.

3.2.2 The 3D Oscillator Atomic Traps

The confining potentials for atoms in a trap are to a very good approximation har-
monic such that the 3D oscillator Hamiltonian (3.1) is a standard starting point for
theoretical investigations in that field [14, 38]. The oscillator frequencies ωx,y,z are a
design property and can be varied in a large range. We will exploit that in connection
with density functional theory in Sect. 6.5.2.

The values of ω typically range between several kHz and a few MHz. The oscil-
lators are usually deformed, mostly axially, i.e., Rz �= Rx = Ry . The trapped sys-
tems differ from self-bound systems in that the oscillator frequency is adjustable
by design and not determined by an internal systems property (like the εF in (3.6)).
Moreover, shell effects are not the issue in trapped clouds of atoms. One rather uses
the tunable conditions to explore the different regimes of correlations from basically
free atoms to pairing correlations (see Sect. 9.3.1) and condensates [14].

3.2.3 The 2D Oscillator for Quantum Dots

The mean-field potential for electrons in quantum dots is often described by a 2D
oscillator, which is usually written as [87]
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ĥHO,2D = p̂2
x + p̂2

y

2m∗ + m∗

2
ω2

(
R2

0

R2
x

x2 + R2
0

R2
y

y2

)
, Rx Ry = R2

0, (3.5)

ω = e2

εm∗r3
s

√
N

, rs ≈ 1.3–1.4a∗
B ,

where m∗ is the effective mass of the electrons moving in the semiconductor mate-
rial of the dot [3], ε its dielectric constant, a∗

B the corresponding effective Bohr
radius for the elementary exciton, and rs = the Wigner–Seitz radius of the confined
electron cloud (Sect. 1.1.6). A possible deformation can be described by setting
the relevant extensions Rx �= Ry while, of course, obeying volume conservation
Rx Ry = R2

0. The choice Rx = Ry corresponds to a circular potential.
Two comments justifying this great simplification are in order. First, the electron

cloud is, in principle, a 3D object. The extension in the third dimension is, however,
much smaller than in x and y, so that the wave functions are all in the (oscillator)
ground state with respect to the z-direction and this dimension becomes irrelevant.
Second, the external confining potential walls in the semiconductor are rarely so
nicely harmonic nor are they circular. It is the electron–electron interaction which
smoothes the landscape such that the self-consistent mean field comes close to the
oscillator ideal, at least for not too large electron numbers [60].

Finally, we ought to mention that such planar situations are realized not only
in quantum dots but also for electrons in small metal clusters deposited on a sur-
face with large interface interaction like, e.g., the combination of Na clusters on a
NaCl surface [55]. All discussions below on the sequence of magic numbers and on
deformation also apply to that case. There is an intriguing difference to quantum
dots, though. The deformation is defined by construction for the dot, while the
deposited cluster has more freedom to a self-adjustment of shape (similar to free
clusters) within the bounds set by the strong interface interaction from the surface,
i.e., in the two dimensions parallel to the surface. This holds, as discussed at the
end of Sect. 3.3.1, for Na clusters at room temperature. Ionic effects also have to be
considered for very cold and/or very large clusters.

3.2.4 The Clemenger–Nilsson Model for Metal Clusters

The mean field of metal clusters is often parametrized in terms of a 3D oscillator
written as

ĥHO,3D = p̂2

2m
+ m

2
ω2

(
R2

0

R2
x

x2+ R2
0

R2
y

y2+ R2
0

R2
z

z2

)
, Rx Ry Rz = R3

0, (3.6)

ω ≈ εF N−1/3
[
1 + δRsp

R0

]−2
,
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where εF is the Fermi energy of the bulk material and the term with δRsp corrects for
the electronic spill out in small systems. The spill-out effect reflects the fact that the
electronic density is more spread-out than the ionic one and thus literally spills out
of the ionic density. The Ri allow to give the three directions different extensions
(triaxial oscillator), and Rx Ry Rz = R3

0 maintains volume conservation. The choice
of ω describes the proper scaling with particle number, but with a spill-out correction
as mentioned.

The strictly harmonic potential becomes increasingly unrealistic for larger sys-
tems (see the discussion of Fig. 3.1). One can stay close to the beneficial simplicity
of the harmonic oscillator by a corrective term

ĥCN = ĥHO,3D − D
ω

�
l̂2, (3.7)

where l̂ is the operator of orbital angular momentum. In cluster physics this is called
the Clemenger–Nilsson model [117, 59]. The term ∝ l̂2 shifts the states with larger
angular momentum to lower energy, simulating this feature from a finite well. A
typical choice for the dimensionless parameter D lies around 0.05, depending some-
what on the intended system size. At first glance, it appears complicated to correct
by an involved operator rather than by a simple local term, but note that the term
is trivially evaluated in the spherical oscillator where angular momentum becomes
a good quantum number and the shift reduces to −Dl(l +1) without the need for
modifying the wave functions.

3.2.5 The Nilsson Model for Nuclei

The model potential (3.1) goes back, in fact, to the nuclear oscillator model called
the Nilsson model [18, 42]. Here, a strong spin–orbit term has to be added because
that is compulsory to explain nuclear shell structure. Thus we augment the 3D oscil-
lator model (3.6) including the l̂2 correction (3.7) and a strong spin–orbit interaction,
yielding the Nilsson model Hamiltonian

ĥNil = ĥHO,3D − κ
ω

�

(
2l̂ · ŝ + μl̂

2
)

(3.8)

�ω = 41 MeV

A1/3
, κ ≈ 0.05 , μ ≈ 0.3 . (3.9)

The values for κ and μ are fitted to experimental data and vary somewhat with the
size region considered. It ought to be mentioned also that there exist some variants

of the l̂
2

correction in the literature.
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3.2.6 Comparison of Spectra

We can now compare the spectra for the various cases discussed. It should be noted
that the spherical representation allows a closed analytical solution even for the
modified oscillators in the Nilsson (3.8) and Clemenger–Nilsson models (3.7). The
cylindrical form is often employed for strongly deformed nuclei, see Sect. 3.3.3.2.
It becomes particularly useful for a circular quantum dot, in which case one merely
skips the z-contribution from (3.4), see Sect. 3.3.2.

Figure 3.3 gives an overview of the single-particle levels for the various shell-
model potentials discussed above, all for the case of spherical symmetry (or circular
symmetry for the 2D oscillator). Details of dealing with the corrective terms l̂2 and
l̂ · ŝ will be discussed with the applications later on. The multiplicity of a given
level is indicated by the length of each level line. It is of course larger the higher
the symmetry of the system (3D versus 2D for example). The figure also shows the
magic numbers obtained by filling all states from below (including spin degeneracy)
according to the Pauli principle up to the indicated shell closure. It is obvious that the
2D structure, e.g., of a quantum dot has a quite different sequence of magic numbers.
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Fig. 3.3 Comparison of the single-particle spectra and magic numbers for various model poten-
tials: leftmost = 2D oscillator, second from left = pure 3D oscillator (3.1), middle = the full
Clemenger–Nilsson model (3.6) including the corrective term (3.7), second from right = spherical
box potential (Table 3.1 and Appendix A.1.4), right = nuclear Nilsson model (3.8). The lengths
of the lines are proportional to the degeneracy of the corresponding level, i. e., indicate how many
particles can occupy each level
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The three cases in the middle all represent an option for 3D Fermi systems without
spin–orbit force such as metal clusters. The three potentials produce comparable
sequences up to N = 20, possibly up to N = 40. Above that we find a different
sequence of magic numbers for the pure oscillator as compared to the box and l̂2

corrected oscillator (Clemenger–Nilsson). Self-consistent calculations confirm the
sequence 2, 8, 20, 40, 58, 92 (which corresponds to the experimental one in simple
metal clusters with one valence electron per atom such as Na, Cs, K, . . .) and have
spectra which lie between the Clemenger–Nilsson model and the spherical box. This
result is plausible in view of Fig. 3.1, which showed that larger systems will have
a broad flat bottom in the mean-field potential, which can hardly be simulated by a
purely harmonic potential.

The rightmost example in Fig. 3.3 shows the sequence for the Nilsson model
discussed in Sect. 3.2.5. The decisive influence of the strong spin–orbit splitting is
clearly visible. The series of magic numbers above N = 20 changes from 40, 58,
92 in the Clemenger–Nilsson model to the typical nuclear values 28, 50, 82, 126.
More details for these different oscillator models will be outlined in the following
sections discussing a few selected applications from various subfields.

3.3 Applications

3.3.1 Metal Clusters

As the technically simplest example, we start with the case of metal clusters in the
Clemenger–Nilsson model. We consider only small clusters for which the simple
pure-oscillator form (3.1) is still appropriate. The aim is to demonstrate how shell
structure can determine the global shape of the system. To keep geometry simple,
we consider only axially symmetric shapes, i.e., Rx = Ry �= Rz , which leaves
only one parameter characterizing deformation. It is customary to use the distortion
parameter [117]

η = 2
Rz − Rx

Rz + Rx
= 2

Rz/Rx − 1

Rz/Rx + 1
,

Rx

R0
=
(

2−η

2+η

)1/3

,
Rz

R0
= R2

0

R2
x

, (3.10)

where volume conservation has been used to express the Ri in terms of η. The
single-particle energies then become

εnx ny nz (η)

�ω0
= (nx +ny +1)

(
2+η

2−η

)1/3

+ (nz + 1
2

) (2+η

2−η

)−2/3

. (3.11a)
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A first rough estimate for the total energy is obtained simply from the sum of the
single-particle energies running over the occupied states, i.e.,

E(η) =
∑

nx ny nz∈ occupied

εnx ny nz (η) . (3.11b)

The occupied states are chosen in standard fashion by filling the energetically lowest
single-particle states.

The left panel of Fig. 3.4 shows the sequence of single-particle levels (3.11a) as
a function of deformation. Each level can be occupied by two electrons (spin up and
spin down). Let us first consider the spherical shape (η = 0). Two electrons fill the
lowest shell in a unique fashion. Adding the next electron leads to an ambiguous
situation as there are six energetically equivalent levels available which could be
occupied. Adding two electrons already yields 30 possible configurations. It is only
at N = 8 that a unique filling is reached again. That is then a particularly stable con-
figuration, called a magic electron number. The next full shell is reached at N = 20.
The ambiguous situation in between the shell closures is resolved by deformation.
The spherically degenerate levels develop differently with η. This dissolves spher-
ical shell closures and produces some gaps at other places. For N = 4 we find a
reasonably large gap at a prolate deformation of η = 0.6, for N = 6 at an oblate
one of η = −0.7. Further shell fillings are indicated in the plot.

So far, the argument for the preferred shape was to achieve a maximal shell gap.
That is closely related to a minimum in the total energy. The right panel of Fig. 3.4
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Fig. 3.4 Left panel: The level sequence (3.11a) for the axially symmetric, deformed harmonic
oscillator drawn versus the distortion parameter η as defined in (3.10). The numbers in the shell
gaps indicate the numbers of electrons reached when filling up to the last level below that number.
The cases N = 16 and N = 12 are given in brackets because both these systems actually prefer
a triaxial deformation. Right panel: The total energies (3.11b) for various electron numbers N
as indicated computed for the axially symmetric, deformed harmonic oscillator drawn versus the
distortion parameter



82 3 Particles in an External Field

shows the total energy (3.11b) obtained as the sum of occupied single-particle ener-
gies. This is a rather rough approach as we will see in Chap. 5, but it suffices for
the present qualitative discussion. To cover all systems, the energy is adjusted to
zero at spherical shape, so that the curves show the relative energies, i.e., the energy
changes through deformation. The minima for each N are found indeed at about the
same deformations as predicted from looking at the gaps in the left panel.

Figure 3.5 compares the ground-state deformations estimated this way with
experimental data for positively charged Na clusters up to N = 40. The experimen-
tal deformation is deduced via its effect on the Mie plasmon resonance (Sect. 1.1.5),
because the resonance peaks for modes in x-, y-, and z-direction depend on the
extension of the system in the corresponding direction and this, in turn, allows to
determine the global quadrupole deformation [59, 117, 97, 89]. The agreement is
excellent and it is noteworthy that this is achieved by the extremely simple 3D
oscillator model.

The good agreement with experimental results suggests that the electronic shell
dominates the cluster shape and that the underlying ionic configuration seems to
willingly follow the electronic driving forces. That is corroborated by mean-field
calculations of the electron cloud (see Sect. 6.1) including detailed ionic structure.
Figure 3.6 shows the computed ionic shapes for three small Na clusters. These very
small systems may be expected to experience strong perturbations through ionic
structures, but the result shows that the shapes in the average conform nicely with the
predictions of the Clemenger–Nilsson model, strongly oblate Na6, almost spherical
Na8, and strongly prolate Na10. The point is that the electron cloud in metal clusters
extends over all ions and screens the ion–ion interaction to a large extent; conse-
quently the electron cloud explores the shell effects which are given by the global
quadrupole deformation and the weakly interacting ions move into the optimum
positions as dictated by the electronic cloud. A word of caution is in place here. The
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Fig. 3.5 Predictions of the ground-state deformation parameter η in Na+ clusters as deduced from
the Clemenger–Nilsson model with experimental data from [97]
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Fig. 3.6 Detailed ionic configurations for Na6 (left), Na8 (middle), and Na10 (right)

self-adjustment of cluster shape by electronic shell effects holds only if ionic effects
on the shape can be ignored. This is approximately valid for simple metal clusters
(alkalies) above melting temperature, e.g., for Na at room temperature [19, 89].

3.3.2 Quantum Dot in a Magnetic Field

Electrons in quantum dots are confined to two dimensions and can be well described
by a 2D oscillator potential [87]. The level sequence of the 2D oscillator and asso-
ciated magic electron numbers were shown in Fig. 3.3. Shell closures and magic
numbers play an important role for the properties of the quantum dot (addition ener-
gies which are similar to ionization potential, conductivity). A particularly appealing
feature of quantum dots is that their shell structure can be easily modified by external
magnetic fields which, in turn, allows to modify their physical properties at will.

The Hamiltonian of a 2D oscillator in a homogeneous magnetic field perpendic-
ular to the dot’s plane, namely along the z-axis (axis of heterostructure confinement,
see Sect. 1.1.6), while the harmonic field is along x and y reads

Ĥ = 1

2m∗
(

p̂ − e

c
A
)2

+ m∗

2
ω2r2 , A = B

2

(− y, x
)

, r2 = x2 + y2 ,

where m∗ is the effective electron mass of the given semiconductor material in the
dot and B the strength of the magnetic field. Evaluating the kinetic term yields

Ĥ = p̂2

2m∗ + m∗

2

(
ω2 + ω2

B

4

)
r2 + ωB

2
l̂z , ωB = eB

m∗c
, (3.12)
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where ωB is the cyclotron frequency in the field B. The first two terms of this
Hamiltonian are equivalent to the radial part of the oscillator Hamiltonian in axially
symmetric representation, see (3.4) without the z-direction. The spectrum is as given
in (3.4) when ignoring the dependence on nz , complemented by the cyclotron term.
It can be classified in terms of the angular momentum projection m and the radial
oscillator quantum number n and becomes

εnm

�
=
√

ω2 + ω2
B

4

(
2n+|m|+1

)+ωB

2
m , n = 0, 1, . . . , m = 0,±1, . . . .

(3.13)

The left part of Fig. 3.7 shows the dependence of the spectrum on the cyclotron
frequency ωB . One clearly sees the bunching in shells for zero magnetic field with
the magic numbers as already shown in (3.3). The magnetic field first makes the
spectrum more diffuse and so destroys the shells. However, there appear new shell
gaps at certain values of the magnetic field. They yield different magic numbers as
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Fig. 3.7 Left panel: The single-particle spectrum (3.13) of the 2D oscillator in a magnetic field as
a function of the cyclotron frequency ωB . The magic numbers at shell closures are indicated for
zero field and at the first occurrence for finite magnetic field. Right panel: Experimental results
for the peaks of the Coulomb blockade (in terms of the corresponding gate voltage) as function of
external magnetic field [104]. The electron number associated with each peak is indicated
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indicated for the first spot of reappearing gaps. The shell structure can be measured
by electron-addition energies, the analogue of ionization potentials in atoms. It also
shows up in the conductance of a dot. Due to the quantization of electron number
in the dot, there are well-defined conductance peaks at certain voltages and a strong
suppression elsewhere (called Coulomb blockade [87]). The peaks are related to the
energy levels. The right part of Fig. 3.7 presents experimental results on the effect
of the magnetic field on conductivity of the dot. It shows the peak voltages, i.e.,
the voltages associated with a peak in conductivity (seen as function of voltage).
Looking at zero magnetic field, we can spot small gaps between the peak voltages
at N = 2, 6, 12. In the region of about 1 T we find the gaps at the sequence 2, 4, 8,
12. Both results are in accordance with the numbers shown in the left panel.

3.3.3 Nuclei

3.3.3.1 The Spherical Oscillator Model

In this section, we look at the spherical harmonic oscillator and its application to
nuclear shell structure. The dependence of the oscillator parameter on the total
nucleon number A is ω ∝ A−1/3 because of volume conservation. A standard
choice is

�ω = 41 MeV

A1/3
,

where the numerical factor is adjusted to reproduce the average shell spacing near
the Fermi energy. The harmonic oscillator shows strong shell structure because of
its high degeneracy. Using the single-particle energies in the labeling (3.3) and
subtracting the contribution from the term ∝ l̂2 = l(l + 1)�2 yields the spectrum
as shown in Fig. 3.8 on the left-hand side. The different orbital angular momenta
contained in each oscillator shell are already split up because of the l2-term. The
letters s, p, d, f , g, . . . indicate l = 0, 1, 2, 3, 4, . . ., following the familiar notation
from atomic physics (see Sect. 1.1.3). Multiplying by a factor of 2 for spin, we
find the degeneracies as indicated there (round brackets), and adding them up yields
the magic numbers also indicated (square brackets). They do not agree with what
is found in experiments. One needs to take care of the spin–orbit coupling in the
Hamiltonian (3.8). Now the projections of the orbital angular momentum l̂z and the
spin ŝz are no longer good quantum numbers and must be coupled to total angular
momentum j . According to Appendix A.2, the triangle rule allows two values for
the total angular momentum: j = l ± 1

2 . If the harmonic oscillator wave functions
are used in spherical coordinates, the spin–orbit coupling term then is immediately
diagonal and its value can be computed from

l̂ · ŝ = 1
2

[(
l̂ + ŝ

)2 − l̂
2 − ŝ2

]
= 1

2 �
2[ j( j + 1) − l(l + 1) − s(s + 1)] .
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Fig. 3.8 Level scheme for a harmonic oscillator with spin-orbit coupling. The states of the pure
harmonic oscillator plotted on the left split up to form the structure on the right. Both left and right
the number of particles possible in each level is shown in parentheses and the total number up to
that level in brackets

Of interest is the splitting of the two levels with j = l ± 1
2 . It is given by

E j=l+1/2 − E j=l−1/2 = −2κ�ω
(
l + 1

2

)
.

This leads to the structures shown in the right part of Fig. 3.8. The spin–orbit cou-
pling splits the levels depending on total angular momentum; a label like 2 f7/2

corresponds to the second f -state coupled to j = 7/2, the sign of the splitting
being such that the highest total angular momentum state becomes lowest in energy.

Clearly the inclusion of spin–orbit coupling rearranges the levels such that new
magic numbers appear. These are indicated on the right and now agree with what
is seen experimentally in nuclei. If the number of protons or neutrons is one of the
magic values, the nucleus turns out to be especially stable; more specifically, it is
characterized by

• a larger total binding energy of the nucleus,
• a larger energy required to separate a single nucleon,
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• a higher energy of the lowest excited states, and
• a large number of isotopes or isotones with the same magic number for protons

(neutrons)

(all of these in comparison to neighboring nuclei in the table of nuclides). The lower
magic numbers are the same for protons and neutrons, namely 2, 8, 20, 28, 50, and
82, whereas the next number, 126, is established experimentally only for neutrons.
Theoretically one would expect additional magic numbers near 114, 120, or 126 for
protons and 184 for neutrons (the exact prediction depends on the theory) leading
to superheavy nuclei, but these have not been confirmed in experiment, although
there are hints of an increase of lifetimes in the heaviest elements observed up to
now [49].

Aside from the magic numbers, the properties of the single-particle states them-
selves are also accessible to experiment through pickup and stripping reactions,
which allow the determination of the binding energy and angular momentum of the
particles near the Fermi level. The experiments of this type tend to agree with the
predictions of the model near closed shells.

3.3.3.2 The Nilsson Model for Deformed Nuclei

The generalization of the phenomenological shell model to deformed shapes in the
nuclear case was first given by S. G. Nilsson [75], so this version is often referred
to as the Nilsson model. The Hamiltonian of the Nilsson model is a combination of
the pure harmonic oscillator of (3.1) with a spin–orbit coupling and an l̂

2
-correction

added, so that the major difference to the spherical version is just allowing defor-
mation in the pure-oscillator part. Most applications are done with axial symmetry,
so that the Hamiltonian may be diagonalized in the basis of the harmonic oscillator
using either spherical or cylindrical coordinates depending on the application. In

spherical coordinates the spin–orbit and l̂
2

terms are diagonal, but the harmonic
oscillator potential couples orbital angular momenta differing by ±2. In cylindrical
coordinates, on the other hand, the deformed oscillator potential is diagonal and
the angular momentum terms must be diagonalized numerically. In any case, with
modern computing resources neither is a problem.

It is worthwhile to study the quantum numbers resulting from both approaches.
Consider first the spherical oscillator without spin effects. The energies from the
oscillator potential in the spherical basis are given by (3.3) in terms of orbital angular
momentum l. In the cylindrical basis the oscillator energies and quantum numbers
are given by (3.4). Spin–orbit coupling, as mentioned, makes these quantum num-
bers only approximately applicable: there are no j and l quantum numbers, but only
the projection jz , often denoted as Ω in the Nilsson model.

For the spherical shape the levels will be grouped according to the principal quan-
tum number N (with the splitting by the spin–orbit force then determined through
the total angular momentum j), but the behavior with deformation depends on how
much of the excitation is in the z-direction. For prolate deformation (one long axis
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and two small equivalent ones), the potential becomes shallower in this direction,
and the energy contributed by nz excitations decreases. The cylindrical quantum
numbers are thus helpful in understanding the splitting for small deformations even
near the spherical shape, while the spin–orbit properties are of course better dis-
cussed with spherical quantum numbers. For very large deformations, on the other

hand, the influence of the spin–orbit and l̂
2

terms becomes less important and one
may classify the levels according to the cylindrical quantum numbers. It has thus
become customary to label the single-particle levels with the set Ωπ [Nnzm]. The
projection of total angular momentum Ω and the parity π are good quantum num-
bers while N , nz , and m are only approximate by looking near the spherical state or,
for m, at large deformation. Figure 3.9 shows the levels of the Nilsson model (3.8) as
functions of deformation η. The trends are similar to the cluster example in Fig. 3.4,
however, here including a strong spin–orbit term. The spherical level structure at
zero deformation and the emergence of the asymptotic Ωπ quantum number can be
recognized clearly.

The systematic behavior of the levels is made more complicated by avoided
energy-level crossings. As a general rule, levels with the same (exact) quantum
numbers should never cross if they are plotted as functions of a single parame-
ter. This was first noticed by von Neumann and Wigner [1, 62], who investigated
how the number of degrees of freedom of a general Hermitian matrix is reduced
if the matrix is constrained to have two equal eigenvalues; they found that it is in
general not sufficient to vary a single parameter to reduce the matrix to this special
case. Thus a degeneracy should always be caused by a symmetry which produces
additional quantum numbers to distinguish the states.

If two levels with the same quantum numbers get close to each other, they are
instead repelled. In the Nilsson diagram of Fig. 3.9 the effect is clearly observable,
for example, for the 1/2− level coming from the f5/2 spherical multiplet below
magic number 40. Going toward negative deformations it is first repelled by the
1/2−-level from the p1/2 state above and then by the one from the p3/2 below. It is
not, however, forbidden from crossing the 9/2+ coming from above.

The level structure is actually accessible in experiment through the angular
momentum and parity of the nucleus. For even–even nuclei, pairing (see Sect. 9.3)
lets all the nucleon pairs in the ±Ω level pairs add up to a total angular momentum
of zero, but in odd nuclei the angular momentum and parity of the state the single
unpaired nucleon occupies determine the properties of the ground state. Thus at a
fixed deformation one counts up the level scheme for protons or neutrons to find the
level with the odd particle. Ideally the spin of the nucleus is then given by I = Ω

and the parity is given by the parity of the single-particle state. In practice usually
several levels are close together at that deformation: in this case one of them yields
the ground-state properties, while the other quantum number combinations can be
found among the low-energy excitations.

Let us finally mention that one can easily also define versions of the Woods–
Saxon and other realistic potentials containing similar deformation properties, al-
though these are less amenable to computation.
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Fig. 3.9 Lowest part of the level diagram (Nilsson diagram) for the deformed shell model (3.8).
The single-particle energies (in units of �ω̄0) are plotted as functions of the deformation parameter
η as defined in (3.10). Note that η = 0 corresponds to the spherical shape and η = 0.4 has
the symmetry axis longer than the other two by a ratio of 1.4. The quantum numbers Ωπ for
the individual levels and l j for the spherical ones are indicated as are the magic numbers for the
spherical shape

3.3.3.3 The Two-Center Shell Model

The Nilsson model discussed in the previous section is very powerful in predicting
nuclear deformation and its consequences like rotational spectra. However, it is not
capable of modeling nuclear fission, the breakup into two comparable fragments.
For this purpose there exists another interesting modification of the harmonic oscil-
lator potential, the two-center potential. In its simplest version it corresponds to
two identical oscillator potentials displaced along the symmetry axis; in cylindrical
coordinates this looks like
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V (ρ, z) = 1
2 mωρρ

2 +
{ 1

2 mω2
z (z − z0)2, z > 0

1
2 mω2

z (z + z0)2, z < 0
.

The distance between the two centers is 2z0. The potential is constructed such that
it is continuous at z = 0. Wave functions for this simple model can be obtained
analytically [69].

It is easy to introduce variations by allowing different oscillator frequencies in the
two parts and the different directions, thus describing fragments of unequal masses
and even with deformations. This makes the calculation of the wave functions more
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complicated and also requires interpolating the potential to make it smooth [67]. As
usual, the various oscillator frequencies have to fulfil volume conservation.

Figure 3.10 shows the dependence of the single-particle levels on the distance
R(= 2z0) between the centers of the two fragments. To make the structure more
transparent, an asymmetric situation was selected, which makes the emergence of
the two spherical spectra with different oscillator frequency for the light and heavy
nucleus at larger separation clearly visible. For R = 0 there is a spherical compound
system with the appropriate spectrum of the spherical oscillator model. In many
places gaps in the spectrum appear, which can lead to enhanced binding like in
magic nuclei and are responsible for shell effects in the fission barriers.

3.4 Concluding Remarks

Simple external fields confining particles provide a very useful tool for investigation
of the properties of many-fermion systems. While such potentials are constitutive of
the system, for example, in quantum dots or traps, they are just a common approx-
imation in self-bound systems such as nuclei or metal clusters. Still, even in these
latter cases the self-consistent field binding fermions together can rather easily be
approximated by a simple external potential. This allows more transparent calcula-
tions and gives access to a straightforward, sometimes even fully analytic, under-
standing of major shell closures. The use of such model systems is not restricted to
spherical objects. Deformations can as well be inserted in the picture.

Among simple model potentials the harmonic oscillators play a special role as
they allow analytical solutions. They are extremely useful in quantum dots (2D
harmonic confinement) as well as nuclei, metal clusters, or traps (3D oscillator).
We have also seen that the simple harmonic oscillator picture could be improved
in several respects, especially what concerns angular momentum effects, and even
provides a transparent understanding of the dynamics of fission in nuclei. Of course
model potentials impose some restrictions, especially in the case of self-bound sys-
tems, in which they constitute at best a simple practical approximation to the true
self-consistent potential. We will see in Chaps. 5 and 6 how such self-consistent
fields can be constructed in a more microscopic way, but at the price of a strongly
enhanced complexity.



Chapter 4
Approaches Based on Model Spaces

When considering a complex system from the quantum point of view the question
of the form of the many-body wave function quickly arises. The most general form
is an expansion into a couple of Slater states Φα1...αN (1.3) as

Ψ (1, 2, . . . , N ) =
∑

α1...αN

Φα1...αN cα1...αN . (4.1)

Variation of cα1...αN for a given (large) basis set of Slater states yields the configu-
ration interaction (CI) methods which are widely used in quantum chemistry. Also
varying the ϕαi amounts to multi-configuration Hartree–Fock (MCHF). Although
conceptually straightforward, the Hilbert space grows very quickly as the number
of involved particles increases and may soon become huge. There are several solu-
tions to deal with this problem, among them the neglect of interactions (Chap. 2),
or a simplified account of the interactions through a common explicit potential
(Chap. 3). Such approaches require a well-developed intuition for a given system
in order to assure a good guess for the effective mean-field potential. This works
fairly well for simple geometries (Chap. 3), but becomes increasingly tedious in
quantum chemistry because each molecule can have a very different configuration
requiring separate modeling. We will see later on that such complex situations can
be handled in an unprejudiced manner when properly formulating a self-consistent
mean-field theory (Chap. 5). Even if such a self-consistent approach represents a
clear improvement over the introduction of schematic potentials, there remains as
another crucial aspect the question of the Hilbert space, i.e., of the most appropriate
expansion basis in (4.1). That question reappears notoriously at many levels of detail
of the theory. It thus also makes sense to directly try an approximation on the side
of the Hilbert space in order to simplify the problem. This is a strategy which has
been largely developed in chemistry, and here we shall outline a few widely used
concepts. The basic idea is simple. Keeping the Hamiltonian as simply built from
elementary interactions between constituents of the system, one tries to express the
electronic wave functions in a simple form using an adequate basis. In the case of
molecular systems the building blocks are atoms and the associated atomic wave
functions for electrons. One can then try to construct wave functions of molecular
electrons building them from the ones of atomic electrons. The idea is elementary
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and has been used at many levels of sophistication in chemistry. We shall discuss
it for standard simple cases in the following. Note that such an idea is not confined
to chemistry and can be used in several situations, as soon as one can identify a
reduced Hilbert space in which to express the wave functions of the constituents of
the system. A typical example is the case of two-level systems which we shall also
discuss in Chap. 7.

The use of atomic wave functions for building molecular ones is a standard
method in chemistry. We shall discuss it starting from simple examples of dimer
molecules in which the picture is especially transparent and then consider the case
of more complex molecules where it turns out that it often becomes less accurate.
We shall discuss two standard approaches along that line. We shall first discuss the
valence-bond (VB) approach and then the well-known linear combination of atomic
orbitals (LCAO) which leads to the simplified tight-binding approximations, such
as, in particular, the Hückel model.

4.1 Valence-Bond Theory

The idea of valence-bond (VB) theory is to model binding in a molecule by asso-
ciating the chemically active electrons in pairs. The corresponding wave function
is shared between the two atoms joined by the bond and localizes predominantly
along the bond. It is clearly a method which will make sense in systems in which
binding occurs “between” atoms, namely essentially covalent systems. It can be
used in particular in organic molecules. The VB approach by construction reduces
the many-body problem to a set of two-body problems, whence the obvious simpli-
cation. Not surprisingly, we will see that its range of applicability is limited. In order
to illustrate the method we start with the case of a dimer molecule, discuss then the
general distinction of bond types, and finally proceed to a brief overview of VB for
more complex molecules.

4.1.1 Dimer Molecules

We start from the simplest case of a dimer molecule with only one valence electron
per atom, such as H2. If the two atoms A and B are widely separated then the wave
function of any electron (which would sit on its parent atom) can be written as a
simple product. This reads for the spatial part

Φ(r1, r2) = ϕA(r1)ϕB(r2) (4.2)

if electron 1 is on atom A (centered at rA) and electron 2 on atom B (centered
at rB). The wave function ϕA labels the wave function of the electron on atom A
about origin rA (the single occupied atomic level in this case), and similarly ϕB the
wave function of the electron about origin rB (1s wavefunctions in the case of H2).
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The above expression becomes exact in the limit of infinitely separated atoms. But
when atoms are close to each other the interactions make it only approximate and
indistinguishability has to be taken into account. The actual spatial wave function
should be written

Φ(r1, r2) ∝ ϕA(r1)ϕB(r2) ± ϕA(r2)ϕB(r1). (4.3)

The “+” sign applies if the spin-wave function is antisymmetric (singlet), the “−” if
it is symmetric (triplet). For both combinations the total wave function is antisym-
metric under particle exchange as it should be. The sign to be chosen is obtained by
computing the total electronic energy of the system

E =
∫

ψ∗ Hψd3r∫
ψ∗ψd3r

H = − �
2

2m
(Δ1 + Δ2) + V (4.4)

V = −e2(
1

|r1 − rA| + 1

|r2 − rA| + 1

|r1 − rB | + 1

|r2 − rB | )

+e2 1

|r1 − r2| ).

One then keeps the combination giving the smallest energy and this finally leads to
the spatially symmetric (thus spin antisymmetric) form

Φ ∝ ϕA(1)ϕB(2) + ϕA(2)ϕB(1). (4.5)

In other words, in VB theory, each pair of electrons binding together couple with
anti-parallel spins in the singlet configuration.

The typical shape of the wave functions (4.3) is illustrated schematically in
Fig. 4.1 for the widely used practical case of Gaussians, i.e., Φ± ∝ exp (−(r−d/2)2/

(2σ 2)) ± exp (−(r+d/2)2/(2σ 2)) with distance d and width σ = a0. The two sep-
arate atomic wave functions are clearly visible for the largest distance. The zone
between the atoms fills up for the symmetric wave function with closer distances and
reaches well-developed inter-atomic (covalent) localization at a typical equilibrium
value d = 2 a0 for the bond distance. The antisymmetric wave functions have a
reduced density just between the atoms and thus are unfriendly to binding.

4.1.2 σ - and π-Orbitals

Valence-bond theory can be easily formulated for more complex homonuclear
dimers. In this case the sequence of all atomic levels possibly participating in
binding is considered, leading to the formation of a sequence of paired electrons
ensuring binding. A few words on nomenclature are necessary here. In the case of
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Fig. 4.1 Symmetric (ψ+) and anti-symmetric (ψ−) molecular wave functions (4.3) composed from
two 1s Gaussians of width a0 and at several distances as indicated

Fig. 4.2 Schematic illustration of the formation of σ and π orbitals. While s-orbitals can only lead
to σ -orbitals, p ones may couple to form either a σ or a π -orbital, depending on the projections of
angular momenta m on the interatomic axis (horizontal axis here). The signs label the actual signs
of the wave functions
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the hydrogen dimer the VB wave functions are constructed from 1s wave functions
of each hydrogen atom. Each 1s-orbital is spherically symmetric around its parent
atom. When linked together in the VB wave function the two 1s-orbitals will cre-
ate an orbital which has of course lost its spherical symmetry but which remains
symmetric under rotations about the axis connecting the two atoms. Such an orbital
is called a σ -orbital as, when viewed along the internuclear axis, it resembles an
s-orbital occupied by two electrons.

In the case of binding between more complex atoms, this axial symmetry may
be lost. Let us, for example, consider atoms with p valence orbitals like Carbon
or Nitrogen. These orbitals will again be associated together as a bonding pair but
an atomic p-orbital does not have spherical symmetry. It only possesses axial sym-
metry. There are then two possible cases. If the symmetry axis of the p-orbitals
coincides with the internuclear axis, axial symmetry is preserved and one will again
speak of a σ bond. If they do not, the electronic clouds show a preferred direc-
tion within the plane perpendicular to the internuclear axis. This produces sort of
a slightly sideward-twisted bridge between the two atoms. Such a bond is called a
π bond as, again, when viewed along the internuclear axis it resembles a doubly
occupied p-orbital. To illustrate the point, take the simple example of the N2 dimer.
Each Nitrogen atom has three valence electrons with corresponding atomic orbitals
2px , 2py and 2pz . Taking conventionally the z-axis along the internuclear axis, we
see that the two pz orbitals will form a σ bond while the px and py-orbitals will
form two complementary π bonds. This finally leads in that case to a triple σ−π−π

bond.

4.1.3 Polyatomic Molecules

The extension of VB theory to the case of polyatomic molecules is straightforward
and yet, as we will see, also shows the limits of the method. The basic idea is again
to group electrons pairwise between pairs of atoms to form σ or π bonds with
corresponding product wave functions. Of course one now needs to decide which
pairs to take into account and there is no systematic rule for this. As illustration let
us regard the case of the water molecule H2 O . The atomic orbitals involved are the
two 1s orbitals of the two hydrogen atoms and the two unpaired valence electrons
of oxygen (remember that oxygen has electronic structure 1s22s22p2

x 2py2pz , and
the 2py2pz electrons are the ones open for bonds). Following the spirit of the VB
approach, one will thus pair the 1s hydrogen orbitals with the two 2py and 2pz

orbitals of oxygen, leading to two σ bonds. The net result is interesting because it
automatically leads to a nonlinear structure which is compatible with reality. The
first 1s bond ties to the 2py state and the second to 2pz which means that there is
an angle of 90 ◦ between these both bond directions. That is to be compared with
the true bond angle between the two O H bonds in H2 O which is 104 ◦, so that this
prediction is at least qualitatively correct.

The difficulties of the VB method can be made even clearer when considering a
more complex molecule such as C H4, whose experimental structure is a perfectly
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symmetric pyramid. Indeed C H4 is a typical example of a molecule in which a
carbon atom is able to provide four electrons for binding with four atoms. The elec-
tronic structure of carbon is 1s22s22px 2py which a priori suggests two 2p valence
electrons rather than four. In order to understand the mechanism of fourfold binding
of carbon (as well as the threefold one actually) one is led to admit that inside a
molecule there occurs a promotion mechanism, leading the carbon atom to have
four unpaired electrons with a corresponding electronic structure 2s2px 2py2pz . Of
course such a promotion mechanism involves an energy loss as it corresponds to
an excited state of the carbon atom, but one assumes that inside the molecule this
energy loss is more than compensated by the energy gain due to the possibility of
binding the thus created reservoir of unpaired electrons. It is interesting also to note
that the promotion mechanism can be viewed as a simple mechanism to enlarge the
Hilbert space from which binding is constructed by allowing for the occupation of
one more atomic orbital.

The promotion mechanism still does not suffice to understand the highly sym-
metric structure of the C H4 molecule. Indeed, following the standard VB scheme it
should not lead to four equivalent bonds. Three σ bonds would stem from pairing
Carbon 2p and Hydrogen 1s-orbitals and one σ bond would correspond to the pair-
ing of carbon 2s and hydrogen 1s-orbitals, hence with a different symmetry. Strictly
keeping to the idea of pairing atomic orbitals as such then leads to a major difficulty.
The way out is to extend the simple VB picture of strict pairing of atomic orbitals
to a linear combination thereof. The set of available atomic orbitals then forms a
basis from which one can construct a set of equivalent orbitals. This procedure,
which essentially amounts to a simple linear combination inside a reduced Hilbert
space, is known as the hybridization procedure in VB theory and widely used to
characterize binding mechanisms in molecules. In the specific case of C H4 one will
thus consider that the binding orbitals are to be constructed from the set of the four
carbon orbitals 2s, 2px , 2py , and 2pz . This is called a sp3 hybridization. The four
equivalent hybrid orbitals constructed from this set then take the form

h1 = ψ2s + ψ2px + ψ2py + ψ2pz h2 = ψ2s − ψ2px − ψ2py + ψ2pz

h3 = ψ2s − ψ2px + ψ2py − ψ2pz h4 = ψ2s + ψ2px − ψ2py − ψ2pz

and the associated VB wave functions are built from these hybrid orbitals as

ϕi = hi (1)ψH,i (2) + hi (2)ψH,i (1), i = 1, 4,

where ψH,i labels the 1s-orbital of a given hydrogen atom i . The hybridization thus
solves the paradox of inequivalent bonding by producing four equivalent hybrid
wave functions. Note that the hybrid orbitals hi are of course orthogonal to each
other. Hybridization thus simply corresponds to a generalization of the original VB
picture by considering as building blocks not the eigenstates of each atom individ-
ually, but the subspace spanned by these eigenstates as a whole, admitting linear
combinations as better candidates for the formation of bonds.
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The VB theory forms a basic approach in chemistry and is extremely interesting
in many situations. Its foundations are simple but, as exemplified in the few exam-
ples above, it requires some specific adaptation as soon as one wants to consider
slightly complex systems. There are of course systematic ways to construct hybrid
orbitals, but we do not want to elaborate more on these methods here. We shall
mostly remember for our purpose that binding is constructed pairwise on “well-
chosen” orbitals, so that one deals with a dedicated reduced Hilbert space in which
the choice of orbitals to be combined appears crucial. This also points out some
intrinsic limitation in the use of the method. Without abandoning the idea of working
in a reduced Hilbert space, we shall now consider an alternative approach in which
the focus is not on individual bonds but rather on the electrons of the molecule as a
whole. This is the viewpoint of molecular orbitals (MO) which in a practical form
leads to the LCAO approach discussed in the next section.

4.2 Linear Combination of Atomic Orbitals (LCAO)

In the LCAO approach, binding is not described through individual pairs of electrons
but rather by considering the binding problem globally, without a priori specify-
ing the connection between a given electron and a bond. In a generalization of the
hybridization picture, one now models all bonding-relevant states as superpositions
of appropriate atomic orbitals, i.e.,

ϕα(1) =
∑

ψi (1)ci , (4.6)

where {ψi } is a small set of relevant atomic orbitals. Referring back to the general
ansatz (4.1), this corresponds to modeling the most relevant single-particle states
ϕαi in simple terms.

This approach is obviously less restrictive than the VB theory and should thus
be applicable to a larger range of situations in multi-centered molecules (for simple
dimer molecules LCAO is not very different from the VB approach). Although more
flexible, LCAO also expresses the wave functions of the molecular electrons in a
simplified Hilbert space. In contrast to the VB approach, which specifies bonds and
thus the corresponding wave functions one by one, LCAO does not impose specific
pairings and leaves the choice of optimal combinations to the variational principle.
The question again comes up of what should be the “reservoir” of electronic wave
functions from which to construct molecular orbitals. The selection here is quite
simple: all the valence electrons of all atoms in the molecule are included in the
problem. This means that the Hilbert space is constructed from the set of electronic
valence wave functions and molecular wave functions are constructed as linear com-
binations of such “basis” wave functions. The term basis is here to be taken in a
generalized sense as the atomic eigenstates are not necessarily orthogonal to each
other which requires a (moderate) formal complication to deal with a diagonaliza-
tion in non-orthogonal spaces. In terms of the most general ansatz (4.1), LCAO



100 4 Approaches Based on Model Spaces

corresponds to picking the “active” single-particle wave functions ϕαi and modeling
them in terms of linear combinations of atomic orbitals. The restriction to a couple
of relevant basis states simplifies the problem dramatically and it is hoped that the
physically guided choice of that basis, nonetheless, allows a pertinent description.
In order to illustrate how the LCAO method works, let us first consider the simple
case of a dimer molecule.

4.2.1 LCAO in Dimer Molecules

4.2.1.1 The General Setup

We first consider the simple case of a dimer molecule formed of atoms A and B
and restrict the analysis to two valence levels, one provided by each atom. We fur-
thermore assume that the molecule is singly ionized, such as H+

2 , again for sake of
simplicity. In the LCAO approximation it is assumed that the molecular orbital can
be expressed in the form

ϕ = cAψA + cBψB, (4.7)

where ψA,B label the atomic orbitals (associated to atomic eigenvalues εA and εB)
and the coefficients cA, cB are to be determined by a variational principle mini-
mizing the total energy E . We are interested in a stationary problem and can thus
take the wave functions as well as the coefficients cA, cB to be real. From the total
Hamiltonian H

H = − �
2

2m
Δ − e2

|r − rA| − e2

|r − rB | , (4.8)

the energy E = ∫
ψ∗ Hψd3r/

∫
ψ∗ψd3r is computed. Note that the Hamiltonian

(4.8) is just a simplified version of the VB one (4.5) due to the fact that we consider
only one electron. Because the two orbitals ϕA,B are not necessarily orthogonal to
each other, the expression of the energy involves extra terms.

We first compute the denominator

∫
ϕ∗ϕd3r =

∫
|cAψA + cBψB |2d3r

= c2
A

∫
ψ2

Ad3r + c2
B

∫
ψ2

Bd3r + 2cAcB

∫
ψAψBd3r

= c2
A + c2

B + 2cAcB S, (4.9)

where the fact was used that the atomic orbitals are normalized to unity and we have
introduced what is called the overlap integral

S =
∫

ψAψBd3r, (4.10)
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which is nonzero because the atomic orbitals are not necessarily orthogonal. It is
actually a welcome feature as, if the overlap of the two orbitals were strictly zero,
that would imply that the two orbitals are not connected to each other and thus
hardly capable of establishing a common bond. The integral over the Hamiltonian
also involves an overlap integral. Explicitly it becomes

∫
ϕ∗ Hϕd3r = c2

A

∫
ψA HψAd3r + c2

B

∫
ψB HψBd3r

+2cAcB

∫
ψA HψBd3r . (4.11)

Introducing simpler conventional notation, one can finally rewrite the total energy
as

E =
∫

ϕ∗ Hϕd3r∫
ϕ∗ϕd3r

= c2
AαA + c2

BαB + 2cAcBβ

c2
A + c2

B + 2cAcB S
(4.12)

αA(,B) =
∫

ψA(,B) HψA(,B)d
3r, β =

∫
ψA HψBd3r.

Note that the integrals αA,B are nothing but the original eigenenergies of the atomic
orbitals complemented by the overlap between the wave function of a given atom
and the potential from the other one:

αX = εX +
∫

ψX
e2

|r − rY |ψY (X, Y ) = (A, B) or (B, A). (4.13)

It is then an easy task to find a stationary point of E with respect to cA and
cB . Let us write it explicitly for cA, the second equation being simply obtained by
exchanging cA and cB . One obtains successively:

∂ E

∂cA
= 2cAαA + 2cBβ

c2
A + c2

B + 2cAcB S

− (2cA + 2cB S)(c2
AαA + c2

BαB + 2cAcBβ)

(c2
A + c2

B + 2cAcB S)2

= 2
((cAαA + cBβ) − (cA + cB S)E)(c2

A + c2
B + 2cAcB S)

(c2
A + c2

B + 2cAcB S)2
, (4.14)

by reintroducing the total energy E . The overlap integral S is bound by 1 so that
the factor c2

A + c2
B + 2cAcB S is necessarily strictly positive and nonzero, as already

pointed out. The two conditions ∂ E/∂cA = ∂ E/∂cB = 0 then finally lead to the
two equations

cA(αA − E) + cB(β − E S) = 0

cA(β − E S) + cB(αB − E) = 0, (4.15)
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which can have a nontrivial solution only if the determinant of this linear system
vanishes. This leads to the secular equation

∣∣∣∣αA − E β − E S
β − E S αB − E

∣∣∣∣ = (αA − E)(αB − E) − (β − E S)2 = 0. (4.16)

The roots of the secular equation provide the two possible values of the energy E±,
from which one can deduce the values of c±

A and c±
B . They are determined up to a

constant, which can be determined from the normalization of the wave function ϕ

(4.7) to unity.

4.2.1.2 Symmetric Dimer

In the general case the determination of E and cA, cB is a bit cumbersome. There
are fortunately enough cases which allow a simplification, namely symmetric dimers
where by construction ψA and ψB are identical but located at different space points.
The energy integrals αA and αB are correspondingly equal, αA = αB = α. The
secular equation then reduces to

(α − E)2 − (β − E S)2 = 0, (4.17)

with obvious solutions

E+ = α + β

1 + S
, c+

A = 1√
2(1 + S)

, c+
A = c+

B ,

E− = α − β

1 − S
, c−

A = 1√
2(1 − S)

, c−
A = −c−

B .

As in the VB model of the symmetric dimer the lowest energy solution associated to
E+ corresponds to the symmetric bonding orbital with a wave function which may
be written as

ϕ+ = 1√
2(1 + S)

(ψA + ψB). (4.18)

The overlap integral S as well as the bonding integral β are schematically rep-
resented for this symmetric case in the bottom panel of Fig. 4.3 as a function of
distance d between the two atoms. In the upper panel of the figure are plotted
the bonding and antibonding energies E±, complemented by the additional (trivial)
term e2/d (remember the negative values of εA, εB and correspondingly of αA, αB

at sufficiently large distance d). At short distance the overlap integral tends toward
1 and at large distance both the S and β integrals vanish, while the bonding and
antibonding energies approach E± → α: the dimer becomes a collection of two
independent atoms. The minimum in (E+) at finite distance corresponds to the dimer
bond length, namely the equilibrium distance db between the two-bound atoms
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Fig. 4.3 Schematic plot
(arbitrary scales) of the
overlap (S) and bond (β)
integrals (bottom part) and of
the energies of the bonding
(E+) and antibonding (E−)
levels (complemented by
ionic repulsion e2/d) as
functions of the distance d
between two identical atoms

forming a dimer. The difference (E+(db)− E+(∞)) then represents the dissociation
energy of the dimer.

4.2.1.3 Vanishing Overlap

The second simple case is attained when the overlap integral can be neglected. For
then the secular equation takes the simpler form

(αA − E)(αB − E) − β2 = 0, (4.19)

with the obvious solutions

E+ = αA + αB

2
−
√

(αA − αB)2

4
+ β2,

E− = αA + αB

2
+
√

(αA − αB)2

4
+ β2,

c±
A = αB − E±√

(αB − E±)2 + β2
, c±

B = β

E± − αB
c±

A ,

where again the bonding orbital corresponds to E+. It is interesting to consider even
more limiting cases. For symmetric dimers, for instance, αA = αB = α, so that
simply E+ = α − β and E− = α + β, and also cA = ±cB is easily seen. The other
extreme is a highly asymmetric molecule for which |αA| � |αB | and |αA| � |β|
(remember that the α’s and β are negative). In this case E+ ∼ αA with cA ∼ 1 and
cB ∼ 0. This is the typical situation encountered in a strongly ionic dimer in which
one atom (here A) exhibits a much more strongly bound level than the other atom
(here B). The molecular level is then almost equivalent to the deeply bound level in
atom A. The electron is almost fully localized at site A, while site B remains empty,
thus becoming positively charged.
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4.2.2 A Quick Look at Neutral Dimers

The above discussion started out from a charged dimer as a very simple one-electron
system. The results, being mostly qualitative, can easily be carried over to neutral
dimers. Two electrons in spin-singlet state can occupy the same spatial state. A state
with both electrons in the bonding state describes the typical covalent binding of
H2 or similar molecules. If the two electrons are brought into a spin-triplet state
(aligned spins), this forces one electron to go into the anti-bonding state and thus
renders the molecules unstable against dissociation. A He dimer has four electrons.
Only two of them can occupy the bonding state. The other two necessarily occupy
the anti-bonding state. The He dimer (as well as those of all other rare gases) is
thus unstable in that zeroth-order consideration. In fact, the faint He binding comes
from the van der Waals force which is a correlation effect, see Sect. 9.1. These
qualitative estimates are corroborated by the results from a detailed Hartree–Fock
calculation shown in Fig. 4.4. The energy from binding for the H2 molecule and
the practically non-binding situation for He2 are clearly apparent. One also sees that
the HF approximation underestimates the binding of H2. This indicates that some
correlation effects are needed for fine tuning, see Sect. 6.1 and Chap. 9.

The case of ionic binding also becomes more realistic for systems which are neu-
tral in the whole. Coming back to the discussion at the end of the previous section,
one assumes that the binding of atom A is sufficiently strong for both electrons, the
one from A and the other one originally from B. For then the atom A becomes a neg-
ative ion in the dimer and atom B a positive one. Once the electron has been caught
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Fig. 4.4 Binding energy versus bond distance for the H2 and He2 dimer. The energies are scaled
to the asymptotic value of two separate atoms. They are calculated in mean-field approximation at
the level of Hartree–Fock, see Chap. 5. A stationary solution is produced for each fixed molecular
distance (Born–Oppenheimer picture). The experimental binding of the H2 dimer is indicated by a
fillet dot
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by atom A, the molecular binding is dominated by the Coulomb force between anion
A and cation B. That is a typical situation in molecules formed from alkalies and
halogens. In practice, however, the ionization stage does not reach unit charges.

4.2.3 From Dimer to Large Molecules

The extension of the LCAO to polyatomic molecules is straightforward. That is a
great advantage in comparison to the VB approach, which required specific analy-
sis of intervening atomic orbitals. In the LCAO one can immediately assume that
the molecular orbital will be built from the whole set of atomic orbitals chosen
to describe the system. It is important to realize here that the choice of active
orbitals is of course a crucial aspect. In Sect. 4.2.1, we deliberately considered
atoms with only one active (valence orbital). In the general case this restriction
is not justified, nor it is necessary, and one has to carefully analyze which atomic
orbitals should be included in the description of the system. That is the place where
experience and intuition come into play. After all, the LCAO wave functions are
expressed as the superpositions (4.6). To take again the example of water, the set of
atomic wave functions ϕi is composed of the two 1s hydrogen orbitals plus the four
2s, 2px , 2py, 2pz oxygen orbitals, both doubled for spin. The total number of active
states is then 12, to be occupied by 8 electrons.

Although the LCAO is in principle applicable to any polyatomic molecule, the
expense grows rapidly with system size. One has thus been led to consider simpli-
fications of the scheme in order to treat larger systems and to understand binding
mechanisms for complex molecules in simple terms. A widely used simplification
is the Hückel approximation [4]. It will be discussed in the next section.

4.3 The Hückel Approximation

4.3.1 Conjugated Molecules

In order to illustrate the Hückel approximation we shall consider two standard exam-
ples, the one of conjugated molecules and the limiting case of bulk solid. Remind
that the conjugated molecules are organic compounds which exhibit an alternation
of single and double bonds along a chain of carbon atoms. Typical simple exam-
ples are ethylene C2 H4 and butadiene C4 H6, see Fig. 4.5. Note that already for
such seemingly simple molecules a direct application of LCAO would lead to a
rather involved model with 12 active electrons for C2 H4 and 22 for C4 H6. The idea
of Hückel is to simplify the problem by considering only π -orbitals, while the σ

orbitals are treated separately and assumed to fix the geometry of the system. It is, so
to say, a way to reduce the set of valence electrons, or in other words, again a way to
reduce the Hilbert space in which to construct the LCAO. Furthermore one assumes
that all carbon atoms can be treated identically, which means that the Coulomb
integrals for the atomic states αi are all set equal. The problem then finally reduces
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Fig. 4.5 Structures of typical small conjugated molecules illustrating Hückel calculations

to determining two π -orbitals in C2 H4 and four of them in C4 H6. The symmetry of
C2 H4 finally reduces it to a problem strictly equivalent to a symmetric dimer, but
now involving only π -orbitals.

In the case of butadiene, the situation remains more complicated even with the
above simplifications. We deal here with four active electrons and even if the αi

are all set equal, there is still a collection of different values for β (the Coulomb
integral between the atoms) and the overlap integrals (actually one per atom pair!).
To be more explicit, we denote by A, B, C, D the set of four carbon atoms, each
providing one (and the same, denoted ϕ) atomic orbital. The LCAO wave function
then reads

ϕ = cAψ(A) + cBψ(B) + cCψ(C) + cDψ(D) (4.20)

and the secular equation becomes

∣∣∣∣∣∣∣∣

α − E βAB − E SAB βAC − E SAC βAD − E SAD

βB A − E SB A α − E βBC − E SBC βB D − E SB D

βC A − E SC A βC B − E SC B α − E βC D − E SC D

βD A − E SD A βDB − E SDB βDC − E SDC α − E

∣∣∣∣∣∣∣∣
= 0.

Of course such an equation can be solved numerically, but if an analytic solution
is desired, additional Hückel approximations are needed to reduce the complexity
even more. These approximations are

i) to set all overlap integrals Si j to zero;
ii) to set all βi j integrals to zero except for nearest neighbor atoms; and

iii) to take all remaining βi j integrals equal to β.

The secular equation then takes the much more forgiving form:

∣∣∣∣∣∣∣∣

α − E β 0 0
β α − E β 0
0 β α − E β

0 0 β α − E

∣∣∣∣∣∣∣∣
= 0,
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which can easily be expanded to yield a quadratic equation (α−E)4−3(α−E)2β2+
β4 = 0 with the four roots

E = α ± [(3 ±
√

5)/2]1/2β =
{

α ± 1.62β

α ± 0.62β
.

The Hückel method is obviously quite powerful and can be applied to many systems.
A particularly appealing example is the Benzene molecule with its cyclic structure
C6 H6. In the Hückel approximation six electrons are treated. The cyclic structure
of the molecule leads to non-vanishing β values in the upper-right and lower-left
corners of the determinant and the eigenvalue problem takes the form

⎛
⎜⎜⎜⎜⎜⎜⎝

α − E β 0 0 0 β

β α − E β 0 0 0
0 β α − E β 0 0
0 0 β α − E β 0
0 0 0 β α − E β

β 0 0 0 β α − E

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

c3

c4

c5

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (4.21)

At first glance, a 6×6 eigenvalue problem is considered intractable analytically.
However, the molecule has a symmetry which helps toward a solution: a rotation by
one position along the ring (i.e., about 60◦). The wave function should not change
by such a rotation cn −→ cn+1 mod 6, except for a phase factor. This condition can
only be fulfilled by the ansatz

c(ν)
n = 1√

6
exp

(
iνn

2π

6

)
, ν ∈ {0,±1,±2, 3}. (4.22)

The ansatz is strictly periodic under n −→ n + 6 (if the ring is recovered exactly)
and the global phase for the basic symmetry transformation cn −→ cn+1 mod 6 is
exp (iνπ/3). The six possible different phase factors are labeled by ν which is the
symmetry quantum number for the solution. The normalization factor is obvious.
The eigenenergies are easily obtained by inserting this ansatz into the above linear
equation. They become

Eν = α + 2β cos
(
ν
π

3

)
=

⎧⎪⎪⎨
⎪⎪⎩

α − 2β for ν = 3
α − β for ν = ±2
α + β for ν = ±1
α + 2β for ν = 0

, (4.23)

where it is to be noted that β < 0, so that ν = 0 corresponds to the ground state and
ν = 3 to the highest excited state. The states |ν| ≤ 1 have energies Eν < α and are
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Fig. 4.6 Left: The spectrum of a ring of six unit charges distributed symmetrically along a ring of
radius 4 a0. The energies have been shifted to place the second state at zero. Right: A comparable
tight-binding spectrum is also shown where the gap 2β has been fitted

thus bonding states. The complementing set with |ν| ≥ 2 are anti-bonding states.
Considering spin, each state can be filled with two electrons. Thus we can conclude
that the sixfold cyclic structure is stable for up to six electrons in a π bond while it
becomes destabilized whenever a donor drives the electron number above that value.
A favorable situation is filling with six electrons for which the HOMO–LUMO gap
becomes 2β.

In order to test the relations for a sixfold symmetry, consider a simplest test
system, an external field constituted by the Coulomb field of six point charges
along a ring of radius 4 a0. The first six eigenenergies are shown in the left part
of Fig. 4.6. One immediately recognizes a pattern similar to the spectrum (4.23).
For full comparison, we have adjusted the model parameter 2β to the gap of the
computed spectrum and α to reproduce the zero level. The result is shown on the
right side. There are, of course, deviations in quantitative detail, but the overall
pattern is very much the same.

4.3.2 Bulk Solid

The Hückel approximation can also be simply applied to the case of bulk solid.
Although bulk materials are not a central issue in this book, they provide an inter-
esting illustration of the Hückel approximation, which is usually called the tight-
binding (TB) approximation in this context [3]. As seen above (Sect. 4.2.1), binding
between two atoms leads to the creation of one bonding and one antibonding orbital.
The case of butadiene with four centers has two bonding and two anti-bonding
orbitals. The cyclic structure with six centers comes up to three and three. If one
now imagines progressively enlarging the chain/ring of atoms the process will suc-
cessively lead to a series of nearby levels which ultimately lead to the creation
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ε

Fig. 4.7 Sketch of the evolution of the single-electron spectrum between atom and bulk, with clus-
ters as an intermediate case. The figure points out the appearance of bands in extended materials.
In realistic cases the band “width” does depend on system size (as long as it is finite) at odds
with the simplest treatment in the text. We nevertheless keep in the sketch the more realistic size
dependence of the band width

of continuous bands. The mechanism is illustrated in Fig. 4.7 and can be readily
analyzed in the framework of the Hückel approximation.

The TB, or Hückel, approximation in crystals takes care of the concept of neigh-
borhood in a given crystal symmetry [3] which has a strong influence on band struc-
ture. For a schematic demonstration, we consider here the simplest linear symmetry
of a 1D “crystal” and approach the “bulk” limit by considering an N fold ring letting
N −→ ∞. The secular equation for the N -ring is a straightforward extension of
(4.21). The ansatz for the solution is similar to the form (4.22) with 6 replaced by
N and the spectrum becomes simply (for even N )

Eν = α + 2β cos

(
ν

2π

N

)
, ν ∈ {−N/2 + 1, . . . , 0, . . . N/2}.

The above formula is quite enlightening. As the ring becomes very large, namely
N → ∞, nearby levels come closer and closer to each other leading to the formation
of a continuous band. The difference between the lowest and highest energy remains
constant with a band width of

ΔE = EN − E0 = 2β

(
cos(

2Nπ

2N
) − cos(0)

)
= 4β. (4.24)

The level spacing within the band shrinks as N−1. In the spirit of molecular binding,
the lowest energy level of the band provides the most bound level, while the highest
level corresponds to the most anti-bonding level. The bands can be related to the
atomic orbitals from which they are built. If the original atomic orbitals were of
type s, this band is called an s-band. Similarly if p-orbitals are considered, it will
be a p-band. If the atomic p-orbital was less bound than the s one in the atom,
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the p-band will lie higher in energy than the s-band, but because both bands now
have a finite energy width one may wonder whether the two bands will overlap or
not. In bulk metals such two bands typically overlap, allowing electronic transport
at no cost. If the two bands are separated one will speak of a band gap to label the
energy difference between the lowest energy level of the high-energy band and the
highest energy level of the low-energy band. The band gap is the generalization to
bulk of the HOMO-LUMO concept introduced in finite systems in Sect. 1.3.2. It
basically contains the same information. For example, in a metal atom like sodium
the valence shell is partially occupied/unoccupied (see Fig. 1.19) and the corre-
sponding bulk material is a conducting metal with conduction band intersecting
valence band. In turn in a rare gas atom like neon (see again Fig. 1.19) the large
HOMO–LUMO atomic gap leads to an insulating bulk material with a sizable
band gap.

4.4 From Model Spaces to Realistic Calculations

The methods introduced in previous sections (VB, LCAO, Hückel) have turned
extremely interesting for computing basic properties of simple molecules. The sim-
plified Hückel approach even allows, with dedicated approximations, to treat rel-
atively large systems at a reasonable expense and essentially in an analytic way.
This technical simplicity allows to keep key aspects rather transparent and is thus
extremely interesting for understanding basic effects in molecular binding. It should
nevertheless be kept in mind that these approaches suffer from a certain lack of
flexibility. Indeed, the many-electron problem in a molecule is a true many-body
problem involving subtle correlation effects which cannot be accounted for in sim-
plified models. The basic defect of the methods we have discussed above (which a
contrario makes their interest due to the simplicity it implies) lies in the fact that
many-electron wave functions are built from a rather limited set of atomic wave
functions. This causes a possibly strong reduction of the Hilbert space of acces-
sible many-electron wave functions, and it was exactly this deficiency of the VB
method which led us to consider the larger Hilbert space provided by LCAO. Still,
even LCAO in general leads to a too restricted space. One can simply illustrate
the point by considering the Hamiltonian (4.4) for the simple two electrons dimer
molecules. It is clear that the electron–electron interaction term may lead to sizable
effects. Remember that this interaction was not accounted for by the atomic wave
functions in the case of one-electron atoms. One is thus bound to consider more
complicated approaches than the mere LCAO method, as soon as dealing with com-
plex many-electron systems. In order to illustrate such approaches we first consider
an extension of the LCAO approach by using tunable basis wave functions, then
switch to more general cases and briefly discuss standard computational methods in
quantum chemistry.
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4.4.1 Example: H+
2 Dimer in LCAO with Gaussians

A large manifold of quantum chemistry calculations uses LCAO with Gaussian
basis functions. We exemplify this approach using the simple H+

2 dimer as example
for which all calculations can be carried through analytically. The Gaussian ansatz
furthermore allows a simple enlargement of the Hilbert space by letting the Gaussian
width be a free (optimizable) parameter, as shall be seen below. The H+

2 dimer is a
one-electron system with the Hamiltonian

Ĥ = p̂2

2m
+ V + e2

|d| , V = − e2

|r − d/2| − e2

|r + d/2| . (4.25)

The two protons are placed at ±d/2 and d is the distance vector between them.
The last term accounts for the ionic Coulomb repulsion and has no effect on the
electrons.

The ansatz for the electronic wave functions is a superposition of two Gaussians
G centered at the two proton sites

ϕν = cν [G(r−d/2; σ ) + νG(r+d/2; σ )] , ν ∈ {+,−}, (4.26a)

G(x; σ ) = π−3/4σ−3/2 exp

(
− x2

2σ 2

)
, (4.26b)

cν =
[∫

d3r
(
G(r−d/2; σ ) + νG(r+d/2; σ )

)2]−1/2

. (4.26c)

The pre-factor cν serves for proper normalization. The symmetric case ν = + will
be the ground-state wave function and ν = − the anti-bonding excited state.

The free-model parameter is here the Gaussian width σ . We plan to optimize it
by minimizing the total energy, which needs to be computed first. One key piece is
the overlap of two Gaussians:

〈d1|d2〉 =
∫

d3r G(r−d1; σ )G(r−d2; σ )

=
∫

d3x

π3/2σ 3
exp

(
− (r−d1)2 + (r−d2)2

2σ 2

)
= exp

(
− (d1−d2)2

4σ 2

)
.

This immediately allows to compute the normalization coefficients

cν = [〈d/2|d/2〉 + ν〈d/2| − d/2〉 + ν〈−d/2|d/2〉 + 〈−d/2| − d/2〉]−1/2

=
{

2 + 2ν exp

(
− d2

4σ 2

)}−1/2

.
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The kinetic energy can be computed by parametric integration using ∇rG(r−di ; σ ) =
−∇diG(r−di ; σ ) yielding

(d1|
←
∇ · →

∇ |d2) = ∇d1 ·∇d2〈d1|d2〉 =
[

3

2σ 2
− (d1 − d2)2

4σ 4

]
exp

(
− (d1 − d2)2

4σ 2

)
.

The expectation value of the kinetic energy thus becomes

Ekin,ν(d) = �
2

2m
c2
ν {(d/2|∇ ·∇|d/2) + (−d/2|∇ ·∇| − d/2)

+ν [(−d/2|∇ ·∇|d/2) + (d/2|∇ ·∇| − d/2)]}

= �
2

2m

3

2σ 2

1 + ν
[
1 − d2

6σ 2

]
exp
(
− d2

4σ 2

)

1 + ν exp
(
− d2

4σ 2

) .

A bit more involved is the potential energy. First define the density associated with G

ρG(r; σ ) = G2(r; σ )

and with it the basic Coulomb integral

IC(a) =
∫

d3r ′ e2

|r′ − a|ρG(r′; σ ) ←→ ΔaIC(a) = −4πe2ρG(a; σ ),

which is the electrostatic potential of a normalized Gaussian density at position a
and which depends only on a = |a|. Exploiting spherical symmetry, we have only
to solve a radial integration

IC(a1 − a2) =
∫

d3rρG(r − a1; σ )
e2

|r − a2| =
∫

d3r ′ e2

|r′ − a2 + a1|ρG(r′; σ ),

1

a
∂2

a aIC(a) = −4πe2ρG(a; σ ),

∂aaIC(a) = − 4πe2

π3/2σ 3

∫ ∞

a
dr r exp

(
− r2

σ 2

)
= − 2e2

π1/2σ
exp

(
− a2

σ 2

)
,

IC(a) = −1

a

2e2

π1/2σ

∫ a

0
dr y exp

(
− r2

σ 2

)
= −e2

a
erf
( a

σ

)
,

where the error function is defined as erf(x) = 2π−1/2
∫ r

0 dx exp(−x2). This allows
to evaluate the various Coulomb contributions



4.4 From Model Spaces to Realistic Calculations 113

〈d/2|V |d/2〉 = −
∫

d3rρG(r−d/2; σ )
e2

|r−d/2|
−
∫

d3rρG(r−d/2; σ )
e2

|r+d/2|
= −IC(0) − IC(d) = − 2e2

π1/2σ
− e2

d
erf

(
d

σ

)

= 〈−d/2|V | − d/2〉,
G(r−d/2; σ )G(r+d/2; σ ) = 1

π3/2σ 3
exp

(
− (r−d/2)2

2σ 2
− (r+d/2)2

2σ 2

)

= ρG(r; σ ) exp

(
− d2

4σ 2

)
,

〈d/2|V | − d/2〉 = − exp

(
− d2

4σ 2

)∫
d3rρG(r; σ )

[
e2

|r−d/2| +
e2

|r+d/2|
]

= −2 exp

(
− d2

4σ 2

)
IC(d/2)

= −2e2 exp

(
− d2

4σ 2

)
2

d
erf

(
d

2σ

)

and to compute the electronic potential energy

〈ϕν |V |ϕν〉 = 2c2
ν

{〈d/2|V |d/2〉 + ν〈−d/2|V |d/2〉}

= −e2

2

π1/2σ
+ 1

d
erf

(
d

σ

)
+ 2νe2 exp

(
− d2

4σ 2

)
2

d
erf

(
d

2σ

)

1 + ν exp

(
− d2

4σ 2

) .

Finally, we have the total energy

Eν(d, σ ) = �
2

2m

3

2σ 2

1 + ν
[
1 − d2

6σ 2

]
exp
(
− d2

4σ 2

)

1 + ν exp
(
− d2

4σ 2

)

−e2

2

π1/2σ
+ 1

d
erf

(
d

σ

)
+ 2νe2 exp

(
− d2

4σ 2

)
2

d
erf

(
d

2σ

)

1 + ν exp

(
− d2

4σ 2

) + e2

d
.
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There is one free parameter, the Gaussian width σ . The optimal choice is the one
for which the energy becomes minimal

Eν(d) = minσ {Eν(d, σ )}.

This final step of minimization yields a transcendental equation which can only be
solved by a numerical root-finding procedure. A small Fortran program lcgo.f
which performs the minimization is given on the CD appended to this book. The
resulting energy curves are shown and compared with an exact calculation in
Fig. 4.8. The upper panel shows the total energies. The Gaussian approximation
stays well above the exact energy with an error of about 7%. This is a satisfying
result in view of the fact that the Gaussians are extremely simple wave functions
which allow to easily evaluate all necessary integrals. Note that the error varies only
little with bond length d. As a consequence, the dimer binding energy (shifted to
asymptotic energy zero) performs much better. This can be seen from comparing
the approximate energy E+ with the exact one. The lower panel also shows the
energy E− of the anti-bonding state. The pattern of E+ and E− are precisely those
previewed in the simple tight-binding picture in Fig. 4.3.

Fig. 4.8 The binding energy for H+
2 as function of proton distance d. Compared are the results of

the present LCAO model with an exact quantum-mechanical calculation. Lower: Dimer binding,
i.e. energy relative to the asymptotic state of one H atom and one H+ ion. Upper: Total binding
energy on an absolute scale
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4.4.2 Toward Fully Realistic Quantum Chemistry Calculations

The basic starting point of elaborate quantum chemistry calculations is the Hartree–
Fock (mean-field, HF) approach which we shall detail in Chap. 5. This approach
consists in treating the effect of electron–electron interactions by performing an
educated average over them, while properly accounting for fermionic effects. This
amounts to forcing the many-electron wave function to be a Slater determinant built
out of single-electron orbitals. This theory will be discussed in many places in this
book. Still, one should mention here two interesting aspects in relation to this mean-
field approach. The first one concerns the nature of the HF equation and the way to
solve it. The second one concerns the methods to go beyond such an approach.

In the HF approach, the average treatment of electron–electron interactions leads
to a potential well (mean field) depending on the electronic wave functions them-
selves (self-consistency of the problem). The problem thus becomes nonlinear and
one is bound to solve it in an iterative manner. Iteration methods can be accelerated
by using educated guesses of the solutions. And LCAO approaches can again be
very helpful to provide a starting point for iterative calculations via an acceptable
“zeroth-order approximation” to the true solution. In any case the LCAO wave func-
tions, and more generally speaking symmetry considerations, are extremely valuable
in molecular species to construct initial guesses of electronic wave functions with
the correct symmetries and node sequence. And this by itself constitutes a valuable
guide toward the solution.

The HF approach is, nevertheless, known to provide only an approximate solu-
tion to the true many-electron problem in a molecule and quantum chemistry has for
a long time developed methods to go beyond HF. These methods are usually called
ab initio in quantum chemistry and consist, again, in allowing an enlarged Hilbert
space. As we will see in Chap. 5, the HF approximation implies severe restrictions
on the accessible Hilbert space for the many-electron problem (even if these restric-
tions are much less severe than in the VB, LCAO, or Hückel approaches). Ab initio
methods propose a systematic way to construct extended Hilbert spaces on the basis
of the HF Hilbert space. By applying particle–hole excitations on the HF ground-
state wave function one can construct more and more complex wave functions and
thus extend the Hilbert space in a progressive way. These methods are know as
configuration interaction (CI) methods. They are based on a linear superposition
(4.1) of Slater states. For a given set of Slater states the expansion coefficients cα

are determined by the Ritz variational principle [24], which again yields a secular
equation like in the LCAO calculations, but this time built on self-consistent Slater
wave functions. The quality of description depends on the choice of the expansion
basis. Although the CI approaches are in principle extremely powerful, it turns out
that high accuracy requires huge basis sets and the computations soon reach limits
of todays computers even for moderately large systems of a few tens of electrons.
One is then again bound to develop dedicated approximations and here the experi-
ence gathered from the simple, intuitive pictures like VB, LCAO, or Hückel is of
invaluable help.
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4.5 Concluding Remarks

This chapter has illustrated the capabilities of approaches based on model spaces.
Such approaches amount to describing the many-fermion problems by considering
a limited Hilbert space for single-particle wave functions. They have been largely
developed in chemistry and molecular physics. The restriction of the Hilbert space
allows a rather simple picture of the involved many-electron problem, at the price of
reduced realism. There is a thus a balance to find between simplicity and degree of
realism. All in all we have seen a few general trends emerging from the few exam-
ples treated. A first aspect is the fact that these methods offer a rather transparent
description of the system under consideration. This is especially true in the case
of covalent binding in which electron wave functions remain, up to simple linear
combinations, rather close to atomic wave functions. This is exactly the reason why
LCAO methods work so well, but the simplified picture can in fact be applied to a
rather large set of systems and several examples thereof were presented, especially
in the simplified Hückel approximation, which allows treating even extended sys-
tems and which has indeed been used in many systems from molecules to bulk solid.
Finally one should remember that approaches based on models also provide pow-
erful starting points for more elaborate methods. Most of these elaborate methods
rely on self-consistent approaches, in which the effective Schrödinger equations to
be solved effectively depend on their own solutions, calling for iterative solution
methods. In such cases a good starting point is always a key ingredient and methods
based on model spaces offer an efficient solution for obtaining it.



Chapter 5
Hartree–Fock

There are numerous situations of highly correlated many-body systems or field the-
ories where a full treatment is too cumbersome, if not impossible. At the same time
such systems display very simple properties if one looks at structure or low-energy
excitations which can be described by one-body potentials and weak residual inter-
actions; think, e.g., of atomic nuclei [17, 92, 42]. The nuclear interaction combines
strong attraction and a huge short-range repulsion. These large and counteracting
influences make an ab initio treatment extremely involved, up to these days not fully
under control. Nonetheless, a simple nuclear shell model allows to sort all structural
properties and basic low-energy excitations in the range up to giant resonances
(around 20–30 MeV) [48]. Simple one-body models of that sort are ubiquitous in
all areas of physics, see Chap. 3. They embody, however, a disquieting amount of
arbitrariness as these shell-model potentials usually emerge from an educated guess.

The Hartree–Fock approximation developed in this chapter provides a self-
consistent method to construct a mean field on the basis of the elementary inter-
action between constituents. The method is well known in many areas of physics
with strongholds in nuclear physics and electronic systems. It often serves as a
starting point for the construction of more elaborate descriptions. The latter can
be attained either by using energy-density functional (Chap. 6) or by the inclusion
of correlations (Chap. 9) on top of the mean field itself.

5.1 The Hartree–Fock Setup

5.1.1 Foundation

In the following, we assume a Hamiltonian containing only a one-body part T̂ and
a two-body interaction V̂ . In coordinate space this could look like

Ĥ =
N∑

k=1

[−�
2

2m
∇2

k + Uext(xk)

]

︸ ︷︷ ︸
T̂

+ 1

2

N∑
k,l=1

v(xk, xl , . . .)

︸ ︷︷ ︸
V̂

, (5.1)

J.A. Maruhn et al., Simple Models of Many-Fermion Systems,
DOI 10.1007/978-3-642-03839-6 5, C© Springer-Verlag Berlin Heidelberg 2010
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where x as usual stands for both spatial coordinates and spin and where the dots
indicate that the potential might depend on additional properties of the particles like
their momenta and possibly isospins. The one-body part of the Hamiltonian consists
of the kinetic energy and a possible external one-body potential. Nuclei and drops
of liquid 3He have no external potential. Electronic systems (atoms, molecules,
clusters, quantum dots, solids) are usually bound by the external Coulomb field of
the ions. Atoms in a trap are, by definition, kept together in the (harmonic) potential
of the trap (see Sect. 1.1).

In terms of Fermion operators (see Sect. A.4), the Hamiltonian can be
expressed as

Ĥ =
∑
αβ

tαβ â†
α âβ + 1

2

∑
αβγ δ

vαβγ δ â†
α â†

β âδ âγ , (5.2)

where the indices α, β, γ , and δ label the single-particle states in some complete
orthonormal basis and the vαβγ δ are the matrix elements of the two-body interaction.
The eigenstates of this Hamiltonian are determined by the stationary Schrödinger
equation

Ĥ |Ψ 〉exact = Eexact|Ψ 〉exact. (5.3)

Each such eigenstate can be expanded as a sum over N -particle Slater determi-
nants corresponding to all possible occupations of the single-particle states. If
α1, α2, . . . , αN indicate the states occupied in each term, the many-body wave func-
tion can be written as

|Ψ 〉 =
∑

α1<α2<···<αN

cα1,α2,...,αN â†
α1

â†
α2

· · · â†
αN

|0〉. (5.4)

Note that because of the Pauli principle the occupied states αi must all be different
and that their ordering is unimportant; this was indicated by choosing a special order
in the sum.

5.1.2 The Hartree–Fock Approximation

We are mainly interested in the ground-state solution. Even with that restriction, the
exact problem is exceedingly demanding. If we limit the basis to a finite number of
Na ≥ N single-particle states, the number of Slater determinants in the sum (5.4) is
given by the number of combinations of N distinct indices drawn from a total of Na

available ones, i.e.,
(

Na
N

)
. Obviously the problem cannot be handled in practice for

larger values of Na which are, on the other hand, necessary to achieve a reasonably
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good solution. There are two ways out of this dilemma: either restricting the number
of particles and states or, alternatively, replacing the general wave function (5.4) by
an approximation. The first option often is too limiting, and the most useful case
of the second approach is the Hartree–Fock approximation, which makes the quite
radical assumption that the sum can be restricted to one term, i.e., a single Slater
determinant

|Ψ 〉 −→ |Φ〉 = â†
1â†

2 · · · â†
N |0〉, (5.5)

which is composed of the energetically lowest single-particle states α = 1, . . . , N .
Since a single Slater determinant corresponds to non-interacting particles, this
approximation is also called the independent-particle model. If the wave functions
in the ansatz (5.5) were just chosen from an arbitrary basis, however, this approxi-
mation would be uncontrollably bad. The quality of the approximation comes about
by adjusting the wave functions themselves to produce an optimal result.

In principle thus the stationary Schrödinger equation (5.3) is to be solved restrict-
ing the many-body wave function to a Slater determinant |Φ〉, see (5.5). A Slater
determinant is of course not a solution to (5.3), so that the best we can hope is to
make it an optimal approximation to the exact wave function. A method familiar
from elementary quantum mechanics is the Ritz variational principle [24] (which
was also used, e.g., in LCAO, see Sect. 4.2). It states that a best approximation to
the ground state of Ĥ can be found by varying |Φ〉 in such a way that the energy
〈Φ|Ĥ |Φ〉 is minimized. In essence the variational principle is based on the idea that
if we expand the approximate solution into all the exact eigenstates, any contribution
from excited states raises the expectation value of Ĥ , so that minimizing the energy
expectation value will also minimize those contributions. The energy minimization
is to be augmented with the additional constraint that the state remain normalized to
〈Φ|Φ〉 = 1 during variation. This is taken care of by implementing the constraint
together with a Lagrangian multiplier, yielding the variational equation

δ
(〈Φ|Ĥ |Φ〉 − E〈Φ|Φ〉) = 0 . (5.6)

It will become clear in a moment that the Lagrange multiplier is indeed just the
energy expectation value.

The variation in (5.6) can be carried out with respect to either |Φ〉 or 〈Φ|. Varying
〈Φ| and |Φ〉 separately yields the equivalent equations

〈δΦ|Ĥ |Φ〉 − E〈δΦ|Φ〉 = 0 , 〈Φ|Ĥ |δΦ〉 − E〈Φ|δΦ〉 = 0 . (5.7)

If |δΦ〉 were an arbitrary Hilbert space vector it would follow that Ĥ |Φ〉 − E |Φ〉 =
0, leading back to the Schrödinger equation. In the case of interest here, of course,
|δΦ〉 is restricted and |Φ〉 is not an eigenfunction of Ĥ .
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5.1.3 The Space of Variations of a Slater State

The approximate wave function (5.5) is a pure Slater determinant whose building
blocks are the occupied single-particle states ϕ j (x). The variation |δΦ〉 comes from
the variation of the single-particle states which can be varied via an admixture of
other single-particle wave functions from the complete set {ϕα(x)}, i.e.,

δϕ j (x) =
∑
α �= j

ϕα(x)δcα j .

This is equivalent to varying the creation operators

δâ†
j =

∑
α �= j

â†
αδcα j .

Inserting the varied operator into the wave function (5.5) yields

|Φ + δΦ j 〉 = |Φ〉 +
∑
α �= j

δcα j â†
1â†

2 · · · â†
j−1â†

α â†
j+1 · · · â†

N |0〉 .

The variation vanishes if the index α of the newly mixed-in wave function is among
the indices of occupied states, i.e., if α ∈ {1, . . . , N }, because of the Pauli principle
[24]. This leads to two important consequences:

• Any replacement of the occupied wave functions by linear combinations among
themselves leaves the total many-particle wave function invariant (this is also
familiar from the fact that replacing a column in a determinant by a linear super-
position with other columns does not change the value of the determinant).

• The only non-vanishing variations of a single Slater determinant are admixtures
of unoccupied wave functions to any of the occupied ones.

In consequence, the variational principle can only define an optimal separation
between occupied and unoccupied states. There is space, or need, for further condi-
tions if one wants to specify the single-particle states uniquely.

The above formulation of the variation is still a bit cumbersome. It can be
expressed more concisely by using an annihilation operator to depopulate the wave
function j before populating the new state n which, as pointed out, is restricted to
unoccupied states only. For the variation of |Φ〉, if one occupied state j is varied,
this yields

|δΦ j 〉 =
∑
n>N

cnj â†
nâ j |Φ〉 ,

where any sign arising from a reordering of the operators has been absorbed into
the definition of the cnj . The most general variation possibly affects every occupied
state and is
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|δΦ〉 =
∑

n>N , j≤N

cnj â†
nâ j |Φ〉 . (5.8)

Any choice of the (small) expansion coefficients ck j provides one valid variation.
Thus it suffices for the variational principle to consider all variations of the form

|δΦ〉 = ηâ†
nâ j |Φ〉 , n > N , j ≤ N , (5.9a)

or equivalently

〈δΦ| = η∗〈Φ|â†
j ân . (5.9b)

The parameter η is an arbitrary parameter, sufficiently small to consider |δΦ〉 or
〈δΦ| a small variation. The state â†

nâ j |Φ〉 is called a one-particle–one-hole excita-
tion (1ph) because one occupied state j is emptied and replaced by one hitherto
unoccupied state n (see Sect. 1.3.2 and Appendix A.4).

Notation: Throughout this chapter it will be necessary to distinguish three types
of indices: those referring to occupied or unoccupied states only and others that are
unrestricted. To facilitate the notation we use the following convention:

• The indices h, h′ and their subscripted forms h1, h2, etc., refer to occupied states
only, i.e., they take values from 1 through N exclusively, where N is the number
of occupied states: h, h′ = 1, . . . , N .

• The indices p, p′ and their subscripted forms refer to unoccupied single-particle
states only: p, p′ = N + 1, . . . ,∞.

• Greek letters like α are reserved for unrestricted indices: α = 1, . . . ,∞.

5.2 The Hartree–Fock Equations

5.2.1 In Terms of Fermion Operators

It is now straightforward to evaluate the variational equations (5.7) formally. The
1ph states are orthogonal to the underlying Slater state, i.e., 〈Φ|â†

hâp|Φ〉 = 0 and
correspondingly 〈Φ|â†

pâh |Φ〉 = 〈Φ|â†
hâp|Φ〉∗ = 0 , leaving

〈Φ|â†
hâp Ĥ |Φ〉 = 0 , 〈Φ|Ĥ â†

pâh |Φ〉 = 0 . (5.10)

The Hartree–Fock optimization consists in decoupling the ground state from the
1ph space. So far so simple. Further handling and practical applications require to
reshape these equations in different forms. In a first step, we will derive an effective
single-particle equation and, in a second step, translate it into the coordinate-space
picture.
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5.2.2 In Configuration Space (Matrix Elements)

The evaluation of the matrix element of Ĥ is straightforward. Nevertheless we
present the steps in detail as they constitute a useful exercise. Using the fermion
algebra (A.12) the order of two fermion operators may be permuted as

â†
α â†

β = −â†
β â†

α , âα âβ = −âβ âα , â†
α âβ = δαβ − âβ â†

α .

The creation and annihilation operator properties with respect to the Slater state are
given by

âp|Φ〉 = 0 , â†
h |Φ〉 = 0 , 〈Φ|âh = 0 , 〈Φ|â†

p = 0 , p > N , h ≤ N ,

and both together produce a basic expectation value

〈Φ|â†
α âβ |Φ〉 = 〈Φ|â†

α âβ |Φ〉ϑ(β ≤ N )ϑ(α ≤ N )

= δαβϑ(β ≤ N ) − 〈Φ|âβ â†
α|Φ〉︸ ︷︷ ︸
=0

ϑ(β ≤ N )ϑ(α ≤ N ) ,

in short

〈Φ|â†
α âβ |Φ〉 = δαβϑ(β ≤ N ) , ϑ(β ≤ N ) =

{
1 for β ≤ N
0 for β > N

. (5.11)

Note that the ϑ-function notation was adapted a bit here to make things more legible.
The steps for the one-body operator of the kinetic energy then are in detail

〈Φ|â†
hâp T̂ |Φ〉 =

∑
αβ

tαβ〈Φ|â†
hâpâ†

α âβ |Φ〉

=
∑
αβ

tαβδpα〈Φ|â†
hâβ |Φ〉 −

∑
αβ

tαβ〈Φ|â†
hâ†

α âpâβ |Φ〉

=
∑

β

tpβδhβ −
∑

β

tpβ〈Φ|âβ | â†
hΦ︸︷︷︸
=0

〉 +
∑
αβ

tαβ〈Φ|â†
hâ†

α âβ | âpΦ︸︷︷︸
=0

〉

= tph .

After this detailed exercise, we can step more quickly through the evaluation of the
two-body operator for the potential:
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2〈Φ|â†
hâp V̂ |Φ〉 =

∑
αβγ δ

vαβγ δ〈Φ|â†
hâpâ†

α â†
β âδ âγ |Φ〉

=
∑
βγ δ

vpβγ δ〈Φ|â†
hâ†

β âδ âγ |Φ〉 −
∑
αβγ δ

vαβγ δ〈Φ|â†
hâ†

α âpâ†
β âδ âγ |Φ〉

= −
∑
βγ δ

vpβγ δ〈Φ|â†
β â†

hâδ âγ |Φ〉 −
∑
αγ δ

vαpγ δ〈Φ|â†
hâ†

α âδ âγ |Φ〉

= −
∑
βγ

vpβγ h〈Φ|â†
β âγ |Φ〉 +

∑
βγ δ

vpβγ δ〈Φ|â†
β âδ â†

hâγ |Φ〉

+
∑
αγ δ

vαpγ δ〈Φ|â†
α â†

hâδ âγ |Φ〉

= −
∑
βγ

vpβγ h 〈Φ|â†
β âγ |Φ〉︸ ︷︷ ︸

δβγ θ(β≤N )

+
∑
βδ

vpβhδ 〈Φ|â†
β âδ|Φ〉︸ ︷︷ ︸

δβδθ(β≤N )

+
∑
αγ

vαpγ h 〈Φ|â†
α âγ |Φ〉︸ ︷︷ ︸

δαγ θ(α≤N )

−
∑
αδ

vαphδ 〈Φ|â†
α âδ|Φ〉︸ ︷︷ ︸

δαδθ(α≤N )

=
∑
h′≤N

[−vph′h′h + vph′hh′ + vh′ ph′h − vh′ phh′
]

= 2
∑
h′≤N

[
vph′hh′ − vph′h′h

]

where the symmetry vαβγ δ = vβαδγ of the two-body matrix element was exploited.
Summarizing the results, we have

〈Φ|â†
hâp Ĥ |Φ〉 = tph +

∑
h′

v̄ph′hh′ , v̄ph′ jh′ = vph′hh′ − vph′h′h ,

〈Φ|Ĥ â†
pâh |Φ〉 = thp +

∑
h′

v̄hh′ ph′ , v̄hh′ ph′ = vhh′ ph′ − vhh′h′ p ,

and so get the Hartree–Fock equations in terms of matrix elements as

h ph = 0 , hhp = 0 , (5.12a)

hαβ = tαβ +
N∑

i=1

v̄αiβi = tαβ +
N∑

i=1

[
vαiβi − vαi iβ

]
. (5.12b)

To understand the physics contained in this equation, remember the range the indi-
vidual indices vary over: h and h′ denote occupied states, p an unoccupied one,
while α and β are arbitrary. The equation demands that the single-particle states
should be chosen such that the matrix elements hαβ vanish between occupied and
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unoccupied states. If we allow (α, β) to refer to arbitrary combinations of states, this
defines a single-particle operator

ĥ =
∑
αβ

hαβ â†
α âβ , (5.13)

which is usually called the mean-field or Hartree–Fock Hamiltonian. As expected,
the condition (5.12a) characterizes the set of occupied states and not those states
individually.

The definition (5.12b) has already introduced the mean-field Hamiltonian for
all pairs of single-particle states, although the Hartree–Fock conditions fix it only in
1ph space. The parts of the matrix purely in occupied space or purely in unoccupied
space are yet undetermined. We can exploit the freedom and ask additionally that it
become diagonal. This yields the Hartree–Fock equations in the form of a one-body
Schrödinger equation in configuration space, i.e.,

hαβ = εαδαβ

εα = tαα +
N∑

h=1

v̄αhαh . (5.14)

It is, however, more involved than a simple one-body matrix equation because the
mean-field Hamiltonian ĥ is an effective one-body operator which itself depends on
the (occupied) single-particle states on which it acts, see (5.12b). Thus (5.14) can in
general only be solved iteratively.

5.2.3 In Coordinate Space

It is instructive from a formal side and necessary for many practical applications
to reformulate the Hartree–Fock equation (5.14) in coordinate space. To that end,
we assume a purely local two-body interaction V (r − r′). The matrix elements of ĥ
thus read

hαβ =
∫

dx ϕ†
α(x)

[
− �

2

2m
∇2 + Uext(x)

]
ϕβ(x)

+
∑

i

∫
dx dx ′ ϕ†

α(x)ϕ†
i (x ′)V (x, x ′)ϕβ(x)ϕi (x

′)

−
∑

i

∫
dx dx ′ ϕ†

α(x)ϕ†
i (x ′)V (x, x ′)ϕi (x)ϕβ(x ′) .
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From this result the Hartree–Fock equation in coordinate space can be deduced sim-
ply by removing the

∫
dx and ϕ†

α(x). This yields

ĥϕα = εαϕα, (5.15a)

(
ĥϕα

)
(x) = − �

2

2m
∇2ϕα(x) + Uext(x)ϕα(x) + Udir(x)ϕα(x)

−
∫

dx ′ Uex(x, x ′)ϕα(x ′), (5.15b)

Udir(x) =
∫

dx ′ v(x, x ′)
N∑

i=1

|ϕi (x
′)|2, (5.15c)

Uex(x, x ′) = v(x, x ′)
N∑

i=1

ϕi (x)ϕ†
i (x ′) . (5.15d)

The equations are quite similar in form to a Schrödinger equation for single-particle
states. The second term on the right-hand side, Udir, is the average potential which
has the simple interpretation of the potential generated by the density distribution of
the particles. It is called the direct term. The third term carrying Uex is the exchange
term. Note that the exchange kernel Uex(x, x ′) is still an operator in spin space.
Exchange together with the average potential defines the self-consistent mean field.
The Hartree–Fock approximation is called a mean-field approximation.

The exchange term of course makes the problem quite a bit more complicated
than a simple one-particle Schrödinger equation. Since it changes the Schrödinger
equation into an integral equation, it is much harder to deal with in practice, and
various approximations are employed. One popular approach is that of using effec-
tive zero-range interactions like — in nuclear physics — the Skyrme forces (see
Sect. 6.4) for which the exchange term can be combined with the direct one. For
forces with a finite range – unavoidable in the case of the Coulomb interaction –
one often employs dedicated approximations, see Sect. 6.1 on density functional
theory.

Another simplification is the Hartree approximation, in which the exchange term
is simply neglected. Since the exchange term also subtracts the interaction of a par-
ticle with itself, the sum over single-particle states in the direct term has then to
be modified to exclude the wave function being calculated; there is then a different
single-particle Hamiltonian for each particle and the states are no longer orthogonal.
This aspect is further explored in Sect. 6.3.

The mean field embodies a large part of the two-body interaction, but not all.
The full two-body interaction, to the extent that it is not included in the mean
field, is called the residual interaction which builds correlations of various sorts,
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see Chap. 9. It is also a crucial ingredient for computing the excitation spectrum,
see Chap. 8. The Hartree–Fock equations form a self-consistent problem in the
sense that the wave functions determine the mean field, while the mean field,
in turn, determines the wave functions. In practice this leads to iterative solu-
tions in which one starts from an initial guess for the wave functions and deter-
mines the mean field from them. Solving the Schrödinger equations then yields
a new set of wave functions, and this process is repeated until convergence is
achieved.

5.3 The Hartree–Fock Energy

5.3.1 The Total Energy

Let us now investigate the properties of the states of the many-body system in the
Hartree–Fock approximation. First, we will have a look at the energy of the Hartree–
Fock state |Φ〉 which is the expectation value of Ĥ .

The expectation values for T̂ becomes

〈Φ|T̂ |Φ〉 =
∑
αβ

tαβ 〈Φ|â†
α âβ |Φ〉︸ ︷︷ ︸

δαβθ(β≤N )

=
N∑

i=1

tii ,

and for the two-body interaction

〈Φ|V̂ |Φ〉 = 1

2

∑
αβγ δ

vαβγ δ〈Φ|â†
α â†

β âδ âγ |Φ〉

= 1

2

N∑
αβ=1

∑
γ δ

vαβγ δ〈Φ|â†
α â†

β âδ âγ |Φ〉

= 1

2

N∑
αβ=1

∑
γ δ

vαβγ δδβδ〈Φ|â†
α âγ |Φ〉 − 1

2

N∑
αβ=1

∑
γ δ

vαβγ δ〈Φ|â†
α âδ â†

β âγ |Φ〉

= 1

2

N∑
αβ=1

vαβαβ − 1

2

N∑
αβ=1

vαβγβδβγ 〈Φ|â†
α âδ|Φ〉

= 1

2

N∑
hh′=1

[vhh′hh′ − vhh′h′h] = 1

2

N∑
hh′=1

v̄hh′hh′ .
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The total energy thus becomes

EHF = 〈Φ|Ĥ |Φ〉 =
N∑

h=1

thh + 1
2

N∑
hh′=1

v̄hh′hh′

=
N∑

h=1

hhh′ − 1
2

N∑
hh′=1

v̄hh′hh′ =
N∑

h=1

εh − 1
2

N∑
hh′=1

v̄hh′hh′ . (5.16)

It is important to realize that the energy of the Hartree–Fock ground state is not sim-
ply the sum of the individual single-particle energies, but has an additional contribu-
tion from the potential interactions. The mathematical reason is that the Hamiltonian
of the many-particle system is not the sum of the single-particle Hamiltonians, but
contains the interactions as two-body matrix elements.

5.3.2 The Interpretation of Single-Particle Energies:
Koopman’s Theorem

A similar analysis also sheds light on the physical meaning of the single-particle
energies εα . Compare, for example, the energy of the system with N particles to
that with N − 1 particles with one particle removed from the occupied state h. The
latter is described by the wave function

|h〉 = âh |Φ〉 ,

where it was neglected that a change in occupation numbers will also change all the
single-particle states because of self-consistency. Its energy is given by

Eh =
∑
h′ �=h

th′h′ + 1
2

∑
h1,h2 �=h

v̄h1h2h1h2 ,

and the difference from the ground-state energy becomes

Eh − EHF = −thh − 1
2

∑
h′

v̄h′hh′h − 1
2

∑
h′

v̄hh′hh′ = −thh −
∑

h′
v̄h′hh′h

= −εh . (5.17)

Here the symmetry of the matrix elements v̄h′hh′h = v̄hh′hh′ was used. Thus the
single-particle energy εh corresponds (approximately, namely when overlooking
impact of rearrangement) to the energy required to remove one particle from state
h of the system. This is the content of Koopman’s theorem.
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The results of Hartree–Fock calculations can thus be used not only to predict the
bulk properties of the ground state of the many-body system, such as the binding
energy, mean square radius, surface thickness, but also, within the further approx-
imations discussed above, for the description of the ionization potential (as it is
called in atomic physics) or separation energy (as it is called in nuclear physics),
respectively.

Note that Koopman’s theorem is approximate: it cannot be used recursively: if it
were reapplied to remove another particle, the potential interactions between the two
particles (rearrangement energies) accumulate and thus would be treated incorrectly
(otherwise the total energy of the ground state should be given by

∑
i εi , which was

seen to be wrong).

5.3.3 Excitations and Excitation Energies

It appears a simple matter now to construct excited states of an N -body system based
on the Hartree–Fock ground state: these should simply be given by the particle–
hole excitations of various orders. In principle this is not quite true, because the
mean field also depends on the states actually occupied. The density changes with
occupation, leading to changes in the mean potential and in turn to the single-particle
states themselves. So in principle all the single-particle wave functions are affected
by changing the state of a single particle. In practice, however, this problem is often
ignored for larger particle number with the argument that the change of state of
one single particle will change the mean field only negligibly, and the associated
change of the single-particle states is even smaller. We thus construct excited states
as one-particle–one-hole (1ph) excitations

|ph〉 = â†
pâh |Φ〉 ,

two-particle–two-hole (2ph) excitations

|p′ phh′〉 = â†
p′ â†

pâh′ âh |Φ〉 ,

and so on, using the single-particle states of the Hartree–Fock ground state. The
expectation value of the energy of such states can easily be calculated. For the one-
particle–one-hole excitations, for example, one obtains the excitation energy

E ph − EHF = 〈ph|Ĥ |ph〉 − EHF

= EHF + tpp − thh +
N∑

h′=1
h′ �=h

(v̄ph′ ph′ − v̄hh′hh′) − EHF

= εp − εh − v̄phph .
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This is predominantly the difference of the single-particle energies of the two states
which are connected by the transition plus a contribution arising from the addi-
tional change in potential interaction. It is to be noted, however, that this is only
the expectation value of the residual interaction over the 1ph state. There are also
non-vanishing off-diagonal matrix elements

〈ph|Ĥ |p′h′〉 = −v̄ph′ p′h

which require a diagonalization by considering a coherent superposition of 1ph
states. In many cases, though, the potential contribution can be neglected and the
particle–hole states can be treated as approximate eigenstates of the problem. This
is, e.g., often a reasonable approach for atomic excitation. If the simple 1ph picture
turns out to be insufficient, one needs to proceed to a more complete calculation of
excitation properties like the random-phase approximation (RPA), see Chap. 8. That
is typically necessary for nuclei and the electron cloud in metals or quantum dots.

5.4 The Density Matrix Formulation

The Hartree–Fock equations take a particularly simple form when expressed in
terms of the one-particle density matrix �̂. As is discussed in Appendix A.5, the
one-particle density matrix corresponding to a single Slater-determinant state fulfills
�̂2 = �̂, so that it is idempotent. Mathematically, an idempotent operator describes
a projection, since acting once with the operator produces a state that is not changed
any further by repeated application. From the special form it takes if expressed in
the single-particle states contained in |Φ〉,

�kl =
{

δkl for k and l occupied in |Φ〉
0 otherwise,

it is clear that it is the identity operator for occupied states and produces zero for
unoccupied ones: thus it projects onto the space of occupied single-particle states.

This last property of the one-particle density matrix allows a simple formulation
of the decomposition of a matrix into particle–particle, particle–hole, etc., contribu-
tions (related to a given Slater determinant). Returning to the Hartree–Fock case,
the hole–hole part ĥhh of the single-particle Hamiltonian ĥ can immediately be
written as

ĥhh = �̂ĥ�̂ .

To find similar expressions for the other parts of ĥ, note that the matrix σ̂ = 1 − �̂

projects onto the space of empty single-particle states. It is easy to show that σ̂ is
also a projector, i.e., σ̂ 2 = σ̂ . It is, in fact, the complementing projector to �̂. This
immediately yields
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ĥhp = �̂ĥσ̂ , ĥph = σ̂ ĥ�̂ , ĥpp = σ̂ ĥσ̂ .

The Hartree–Fock conditions (5.10) or (5.12a), respectively, were that ĥhp = ĥph =
0. They can be rewritten now as

σ̂ ĥ�̂ = 0 , �̂ĥσ̂ = 0 ,

and, upon inserting the definition of σ̂ ,

ĥ�̂ − �̂ĥ�̂ = 0 , �̂ĥ�̂ − �̂ĥ = 0 ,

from which we conclude that �̂ĥ = ĥ�̂ or in the most elegant formulation of the
Hartree–Fock conditions

[�̂, ĥ] = 0 . (5.18)

It is clear why formulations using the density matrix are often more useful for
formal derivations: there is no need to separate occupied and empty single-particle
states in this approach; this distinction is handled by the density matrix. Simple
matrix manipulations can then replace cumbersome sum expressions that have the
additional problem of having to distinguish these different index ranges.

5.5 A Simple Test Case: Two Particles in 1D

5.5.1 The Model

An instructive test case for self-consistent models is the Negele–Yoon model
[115, 74]. We consider a system of two fermions in one spatial dimension coupled
via a zero-range two-body interaction. Its Hamiltonian is

Ĥ = p̂2
1 + p̂2

2

2m
− c

2
δ(x1 − x2) . (5.19)

Note that, unlike the usage elsewhere in this book, the xi here stands just for the spa-
tial x-coordinate and spin is handled in terms of Pauli spinors χ+ 1

2
and χ− 1

2
. Note,

furthermore, that this two-body Hamiltonian is translationally invariant. Consider a
translation xi −→ x ′

i = xi + δ where the shift δ is the same for both coordinates.
The derivative is invariant, i.e., ∂x ′

i
= ∂xi and so is the whole kinetic energy operator

(first term in the Hamiltonian). The difference x1 − x2 is also invariant because the
constant shift δ cancels. One would expect a solution which in some way reproduces
this invariance. This surely holds for the exact solution, but it has yet to be seen how
it is sustained through approximations.

The aim of the Hartree–Fock approach is to find the energetically optimal solu-
tion in independent-particle form, i.e., as a Slater determinant of single-particle
wave functions
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Φ = 1√
2
A
{
ϕ0(x1)χ (1)

+ 1
2
ϕ0(x2)χ (2)

− 1
2

}
(5.20a)

= ϕ0(x1)ϕ0(x2)√
2

[
χ

(1)
+ 1

2
χ

(2)
− 1

2
− χ

(1)
− 1

2
χ

(2)
+ 1

2

]
,

∫ ∞

−∞
dx |ϕ0(x)|2 = 1 . (5.20b)

The total wave function is normalized as 〈Φ|Φ〉 = 1 due to the normalization
(5.20b) and the orthonormality of the Pauli spinors χ

†
σ ′χσ = δσ ′σ . In fact, we have

two spinor spaces, one for particle 1 and another for particle 2. The spinors are aug-
mented by an upper index which indicates for which of these two spaces it applies.
It is self-explaining that spinor overlaps can only be taken with spinors belonging
to the same space. The spatial wave function ϕ0 is the same for both spins, making
the total wave function spatially symmetric under exchange. Antisymmetrization
is taken up fully by the spin part. Other choices, e.g., antisymmetric spatial part
and symmetric spins, are also conceivable, but correspond to excited states which
are not of interest here. The disentangling of spatial and spinor parts is a crucial
issue in atoms and molecules and requires wise bookkeeping, the more elaborate
the more electrons are involved. The present case remains simple with the ansatz
(5.20) for the ground-state wave function. The spin part is fixed by the requirement
of antisymmetry. It remains to determine the spatial wave function ϕ0(x). Consid-
ering the ground state, which is a stationary state, ϕ0(x) can be assumed to be a
real function.

5.5.2 The Total Energy

The total energy (5.16) for the ground state (5.20) becomes

〈Φ|Ĥ |Φ〉 = 1

2m

∑
σ∈{+ 1

2 ,− 1
2 }

∫
dx ϕ0(x)χ †

σ p̂2ϕ0(x)χσ

− c

4

∫
dx1 dx2 ϕ∗

0 (x1)ϕ∗
0 (x2)δ(x1 − x2)ϕ0(x1)ϕ0(x2)

[
χ

(1)
+ 1

2
χ

(2)
− 1

2
− χ

(1)
− 1

2
χ

(2)
+ 1

2

]+ [
χ

(1)
+ 1

2
χ

(2)
− 1

2
− χ

(1)
− 1

2
χ

(2)
+ 1

2

]
.

As the ground state is spin-saturated, one can easily evaluate the spin summations.
The spinor in the kinetic term just yields a factor of two, while the spinor part in the
potential term looks more involved.
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They become

[
χ

(1)
+ 1

2
χ

(2)
− 1

2
− χ

(1)
− 1

2
χ

(2)
+ 1

2

]+ [
χ

(1)
+ 1

2
χ

(2)
− 1

2
− χ

(1)
− 1

2
χ

(2)
+ 1

2

]

= χ
(1)
+ 1

2

†
χ

(1)
+ 1

2︸ ︷︷ ︸
=1

χ
(2)
− 1

2

†
χ

(2)
− 1

2
− χ

(1)
+ 1

2

†
χ

(1)
− 1

2︸ ︷︷ ︸
=0

χ
(2)
− 1

2

†
χ

(2)
+ 1

2

−χ
(1)
− 1

2

†
χ

(1)
+ 1

2
χ

(2)
+ 1

2

†
χ

(2)
− 1

2
+ χ

(1)
− 1

2

†
χ

(1)
− 1

2
χ

(2)
+ 1

2

†
χ

(2)
+ 1

2

= 2 .

There remain the spatial parts. The double integration in the potential term shrinks
to a single integration by virtue of the Dirac δ-distribution, reducing x1 = x2 → x .
The total energy then is

E[ϕ0] = 〈Φ|Ĥ |Φ〉 = 2
�

2

2m

∫ ∞

−∞
dxϕ∗

0 (x)(−∂2
x )ϕ0(x)

︸ ︷︷ ︸
Ekin

− c

2

∫ ∞

−∞
dx |ϕ0(x)|4

︸ ︷︷ ︸
Epot

. (5.21)

The energy is a functional of the spatial single-particle wave function ϕ0, a fact
which is expressed by the square brackets.

5.5.3 The Hartree–Fock Equation

We start from the Hartree–Fock equations (5.15) formulated in coordinate space.
The local density and consequently the direct mean field (5.15c) in the present case
become

ρ(x) =
∑

σ

|ϕ0(x)|2χ †
σχσ = 2|ϕ0(x)|2 =⇒ Udir = −c|ϕ0(x)|2 . (5.22)

For the exchange contribution, we remember the completeness relation in spinor
space

∑
σ χσχ †

σ = 1̂ where 1̂ stands for the unity operator in 2×2 spinor space.
Using (5.15d) and remembering that integration has to be performed in both real
space (x) and spinor space we get

Uexϕ0(x)χσ = c

2

∫
dx ′∑

σ ′
δ(x − x ′)

∑
σ

ϕ0(x)ϕ0(x ′)χσ ′χ
†
σ ′ϕ0(x ′)χσ

= c

2
|ϕ0(x)|2ϕ0(x)χσ ,

which up to a factor 1
2 is the same as the direct term. This finally yields the mean-

field equation as
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[
− �

2

2m
∂2

x + Umf(x)

]
ϕ0 = εϕ0 , Umf(x) = − c

2
ϕ2

0(x) . (5.23)

This is a nonlinear equation. The mean-field potential Umf depends on the wave
function ϕ0, which is a solution of the Schrödinger equation with Umf. That poses
a self-consistency problem which can in general only be attacked by iterative
methods.

5.5.4 A Closed Solution

The present model is just simple enough that it allows a closed solution. The ansatz
is the function 1/ cosh(ax). To avoid a second round through formal steps, start with
the normalized ansatz:

ϕ0 =
√

a

2

1

cosh(ax)
.

Using the well-known property ∂x tanh(x) = 1/ cosh2(x) normalization is proved via

∫ ∞

−∞
dx ϕ2

0 =
∫ ∞

−∞
dx

a

2

1

cosh2(ax)
= 1

2

∫ ∞

−∞
d(ax)

1

cosh2(ax)

= 1

2
tanh(ax)

∣∣∣∞
−∞

= 1 .

Next, evaluate the second derivative which is needed for the kinetic energy:

∂xϕ0 =
√

a

2

−a sinh(ax)

cosh2(ax)
,

∂2
x ϕ0 =

√
a

2

[
−a2

cosh(ax)
+ 2a2 sinh2(ax)

cosh3(ax)

]
=
√

a

2

[
a2

cosh(ax)
− 2a2

cosh3(ax)

]

=
[

a2 − 2a2

cosh2(ax)

]
ϕ0 .

Inserting this result into the mean-field equation (5.23) yields

[
−�

2a2

2m
+ �

2a2

m cosh(ax)2
− ca

4 cosh(ax)2

]
ϕ0 = εϕ0 ,

from which the final solution with its self-consistent mean field can be read off as



134 5 Hartree–Fock

ϕ0 =
√

a

2

1

cosh(ax)
, a = cm

4�2
, ε = −�

2a2

2m
= − c2m

32�2
, (5.24a)

Umf = −c2m

2�

1

cosh2(ax)
. (5.24b)

Herein ε is the single-particle energy. The total energy is obtained from inserting the
solution (5.24a) into (5.21), resulting in

E = 2
�

2

2m

a

2

∫ ∞

−∞
dx

1

cosh(ax)
(−∂2

x )
1

cosh(ax)
− c

2

a2

4

∫ ∞

−∞
dx

1

cosh4(ax)

= 2
�

2

2m

a3

2

∫ ∞

−∞
dx

[
− 1

cosh2(ax)
+ 2

cosh4(ax)

]
− c

2

a2

4

∫ ∞

−∞
dx

1

cosh4(ax)
.

We use the normalization integral and
∫∞
−∞ dy cosh−4 = 4/3 to obtain

E = 2

3

�
2a2

2m
− ca

6
= − c2m

48�2
. (5.25)

In the present model, it has the same trend as the single-particle energy ε in (5.24a),
but differs in the numerical factor.

5.5.5 Symmetry Breaking

The most interesting aspect of this solution is the self-stabilization of a finite wave
packet (5.24a) together with a binding potential well (5.24b). The original many-
body Hamiltonian (5.19) was translational invariant. It does not show any seed of a
localization, but the Hartree–Fock solution is localized, in the case given in (5.24),
around x = 0. The restriction to antisymmetrized product wave functions leads to a
nonlinear equation which, in turn, here shows the feature of self-focusing. Transla-
tional invariance is manifestly broken by the Hartree–Fock solution.

Translational invariance, however, shows up in a different manner. The solution
(5.24) can be shifted by any distance x0 and the shifted wave function remains a
solution. It is straightforward to check that

ϕ0 =
√

a

2

1

cosh(a(x − x0))
, ε(x0) = − m

32�2
c2 = ε(0) , (5.26a)

Umf = −c2m

2�

1

cosh2(a(x − x0))
, (5.26b)
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Fig. 5.1 Illustration of the solution of the 1D Hartree–Fock model. It shows the mean-field poten-
tial Umf (heavy line) localized at x = 0 with the corresponding density ρ (dashed line). The latter
is drawn with respect to the single-particle energy ε (faint horizontal line). Furthermore, equivalent
solutions with shifts to x = −16 and +16 are shown

also satisfies the Hartree–Fock equation (5.23). Note that all solutions have the same
single-particle energy ε and the same total energy E , i.e., E(x0) = E(0) = constant.
Thus not only one solution, but a multitude of degenerate solutions are obtained,
which are generated from one special solution by applying the symmetry operation,
here translation by x0. Figure 5.1 serves to illustrate the solution. It also indicates
the variety of equivalent solutions with a few examples. The whole multitude is
given by a continuum of shifts x0, impossible to represent graphically. All cases
shown have the same total energy (5.25). The degeneracy suggests to consider an
improved solution as a coherent superposition of these Slater states. This yields a
particular form of a correlated state which restores the translational symmetry.

The above case illustrates the generic mechanism of symmetry breaking which
occurs in many places in physics: A mean-field treatment of a complex system
produces nonlinear equations and it can happen under certain conditions that the
stability point lies at a configuration which breaks a symmetry originally given in
the Hamiltonian.

5.6 An Illustrative Example: The He Atom

We consider the He atom as a test case to exemplify the performance of HF in a real-
istic case. This two-electron system does not have a closed analytical solution and
thus provides an opportunity to test variational approaches as such. The benchmark
is the experimental electronic binding energy of the He atom, EB(He) = −5.80
Ry = −78.9 eV. We thus compute the HF solution and compare it directly to the
experimental energy.
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5.6.1 Hamiltonian and HF Equations

The Hamiltonian for the electron cloud (2 electrons, 1 and 2) of the He atom is
composed as in (6.1) with the particular potential operator

Ûext = − 2e2

|r1| − 2e2

|r2| . (5.27)

The full ground-state wave function is, of course, highly correlated and far beyond
analytical treatment. We consider the independent-particle state Φ ∝ A{φ1φ2} com-
posed from the two single-particle states

φ1 = ϕ(r1)χ+ 1
2
, φ2 = ϕ(r1)χ− 1

2
, (5.28)

where ϕ is a purely spatial wave function and χσ a Pauli 2-spinor. The two fermions
are distinguished by spin only while occupying the same spatial wave function. This
will be the wave function with lowest energy in the emerging mean field correspond-
ing to the lowest possible two-particle state. The spatial density becomes, similar
to (5.22),

ρ(r) = 2ϕ∗(r)ϕ(r) . (5.29)

The Hamiltonian (5.27) does not depend on spin at all. Thus in a first step all energy
expectation values can be reduced to purely spatial integrals. These are

E = Ekin + Eext + Ecoul,dir + Ecoul,ex , (5.30a)

Ekin =
∑

σ

�
2

2me

∫
d3r |∇ϕ|2χ †

σχσ = 2
�

2

2me

∫
d3r |∇ϕ|2 , (5.30b)

Eext = −
∑

σ

∫
d3r ϕ∗(r)

2e2

|r| ϕ(r)χ †
σχσ = −

∫
d3r

2e2ρ(r)

|r| , (5.30c)

Ecoul,dir =
∫

d3r1d3r2 ϕ∗(r1)ϕ∗(r2)
e2

|r1−r2|ϕ(r1)ϕ(r2)

∑
σ1σ2

χ †
σ1

χσ1
χ †

σ2
χσ2

︸ ︷︷ ︸
=4

=
∫

d3r1d3r2 ρ(r1)
e2

|r1−r2|ρ(r2) , (5.30d)
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Ecoul,ex = −
∫

d3r1d3r2 ϕ∗(r1)ϕ∗(r2)
e2

|r1−r2|ϕ(r1)ϕ(r2)

∑
σ1σ2

χ †
σ1

χσ2
χ †

σ2
χσ1

︸ ︷︷ ︸
=2

= −1

2

∫
d3r1d3r2 ρ(r1)

e2

|r1−r2|ρ(r2) = −1

2
Ecoul,dir . (5.30e)

All potential energies can be expressed through the local density, even the exchange
term. This is a special property of this simple two-electron system where both elec-
trons still can share the same spatial wave function. It also produces an exchange
term which is simply proportional to the direct term with a factor minus one half.
The Hartree–Fock equation is obtained by variation with respect to ϕ∗ yielding

[
− �

2

2me
Δ − 2e2

|r| +
(

1 − 1

2

)∫
d3r ′ e2

|r−r′|ρ(r′)
]

ϕ(r) = εϕ(r) , (5.31)

where the single-particle energy ε is the same for φ1 and φ2. The third term in the
mean-field Hamiltonian contains the direct term with the factor +1 and the exchange
term with factor −1/2. The Hartree approximation would consist in dropping the
−1/2 for the exchange term.

5.6.2 Variational Ansatz

Although seemingly simple, the mean-field equation (5.31) does not have a closed
analytical solution. We take that as a chance to exemplify a further approximation,
namely variational optimization of a chosen ansatz for a searched wave function. We
briefly recall the general scheme: the goal is a solution of the Schrödinger equation
Ĥ |Ψ 〉 = E |Ψ 〉. By experience, intuition or whatever means, an educated guess
for the solution is made, which has a few free parameters α1 . . . αP , i.e., |Ψ 〉 =
|Ψ (α1 . . . αP )〉. This defines a sub-manifold of the Hilbert space for the system. The
Ritz variational principle as discussed in Sect. 5.1.2 now states that the best possible
approximation within that sub-manifold is the state with the lowest energy. The
necessary condition for a minimum is

∂αi

〈Ψ |Ĥ |Ψ 〉
〈Ψ |Ψ 〉 = 0 , i = 1 . . . P . (5.32)

For the present example of a He atom, the single-particle wave functions may be
assumed to approximately maintain the shape of the Coulomb solutions, i.e.,

ϕ =
√

α3

π
exp (−αr ) , r = |r| , (5.33)
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where the width parameter α remains open. It will become the one free parameter
for variation.

To compute the energy, insert the ansatz (5.33) into the energy (5.30), noting that
the density is ρ = 2(α3/π ) exp (−2αr ), and recall the following relations:

∇ exp (−λr ) = er∂r exp (−λr ) = −λ exp (−λr )er ,

∫ ∞

0
dx xn exp (−λx) = n!

λn+1
,

∫
dx x exp (−λx) = 1 − λx

λ2
exp (−λx) ,

∫ 1

−1
dy

1√
a2 + b2 − 2aby

= −
√

a2 + b2 − 2aby

ab

∣∣∣1
−1

= 2
1

max(a, b)
,

∫
d3r · · · =

∫ ∞

0
dr r2

∫ 1

−1
d(cos θ )

∫ 2π

0
dφ · · ·

−→ 4π

∫ ∞

0
dr r2 · · · ,

where the last step (the “−→”) applies only to radially symmetric integrands. For
the one-body terms this leads to

Ekin = = 2
�

2

2me

α5

π
4π

∫ ∞

0
dr r2 e−2αr = 2

�
2

2me
α2 , (5.34a)

Eext = −8π
α3

π

∫ ∞

0
dr r2 e−2αr 2e2

r
= −4αe2 . (5.34b)

The sixfold integration in the two-body terms requires careful choice of the ref-
erence frame for the spherical coordinates. The same reasoning as already used
for the computation of the exchange energy in the electron gas (see Sect. 2.5)
can be applied here. The only angular dependence occurs in the denominator

|r1 −r2| =
√

r2
1 + r2

2 − 2r1r2 cos(θ ) where θ is the angle between r1 and r2. Let

us consider d3r1 as the outer integration. The direction of r1 is then defined before
the d3r2 integration starts. We chose for r2 the frame where the direction of r1 is
the z-axis. Thus the angle in the r2 frame becomes identical with the angle between
r1 and r2, i.e., θ2 = θ . There is no dependence on the two azimuthal angles (ordi-
narily denoted as φ) whose integration then produces a factor (2π )2. After these
preliminaries, the electron–electron Coulomb energy can be evaluated as
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Ecoul,dir = (2π )2 α6

π2

∫ ∞

0
dr1 r2

1

∫ 1

−1
d(cos(θ1))

︸ ︷︷ ︸
=2

∫ ∞

0
dr2 r2

2

∫ 1

−1
d(cos(θ2))

e−2αr1
e2√

r2
1 + r2

2 − 2r1r2 cos(θ2)
e−2αr2 ,

= 64α6
∫ ∞

0
dr1 r2

1 e−2αr1

∫ ∞

r1

dr2 r2
2

1

r2
e−2αr2

= 16α4e2
∫ ∞

0
dr1 r2

1 e−4αr1 (2αr1 − 1) = 5

4
αe2, (5.34c)

Ecoul,ex = −5

8
αe2 . (5.34d)

The total HF energy for the ansatz (5.33) then becomes

EHF(α) = �
2

m
α2 − 27e2

8
α . (5.35)

The variational equation ∂α EHF(α) = 0 yields, after some simple algebraic manip-
ulations,

αHF = 27

16

me2

�2
= 27

16

1

a0
=⇒

EHF,opt =
(

27

16

)2 (
�

2

m
− 2e2

)
= −5.69 Ry . (5.36)

This value is to be compared with the measured exact energy Eexp = −5.80 Ry. The
deviation is less than 2%, which is a very good result in view of the simplicity of
the calculation.

5.6.3 Full HF Solution

The comparison between the variational approach with ansatz (5.33) and a full
numerical solution of the mean-field equations is also enlightening. In the case of
a full numerical solution one obtains a binding energy EHF = −5.72 Ry, a bit
closer to the experimental value, but remember that the difference to the variational
ansatz is only about 0.5%. The quality of the simplest variational ansatz here is
thus already quite good, about the level of the quality of HF as such. An obvious
further improvement would be to extend (5.33) to a linear superposition with a wave
function in form of a 2s state. That could still be worked out analytically with a bit
more patience and this strategy would immediately lead to LCAO as discussed in
Sect. 4.2, but it could only lead to an improvement less than the full numerical HF
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Fig. 5.2 The local density ρ(r ) for the electron cloud of the He atom, computed in three different
approaches as indicated

solution (because of Hilbert space restriction) which will correspond to a fraction of
a percent improvement on the total energy.

Figure 5.2 compares the electron densities for various approaches. It is drawn
on a logarithmic scale to emphasize the crucial asymptotic behavior. The difference
between purely external field and the Hartree approach illustrates the orders of mag-
nitude and associated variations involved. The HF result lies in between these two
extremes as expected. Most interesting is the difference between the two HF results,
one with ansatz (5.33) and one from the numerical solution. The inner region, where
the bulk of the density is concentrated, shows a very nice agreement corroborating
the favorable situation already seen for the energies. Systematic differences develop
concerning the exponential decay at large distances. This illustrates that the perfor-
mance of an approximation depends not only on the forces in the system but also
on the observable which one is interested in. Those who are particularly interested
in the outer tail of the electron density will not be satisfied with the simple varia-
tional approach on the basis of ansatz (5.33). One may even suspect that correlations
beyond HF could grow more important for such subtle observables. The dotted line,
finally, shows the result from using the unmodified external Coulomb field. The
difference to the other results indicates the importance of the electron–electron inter-
action to the binding properties. They are sizable already for this small two-electron
system.

5.7 Concluding Remarks

The Hartree–Fock approximation constitutes a simple and well-founded method to
construct a mean-field description of a many-fermion system. We have shown in
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this chapter how it can be constructed and what are its inherent limitations. We have
also seen that it can perform very well even in comparison to experimental results.

The Hartree–Fock approximation furthermore provides a sound basis for the
construction of more elaborate approaches in which interactions would be taken
into account in a more detailed way. The general procedure here is known as the
inclusion of correlations and can be achieved in different ways. We illustrate two
strategies along that line in the following chapters. In Chap. 6 correlations are intro-
duced in an effective way through a modified interaction on which a Hartree mean
field is constructed. A more explicit account of correlations is presented in Chap. 9
in some specific cases.



Chapter 6
Density Functional Theory

The Hartree–Fock (HF) method provides a straightforward approach to construct
mean fields in many-fermion systems. We have exemplified its capabilities in a few
examples (Chap. 5). The HF approach, however, suffers from some limitations, on
the formal side due to the average treatment of interactions and on the practical
side due to the involved exchange term. To go beyond HF strictly speaking implies
including correlations, which will be discussed in Chap. 9. Still, there is an alter-
native “effective” path which consists in building a simple HF approximation (or
even Hartree approximation, namely without including exchange), on top of effec-
tive interactions. The construction of such effective interactions of course requires
some elaborate calculations but it allows to include correlation effects in the interac-
tion itself, which allows a mean-field description of the given system, mostly at the
technically simple Hartree level. Such effective approaches usually constitute a large
step forward to more self-consistent modeling. The formally sound way to formu-
late such effective theories proceeds through energy-density functionals as a starting
point. Examples for effective self-consistent models are the Skyrme–Hartree–Fock
method in nuclear physics [92, 42], chiral nonlinear spinor modeling (e.g., Nambu–
Jona–Lasinio theory) in field theory [33], and, of course, the well-known density
functional theory (DFT) for electronic systems [56].

In the following, we will briefly recapitulate the basic steps of electronic DFT
finalizing with the He atom as example. Although we will comment on the formal
basis, the focus is on the practitioners “bottom line,” the compact recipes which
emerge at the end and make DFT so useful in many areas of physics. For those
who are interested in a more detailed understanding, we refer to books and articles
specialized to electronic DFT, e.g., [80, 54, 27]. It is also interesting to note that
DFT was used in practical applications first, e.g., in terms of Thomas–Fermi theory
[34] or the Slater approximation to exchange [99]; the theoretical foundation as
outlined below came later. The associated deeper understanding, however, has given
direction to further improvements which allowed the steady development up to the
very powerful method of today. We shall discuss some of these aspects at the end
of the chapter together with an excursion into the case of nuclear energy-density
functionals.

J.A. Maruhn et al., Simple Models of Many-Fermion Systems,
DOI 10.1007/978-3-642-03839-6 6, C© Springer-Verlag Berlin Heidelberg 2010
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6.1 Basics of Electronic Density Functional Theory (DFT)

6.1.1 The Hohenberg–Kohn Theorem

The exact Schrödinger equation for N -electron systems is given as

Ĥ |Ψ 〉 = E |Ψ 〉 , (6.1a)

Ĥ = T̂ + Ûext + V̂coul , (6.1b)

T̂ =
N∑

n=1

p̂2
p

2m
, (6.1c)

Ûext =
N∑

n=1

Uext(rp) , (6.1d)

V̂coul = 1

2

N∑
n �=m=1

e2

|rp − rm | , (6.1e)

where |Ψ 〉 is the fully correlated N -body state, T̂ the kinetic energy, Ûext an exter-
nal potential coming, e.g., from the ionic cores of an atom or molecule, and V̂coul

the Coulomb interaction between the electrons. Kinetic and Coulomb energy are
inevitable features of electrons, while the external potentials Uext(r) change and
with them the actual quantum state of the electrons. It is obvious that a given Uext(r)
uniquely leads to a many-body wave function as solution of the Schrödinger equa-
tion, and this in turn determines a certain local density ρ(r). This suggests that one
may equally well characterize the state of the system through the density ρ(r). The
advantage is that we so get rid of the external potential and can formulate everything
in terms of purely electronic quantities, kinetic energy, Coulomb energy, and den-
sity. The ultimate dream is a formulation of all electronic correlations in terms of
the simple one-body density which is universal in the sense that, once established,
it can be applied to varying situations, i.e., external potentials Ûext.

We jump over a series of motivating steps and come directly to the famous
Hohenberg–Kohn theorem [50] which, to a large extent, is self-explanatory. From
the total energy E = 〈Ψ |Ĥ |Ψ 〉, only the electronic part, i.e.,

EHK = 〈Ψ |T̂ + V̂coul|Ψ 〉 (6.2)

is considered. The Hohenberg–Kohn theorem now consists of two statements:

1. EHK is a unique and universal functional of the local density ρ(r)

EHK = EHK[ρ(r)] . (6.3a)

2. The correct ground-state density for a given external field Ûext is obtained from
variation of the total energy, i.e.,
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E[ρ(r)] = EHK[ρ(r)] +
∫

d3r ρ(r)Uext(r) (6.3b)

with respect to the density ρ(r).

Note that the functional is tied to a given electron number N . It is universal in
the sense that it applies to any local external potential. The simplification of the
description is dramatic. Assume that we are given a manageable energy functional
EHK[ρ(r)]: then a large number of changing situations can be evaluated by a simple
local equation emerging from variation.

The optimism should be mellowed by mentioning two open problems. The devel-
opment started from the observation that each given local potential Uext(r) uniquely
leads to one certain density. The reverse, however, is not true. Not every conceivable
local density can be produced by a local potential. So caution has to be applied
when shuffling pieces around. One remains on the safe side as long as one proceeds
forward from Uext. The other problem is more severe. The Hohenberg–Kohn theo-
rem proves the existence of such a functional but does not provide any means for
its construction. That step requires further approximations, one of which will be
presented in the next section.

6.1.2 The Local Density Approximation

As pointed out above, a universal density functional is proven to exist, in prin-
ciple. In practice, one has to approach it in modest steps. The most widely used
construction is provided by the local density approximation (LDA), which we will
now briefly discuss. The starting point is the homogeneous gas, i.e., a continuum
of electrons in a spatially homogeneous external field (see Chap. 2). The electron
density then also becomes homogeneous, ρ(r) = ρ0 = constant, and the energy is a
simple function of the density ρ0. We write it in a suggestive fashion as

EHK(ρ0) =
∫

d3r
Eelgas

V

(
ρ0
) =

∫
d3r ρ0

Eelgas

N

(
ρ0
)
,

where Eelgas/N is the energy per particle in the electron gas covering kinetic,
exchange, and correlation energy. The direct term, the Coulomb Hartree energy, is
compensated by the positive jellium background approximation. We have deliber-
ately written the energy as a spatial integral, which is an overkill for a homogeneous
system because the integrand would be constant anyway. Now, though, we release
that restriction and allow for slight inhomogeneities. The spatial changes should
remain very gentle, so that we can still assume a state of piecewise infinite homoge-
neous matter. Thus we daringly generalize to

EHK[ρ(r)] ≈ EHK−LDA[ρ(r)] =
∫

d3r ρ(r)
Eelgas

N

(
ρ(r)

)
(6.4)
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by replacing ρ0 by ρ(r). This is a functional of ρ(r), even a particularly simple one
because it is a local functional. The energy is associated point by point with a locally
given density. Variation of this expression is straightforward.

The full correlation energy can only be computed numerically [21]. We exem-
plify the procedure for kinetic and exchange energy, whose extremely simple
expressions were given in Sect. 2.5. In addition, it is advantageous for further
extension to write the terms separately. We start from the kinetic energy (2.24) and
the exchange energy (2.48), identify kF = (

3π2ρ0
)1/3

according to (2.18), and let
ρ0 −→ ρ(r). This leads to the LDA functional as

EHK−LDA = Ekin−LDA + Eext + EH + Ex−LDA , (6.5a)

Eext =
∫

d3 ρ(r)Uext(r) , (6.5b)

EH =
∫

d3r1d3r2 ρ(r1)
e2

|r1−r2|ρ(r2) , (6.5c)

Ekin−LDA =
∫

d3r βkinρ
5/3(r) , (6.5d)

Ex−LDA = −
∫

d3r βxρ
4/3(r) , (6.5e)

βkin = 3

5

(3π2)2/3

2me
≈ 5.74 Ry a2

0 , (6.5f)

βx = 3e2(3π2)1/3

4π
≈ 1.48 Ry a0 , (6.5g)

where the energy from the external field Eext and the Hartree energy EH (which is
the direct part of the Coulomb interaction energy between the electrons) are density
functionals from the outset and need no further approximation. The LDA applies
to the two remaining terms. The LDA expression (6.5d) for the kinetic energy is
also known as the Thomas–Fermi approximation [34, 20] and the exchange energy
(6.5e) as the Slater approximation [99]. In fact, we have here derived the basics of
the semi-classical Thomas–Fermi approximation for electronic systems. This will
be discussed in more detailed applications in Sect. 6.5.

One piece is missing in this very simple motivation of LDA. There is no criterion
what “slightly inhomogeneous” means quantitatively. To that end, look at the LDA
for the one-body density matrix �(x, x ′). Starting from the expression (2.20) for the
density matrix in homogeneous matter, remember kF = kF(ρ0) and again replace
ρ0 −→ ρ(r). This yields
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�(rν, r′ν ′) = δνν ′

2
ρ(r)J

(
(3π2ρ(r))1/3|r−r′|) , r = 1

2

(
ρ(r)+ρ(r′)

)
, (6.6)

with J (x) as given in (2.20). We recall Fig. 2.3 which shows that J is practically
confined to a region |r−r′| ≤ 4/kF. The LDA expression (6.6) suggests that ρ(r)
should not vary too much over a spatial region of 2/kF ≈ rs . This is a very con-
servative estimate. Many applications in atomic and molecular physics deal with
stronger inhomogeneities and, nevertheless, work surprisingly well. There seems to
be a friendly cancellation of LDA errors between exchange and correlation term
which improves the quality beyond the rough estimate [27].

LDA, although an extremely clever compromise between expense and return, is
often not precise enough for high demands like the computation of subtle bonding
properties in molecules. An obvious step further is to consider effects from first-
order inhomogeneities characterized in terms of the gradient ∇ρ. Such a gradient
expansion for the kinetic energy leads to the extended Thomas–Fermi approxima-
tion [20]. Application to exchange and correlation energy yields the generalized
gradient approximation (GGA) [81] which may be a key ingredient in the success
of applied DFT, see, e.g., [27, 56].

6.1.3 Kohn–Sham Approach

The DFT presented above at the level of the Hohenberg–Kohn theorem and LDA
for all parts of the energy leads to the semi-classical Thomas–Fermi theory. It
describes the average trends of binding energies and other bulk observables well, but
overrides any quantum-mechanical shell effects. That is a major drawback because
shell effects are crucial ingredients in many systems and processes, e.g., nuclear
fission [18], the Jahn–Teller effect in molecules and solids [32], or the variations
of chemical bonding, see Chap. 4. Perfect density functionals would, of course,
reproduce these quantum effects, but the LDA with its inherent smoothness and reg-
ularity wipes them out. An extension of the density functional by imprinting quan-
tum effects has not been successfully achieved hitherto. The solution is to involve
quantum-mechanical single-particle wave functions besides the local density. That
is done in the Kohn–Sham (KS) scheme [57], which we are going to briefly review
here.

The aim is to develop a description at the level of simplicity and complexity of
the Hartree theory with a mean-field equation

[
− �

2

2me
Δ + Uext(r) + UKS(r)

]
ϕα(r) = εαϕα(r) , (6.7)

for the occupied single-particle wave functions ϕα and employing a local mean-field
potential, the KS potential UKS(r), besides the external field, and an explicit operator
for the kinetic energy. The KS potential should again be a functional of the local
density ρ(r), deduced from a corresponding energy-density functional. The proof of
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existence, universality, and uniqueness is very similar to the case of the Hohenberg–
Kohn theorem, but now using the kinetic energy from the occupied single-particle
states, ∝ ∫

d3r |∇ϕα|2|, explicitly. It remains to construct the energy-density func-
tional for the potential energy from electron–electron Coulomb interaction. This
again requires further approximations and LDA is the most widely used method.
The recipe then becomes very simple: we start from the LDA expression (6.5) for
the Hohenberg–Kohn energy functional and replace the LDA for the kinetic energy
by the single-particle kinetic energy. This yields the KS energy

EKS−LDA =
N∑

α=1

∫
d3r |∇ϕα|2| + Eext[ρ] + EH[ρ] + Ex−LDA[ρ], (6.8)

with the remaining contributions still as energy-density functionals in precisely the
same form as given in (6.5).

The local potential in the KS equation (6.7) is to be obtained by the KS variational
principle

δϕα†

{
EKS−LDA −

N∑
α=1

εα

∫
d3r |ϕα|2|

}
= 0, (6.9)

where the single-particle energies εα appear as Lagrange multipliers for the con-
straint on normalization of the single-particle wave functions

∫
d3r |ϕα|2| = 1 (see

also the derivation of the HF equations in Chap. 5). Note that the εα are theoretical
tools; a sensible physical interpretation need not be guaranteed, and in fact there
are intriguing problems with deducing band gaps or ionization potentials from them
[27]. Variation of the kinetic energy term produces the standard kinetic energy in
(6.7), while variation of Eext naturally yields the external potential Uext. Finally
variation of the Hartree energy and LDA exchange term results in

UKS(r) = δ(EH + Ex−LDA)

δρ(r)
=
∫

d3r2
e2

|r−r2|ρ(r2) − 4βx

3
ρ1/3(r) . (6.10)

Nearly all practical applications of the KS scheme also employ an energy-density
functional for correlations, which is usually combined with the exchange functional
Exc[ρ], see, e.g., [82]. These functionals look more involved than the bare exchange
functional in LDA, but their application is as straightforward.

The KS equations provide an enormous simplification because every ingredi-
ent is handled through the local density and local potentials. The technically most
expensive part for large system size is the Hartree potential due to the Coulomb
force involved. It cannot be reduced because it carries the crucial information on
the long range of the Coulomb interaction. The next expensive one is the kinetic
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energy operator, which cannot be omitted without losing the quantum structure.
The remaining pieces, Coulomb exchange and correlations, would in principle be
considerably more cumbersome to evaluate, but in practice these have been dramat-
ically simplified to an almost trivial local variation.

6.2 Back to the Example of the He Atom

In Sect. 5.6 we considered the simple He atom as a realistic test case for exploring
the capabilities of HF and of a variational ansatz for it. We now want to use these
results as benchmark for testing DFT. We shall consider a simple model neglecting
correlations, for then the HF approach becomes the theoretical benchmark and one
can test DFT (exchange only) with respect to the HF result. The He atom case is a
very critical test because the external potential, the Coulomb field of the He nucleus,
is far from being “slowly varying,” and so is the density, not to mention the technical
difficulties outlined in Sect. 5.6.

Our starting point is thus exactly the model Hamiltonian equation (5.27) and we
compute average values of the various terms exactly the same way, in the Kohn–
Sham approach, but for the exchange term which is treated at LDA level. This
amounts to replacing Ecoul,ex in (5.30) by the exchange energy in LDA as given
in (6.5e). Evaluating this for the ansatz (5.33) as

Eex−LDA = −βx

∫
d3r ρ4/3(r) = −4πβx

(
2

π

)4/3

α4
∫ ∞

0
dr r2 exp

(
−8α

3
r

)

= −4π
3e2(3π2)1/3

4π

(
2

π

)4/3

α
27 × 6

83
= −e2α

35

27π
(6.11)

produces the energy at the level of LDA as

ELDA(α) = Ekin + Eext + Ecoul,dir + Ex−LDA

= �
2

m
α2 + e2α

(
−4 + 5

4
− 35

27π

)
2 Ry

(
α2 − 3.35 α

)
. (6.12)

Minimization of this energy yields

αLDA = 1.68 a−1
0 =⇒ ELDA,opt = −5.61 Ry. (6.13)

This value reproduces the HF energy, at which it aims, within 1.4% — which is
a very satisfying result in view of the simplicity of the LDA functional (6.5e) for
exchange. This is even more true as the He atom is far from a homogeneous density
distribution. One should, however, remain cautious. One satisfying result is not a
proof of generally good performance; it is, at best, an encouragement.

Table 6.1 summarizes the findings in connection with the test case He atom. We
also show the energies from the pure external potential without electron–electron
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Table 6.1 Binding energies of the electron cloud of the He atom obtained with various approaches
as indicated. Benchmark is the experimental value given in the first line. The second block shows
results obtained analytically with a variational ansatz as outlined in this section, while the third
block shows results from a numerical calculation

EB [Ry] Deviation %

Experiment −5.81
Pure Uext −8.00 −38.0
Hartree e−αr -ansatz −3.80 35.0
HF e−αr -ansatz −5.69 2.1
KS x-LDA e−αr -ansatz −5.61 3.4
Hartree −3.90 33.0
HF −5.72 1.5
KS x-LDA −5.71 1.7

interaction and the Hartree result, where exchange is ignored. This serves to illus-
trate the balance of energies. The energy in line two from pure external field shows
dramatic over-binding. The Hartree approach (line 3 or 6) overcompensates and
pushes the energy far above the wanted value. Including exchange corrects that and
shifts the result pretty close to the goal. A deviation of 1.5% may be insufficient
for many practical applications, but one cannot overemphasize the huge energies
involved, which so nicely cancel. The missing correlation effects are a perturba-
tion, crucial for quantitative success, but small. This shows that successive correc-
tions with perturbation theory are a promising strategy in atomic physics and this
approach is, indeed, widely used [100]. The LDA for exchange also works surpris-
ingly well, as discussed above.

Figure 6.1 complements Fig. 5.2 on the density distribution in the He atom. We
compare the LDA results with HF. The differences in ρ as such are found to be so
small that they can hardly be distinguished graphically. Therefore the difference of
the LDA densities in relation to the HF density is shown. The kink in the absolute
value indicates a change of sign in the deviation. What concerns the sign, the LDA
results fall off slightly more slowly, so that the deviation is positive for large r .
This complies with the fact that the asymptotic exponential decrease is determined
by the ionization potential (last bound single-particle state) and this is somewhat

Fig. 6.1 The relative error of
local densities, DFT-LDA as
compared to HF for the
electron cloud of the He
atom: |ρLDA − ρHF|/ρHF
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underestimated in LDA (for an improvement see the next section). Nonetheless, the
agreement between the two methods is remarkable. It degrades, of course, for the
far asymptotics, a region which is extremely sensitive to details of the model.

6.3 Self-Interaction Correction (SIC)

Let us consider the Kohn–Sham equations (6.7 and 6.10) for the case of one particle
only. There exists only one occupied state ϕ0(r)χ+ 1

2
and the density simply becomes

ρ(r) = |ϕ0(r)|2. We insert that into the KS equations and obtain

ε0ϕ0(r) =
[

− �
2

2me
Δ + Uext(r)

+
∫

d3r2
e2

|r−r2| |ϕ0(r2)|2 − 4βx

3
|ϕ0(r)|2/3

︸ ︷︷ ︸
�= 0 lightning

]
ϕ0(r) .

The interaction obviously does not vanish, implying that the particle experiences
a self-interaction which appears unphysical. We countercheck with the Hartree–
Fock equations (5.15) for the case of one particle. The self-consistent field from the
interaction becomes

(
Udir − Ûex

)
φα =

∫
d3r ′ v(r−r′) |ϕ0(r)|2 φ0(r) −

∫
d3r ′ v(r−r′)ϕ0(r)ϕ∗

0 (r′)ϕ0(r′)

= 0 .

It vanishes as it should be. The spurious self-interaction has sneaked in somehow
on the way to LDA. One could argue that LDA is an approximation for many-
fermion systems and that the self-interaction error becomes relatively unimportant
for large N . Moreover, it turns out that the LDA description of the total energy and
bulk density is surprisingly reliable. And yet, there remain problems in detail. Con-
sider, e.g., the asymptotic behavior of the mean field at large distances for a neutral
atom. The exchange potential in LDA falls off very quickly. The direct Coulomb
potential stems from the total density of N electrons, thus fully compensating the
attractive nuclear Coulomb potential (from N positive charges). Thus the mean-field
potential falls off exponentially, whereas the correct behavior when removing one
electron to large distances r would be that only the remaining N − 1 electrons
contribute to the total Coulomb potential, leaving an asymptotic trend ∝ −e2/r .
It is plausible that this self-interaction error may concern only details and that the
global properties remain basically correct. Experience confirms that in most cases.
The “details” which are corrupted are, e.g., the tail of the charge density, Koopman’s
theorem (see Sect. 5.3.2), and with it all single-particle energies.

There are various solutions to this problem. The simplest, and most widely fol-
lowed, strategy is to refrain from looking at single-particle energies, claiming that
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these do not belong to the safe observables of DFT. There exist several recent
developments which try to unify exact exchange with DFT by developing better
manageable schemes in the spirit of the optimized effective potential approach, see,
e.g., [61]. A conceptually simple and intuitive remedy is the self-interaction correc-
tion (SIC) initiated in [83]: the spurious self-interaction is simply subtracted from
the energy functional for each particle. Let us assume that we are given an LDA
functional ELDA[ρ]. The SIC functional is then composed as

ESIC = ELDA[ρ] −
N∑

i=1

ELDA[ρi ] , ρi (x) = |ϕi (x)|2 . (6.14a)

Variation with respect to ϕ∗
j then yields the SIC mean-field Hamiltonian as

ĥ(SIC)
j ϕ j =

[
− �

2

2me
Δ + Uext(r) + δELDA

δρ
[ρ] − δELDA

δρ
[ρ j ]

]
ϕ j . (6.14b)

The LDA mean-field δELDA/δρ appears with the total density ρ, which is the stan-
dard DFT-LDA term, but it reappears in a next term with the single-particle density
ρ j and that term correctly removes the self-interaction, as can quickly be seen from
the limit N = 1. Now, however, the effective Hamiltonian depends on the state j
on which it acts. Extra measures have to be taken to guarantee orthonormality of
the set of occupied single-particle states {ϕi }. These technical details go beyond the
scope of this book. We merely want to illustrate the effect for a realistic example.
Figure 6.2 shows (numerical) results for the Ne atom using the elaborate LDA func-
tional from [82]. The effect is obvious. LDA alone produces too weak binding for
the electrons. The SIC produces the correct (attractive) asymptotics, thus enhancing
binding and shifting at once the single-particle energies into the correct range. We

Fig. 6.2 The single-electron
energy in the 2s–2p shell of
the Ne atom described at
various levels of
approximation
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mention in passing that the SIC also restores Koopman’s theorem which is grossly
violated for pure LDA, but which worked fine for HF.

6.4 The Skyrme Energy Functional in Nuclear Physics

From a slightly different perspective, namely that of an effective interaction, Skyrme
proposed a simple ansatz for the self-consistent description of nuclei [98]. The
model has developed into a widely used tool in nuclear structure physics with the
appearance of a first quality parametrization [109] (for a recent review see [8]). It
can be considered as an effective energy-density functional along the lines of DFT as
outlined above. As nuclei have a large spin–orbit coupling, however, the functional
includes other densities besides the local density ρ, namely at least a spin–orbit
density and often also a kinetic density (to model the effective nucleon mass in the
nuclear medium). The full functional is thus very involved. We refer the reader to
more specialized presentations for details [92, 42, 8]. Here as a practical example
we will discuss a highly simplified version for a zeroth-order description of nuclei.

The key building block of the potential energy functional of the Skyrme force
consists of a zero-range attractive two-body term ∝ ρ2 and a counterweighting
repulsive one with a higher density dependence ∝ ρ2+α . We follow the lines of
[58] and discuss a simple model where the spin–orbit contributions and the kinetic
corrections are ignored. This is acceptable for small nuclei. Furthermore, the com-
plications of introducing isovector terms (i.e., terms which are sensitive to the dif-
ference between proton and neutron densities) are circumvented by confining the
discussion to nuclei with N = Z (N being the neutron number and Z the proton
number). The reduced Skyrme functional then becomes

ESk = �
2

2m

A∑
α=1

∫
d3r |∇ϕα|2| + 1

2

∫
d3r

[
b0ρ

2 + b3ρ
2+α
]+ ECoul[ρp], (6.15)

where A = N + Z , ρ denotes the total density, and ρp the proton density. The term
ECoul stands for the Coulomb energy as given in (6.5c). In the spirit of LDA, the
model is calibrated in homogeneous nuclear matter. The ansatz (6.15) then yields
for the energy per nucleon in symmetric matter

E

N
= �

2

2m

6

5

(
3π2

2

)2/3

ρ2/3 + 1

2

[
b0ρ + b3ρ

1+α
]

. (6.16)

In the spirit of LDA, we compare that with results of microscopic calculations for
symmetric nuclear matter [5], as shown in Fig. 6.3 (solid line). The most important
part of that curve resides around the minimum characterized by the equilibrium
density ρ0 = 0.155 fm−3, the corresponding energy (E/N )eq = −15.6 MeV, and
the curvature at the minimum, the incompressibility K = 9ρ2∂2

ρ(E/N ) = 285 MeV.
The ansatz (6.16) has three free parameters: b0, b3, and α. They are adjusted to these
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Fig. 6.3 Binding energy per
nucleon of symmetric
nuclear-matter versus total
density. The solid line shows
a result from “ab initio”
calculations taking care of
two-nucleon correlations [5].
The dashed line is a fit to the
form (6.16) adjusting the free
parameters b0, b3, and α –15
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three basic equilibrium properties. The resulting binding-energy curve is shown
as a dashed line in Fig. 6.3. It is obvious that the very simple ansatz provides a
surprisingly good description of the nuclear-matter binding-energy curve. Larger
deviations occur only at low densities, a region which is known to be extremely
hard to describe. We now take the energy functional (6.15) with the parameters fit-
ted to the nuclear-matter curve and solve the corresponding Kohn–Sham equations
numerically for the finite (rather small) nucleus 16O. The result is a binding energy
of 163 MeV (as compared to the experimental value of 126 MeV), and an r.m.s.
radius of 2.50 fm as compared to 2.68 fm. That is a very satisfying result in view
of the extreme simplicity of modeling and adjustment. At the same time, the still
sizeable discrepancies indicate that the nuclear functional has to be considerably
more complicated than the ansatz (6.15). The most important next ingredient is a
gradient correction ∝ (∇ρ)2, which is important for describing surface tension, and,
of course, the spin–orbit density. The modeling of the (volume) density dependence
can remain as naive as conjectured in ansatz (6.15). The hierarchy of importance
differs from electronic LDA.

6.5 The Thomas–Fermi Approach

The Thomas–Fermi approximation [105, 34] is a DFT at the level of the Hohenberg–
Kohn theorem, where the kinetic energy is not treated in detail like in the Kohn–
Sham scheme, but also approximated as a functional of density using the LDA for
the kinetic energy (see also (2.24))

εkin[ρ] = Ekin

N
= 3

5

�
2

2m
k2

F = (3π2)2/3 3

5

�
2

2m
ρ2/3 (6.17)

This yields a total energy for spin 1/2 particles.

Etot =
∫

d3rρ(r)
(
εkin[ρ(r)] + εpot[ρ(r)] + Uext(r)

)
, (6.18)
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where the potential energy functional covers all interaction effects (direct term,
exchange, correlations) and Uext is a possible external field. This energy is a func-
tional of the local density ρ(r) throughout and so provides a particularly simple
description lacking, of course, any shell effects because the LDA functional has
wiped them out. The variation of the energy to reach the ground state is here done
with respect to the density. There is also the constraint to a prescribed particle num-
ber N = ∫ d3r ρ. This yields the variational condition

δρ(r)
[
Etot − μ0

∫
d3r ρ

] = 0,

and consequently the Thomas–Fermi equation

(3π2)2/3 �
2

2m
(ρ(r))2/3 + ULDA[ρ(r)] = μ0 − Uext(r), (6.19a)

ULDA = ∂(ρεpot)

∂ρ
, (6.19b)

μ0 fixed by condition
∫

d3rρ(r) = N , (6.19c)

where the Lagrangian parameter μ0 is the Fermi energy, equivalent to the chemical
potential μ at temperature T = 0. Note that ULDA here is formally the same as
UKS in (6.10). Equation (6.19a) determines the spatial density distribution ρ(r) as
the solution of a transcendental equation, which may be expressed in closed form
for sufficiently simple ULDA. The solution then provides the total energy as well as
local density and any observable which can be directly computed from these two
quantities. More involved observables may also be computed but require to go back
to the Fermi gas and to perform the steps of LDA for that particular observable (an
example is the discussion of the one-body density matrix in relation to Fig. 2.4).

In the following, we will present two examples for the Thomas–Fermi method,
namely the electron cloud of atoms and fermionic atoms in a harmonic trap. The
first test case is the oldest example [105, 34], worked out long before DFT was
established, while the second one is a quite modern application.

6.5.1 The Thomas–Fermi Model for Atoms

The atomic Thomas–Fermi model is one of the first self-consistent approaches to the
many-fermion problem, providing a simple approximation to the electronic density
in atoms. While approximating the electron density by its “Fermi-gas” value it fully
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accounts for the Coulomb interaction, at least its direct part. It furthermore turns
out that with a clever change of variables the solution of the problem becomes a
universal function and thus needs to be solved for only once. It then provides the
electronic density ρ(r) and the associated Coulomb field V (r).

The nucleus (charge Z ) is placed at r = 0 and outside that point the electronic
density ρ(r) and the Coulomb potential V (r) are linked together by the Poisson
equation

ΔV = 4πeρ(r), (6.20)

where we use the electronic charge density −eρ(r). Note that the obvious spherical
symmetry of the problem allows to reduce V (r) to V (r ). Two boundary conditions
complement this equation. For r → 0, V should reduce to the nuclear contribution:

V → Ze

r
for r → 0, (6.21)

and outside the atomic radius a net charge z associated to the corresponding ion is
assumed:

V → ze

r
for r ≥ R, (6.22)

where R is the atomic radius. A neutral atom is associated with the choice z = 0.
These boundary conditions are complemented by a continuity condition at r = R,
namely

dV

dr |r=R
= − ze

R2
. (6.23)

The second component of the model concerns the treatment of the electron
density. One first introduces the energy E of a single electron which can be
written as

E = �
2k2

2me
− eV (r ). (6.24)

Demanding that the electron should be bound leads to the condition E ≤ −eV (R)
which can be rewritten as

k2 ≤ k2
F(r ) = 2me

�2
e
(
V (r ) − V (R)

)
(6.25)

and defines an r -dependent maximum value of the momentum kmax. Assuming a
local Fermi-gas description of the electron gas one can then express the electron
density ρ(r) as a function of kmax = kF (r ) following the Fermi-gas expression
(2.17) as
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ρ(r) = k3
F

3π2
= 1

3π2

[2mee

�2
(V (r ) − V (R))

]3/2
. (6.26)

Note that the density is defined only in the classically allowed region, namely for
r ≤ R.

Putting all the pieces together finally allows writing down a self-contained equa-
tion for the potential V (r ). Inserting the expression for ρ(r) = ρ(r ) into the
Poisson equation and using the Laplacian in spherical symmetry as Δ = r−1∂2

r r
leads to

d2

dr2
(r V ) = 4e2r

3π

[2me

�2
(V (r ) − V (R))

]3/2
. (6.27)

This equation can be further simplified by introducing the intermediate quantity

v(r ) = r

Ze2

(
V (r ) − V (R)

)
(6.28)

and the reduced variable

x = r

a
with a =

(
9π2

128Z

)1/3
�

2

mee
� 0.88534Z−1/3a0. (6.29)

With this variable and the intermediate function v a dimensionless equation for v is
finally obtained:

d2v

dx2
= v(x)3/2

√
x

(6.30)

together with the boundary conditions (introducing X = R/a)

v(0) = 1 v(X ) = 0 X
dv

dx

∣∣∣∣
x=X

= − z

Z
. (6.31)

The first two conditions are boundary conditions which specify the solution of the
second-order differential equation (6.30) uniquely. The third condition describes
the connection between the (scaled) radius X and the relative ionization z/Z . The
appropriate X for a desired z has to be found iteratively. Once the solution for
the dimensionless potential v(x) is found, one can easily recover the associated
Thomas–Fermi density as

ρ(r ) = 1

3π2

[
2Z

a0

]3/2 (
v(x)

xa

)3/2

≈ 0.0796
Z

a3

(
v(x)

x

)3/2

. (6.32)

The solutions of (6.30) are universal for any Z but require a numerical calcula-
tion. Results for v are plotted in Fig. 6.4 and also reflect the behavior of the density



158 6 Density Functional Theory

0

 0.2

 0.4

 0.6

 0.8

1

0 2 4 6 8  10  12

d
im

en
si

o
n

le
ss

 p
o

te
n

ti
al

 v
 

dimensionless radius x 

TF
LDA Kr atom

Tietz appr.

0

 0.2

 0.4

 0.6

 0.8

1 TF
LDA Kr+ cation

 0.001

 0.01

 0.1

1

0 5  10  15  20

dimensionless radius x 

TF
LDA Kr atom

Tietz appr.

 0.001

 0.01

 0.1

1 TF
LDA Kr+ cation

Fig. 6.4 The universal potential v(x) from (6.30) for two effective ionizations z/Z . Lower: Neutral
atom z/Z = 0. Upper: z/Z = 1/36 which is a singly charged cation for Kr. The left panels show
the results in the relevant region of substantial densities. The right panels show the asymptotics
by using a logarithmic scale and larger range of x . For comparison, the results of a fully quantum-
mechanical LDA-SIC calculation (see Sect. 6.1) for the Kr atom (lower) and Kr+ cation (upper)
are also shown. The “potential” is here a way to plot the density as v = x(ρ a/(0.0796 Z ))2/3. In
case of the neutral atom, the Tietz approximation [106] (6.33) is also given

according to (6.32). Figure 6.4 displays two cases: an ion (solution with z = 1 for
Z = 36) and a neutral atom (solution with z = 0 for Z = 36). The left panels
show the region where most of the density is concentrated. The TF results have
a smooth trend in contrast to the fully quantum-mechanical result for Kr, which
shows the typical shell fluctuations of the density (see also Figs. 1.3 and 2.1), but
it is gratifying to see how nicely the TF trends average through the quantal results.
For the neutral atom, one should note that there exists an analytic approximation to
the exact solution v(x). It is the Tietz approximation [106]

v(x) � ṽ(x) = 1

(1 + αx)2
, α = 0.53625 (6.33)

with the constant α ensuring normalization. It is also shown in Fig. 6.4 and it
reproduces the bulk density fairly well (lower left panel). The right panels show the
asymptotic behavior for large x . Here we see large differences, if not pathologies.
The neutral atom in TF approximation has an infinite extension, contrary to reality.
The TF density of the cation terminates at a finite X , see (6.31), again at variance
with the realistic case which falls off exponentially. Still, the atomic Thomas–Fermi
model provides an interesting, close to analytical, solution to the many-electron
problem in atoms. It describes the average trends and it may also serve as a starting
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point in iterative processes for more involved theories like HF or Kohn–Sham (see
above sections).

6.5.2 Energy Functional for Atoms in a Trap

Fermionic atoms in a trap span an enormous range of physical conditions from a
weakly perturbed Fermi gas to a highly correlated system with possibly different
outcome: as a Bose–Einstein condensate (of dimers) or as a well-paired BCS phase
(for a brief introduction see Chap. 1, for a review on the experimental status [14],
and for a theoretical survey [38]). A key parameter deciding on the regime is the
scattering length a which is deduced from the total cross section at k −→ 0 as
σ (k = 0) = πa2 [62]. A highly interesting regime is reached in what is called
the unitary limit kFa −→ ∞. This allows, e.g., a system which is dilute and at the
same time highly correlated. Again, it is possible to incorporate the correlations into
an energy-density functional and to obtain a surprisingly simple description at the
level of the Thomas–Fermi approach. This is what we are going to briefly present
in this section. A very broad and detailed discussion of fermions in a trap is found
in [38].

The unitary limit establishes simple scaling behavior because one length scale,
the scattering length, disappears. On general grounds, one can then assume that the
total energy at temperature T = 0 becomes

ε(ρ) = E

N
= 3

5

�
2k2

F

2m
(1 + β), (6.34)

where more elaborate calculations predict β = −0.58 (see Sect. IV.F. in [19]).
Traps usually provide a harmonic external potential which we assume here as being
spherical to simplify notations. The corresponding Thomas–Fermi equation then
reads

μ0 = UTF[ρ(r)] + Vho(r), (6.35a)

UTF[ρ] = ∂(ρε)

∂ρ
[ρ] = (3π2)2/3 �

2

2m
ρ2/3(1 + β), (6.35b)

Vho = m

2
ω2r2. (6.35c)

The solution is

ρ(r) = (1 + β)−3/2

3π2

(
2m

�2

)3/2 (
μ0 − m

2
ω2r2

)3/2
θ
(√ 2μ0

mω2
− r
)
,
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Fig. 6.5 The x–y-integrated
density profile n(1)(z) for a
trapped ensemble of 6Li
atoms under the conditions
close to the unitary limit. The
dots are experimental results.
The dashed line corresponds
to the prediction of a free
Fermi gas. The solid line
represents the Thomas–Fermi
approach (6.37) with a freely
fitted β = −0.73, adapted
from [38]

with μ0 to be fixed using (6.19c). This can be converted into one closed
expression

ρ(r) = 8N

π2 R3

(
1 − r2

R2

)3/2

θ (R − r ), R = (1 + β)1/4

√
�

mω
(24N )1/6. (6.36)

The experimental observation refers to the integrated density

n(1)(z) =
∫

dx dy n(r) = N

Rz

16

5π

(
1 − z2

R2
z

)5/2

. (6.37)

Figure 6.5 compares the result of this simple Thomas–Fermi model with an exper-
imental density distribution for a gas of 6Li atoms driven in the regime of the uni-
tary limit. The agreement is very satisfying. Comparison with the free gas (β = 0,
dashed line) shows the impact of interaction effects, but these amount to a simple
rescaling of the “kinetic energy” (6.34).

6.6 Concluding Remarks

Density functionals provide a remarkably efficient tool for the description of many-
fermion systems. They are especially used in electronic systems and nuclear physics,
although they may differ in detail from one field to the other. The interest of such
density functional approaches is that they allow to treat the problems at the formally
simple level of the Hartree approximation by using an effective interaction which
practically includes correlation effects in a simple way.

Although introduced from a practical point of view in the 1930s in atoms,
density-functional theories were only much later founded on a strong formal basis
which then motivated numerous formal and practical developments especially in
electronic systems. The nuclear case progressed in a somewhat parallel way. The
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situation today is the one of a very active field in which various facets of the theory
and possible applications are explored in parallel. There obviously remains in this
domain several aspects to be worked out in deeper detail and this constitutes a fur-
ther motivation for the topic which joins formal simplicity to efficiency.



Chapter 7
Quasispin Models

In elementary quantum mechanics, the spin- 1
2 system is often taken as the simplest,

still non-trivial, example of a two-state system. It allows to point out major quantum
properties in the purely abstract space of spin degrees of freedom. Assemblies of
spins provide simple models for interacting systems. They are a key model system
in solid-state theory, e.g., for spin glasses or strongly interacting electrons (Hubbard
model). Here we want to exploit the simplicity provided by a two-level system
to understand how elaborate techniques of the many-fermion problem perform in
practice. The advantage of such model systems, even if not fully realistic, lies in the
fact that most calculations can be performed analytically thanks to straightforward
algebraic techniques of angular-momentum algebra. We shall thus use such methods
here, in particular to analyze mean-field approaches in some detail.

Although somewhat inspired by spin systems, the models we want to consider in
this chapter are more general and can be derived as a simplification of realistic situ-
ations leading to a simplified two-level Hamiltonian, hence bearing some flavor of a
spin- 1

2 system, especially from the formal point. In order to keep in mind the formal
similarities, but to exemplify the generality of such approaches, they are usually
called quasispin models. We will investigate their formal properties and see how the
mean-field approximation performs in comparison to exact solutions. We will also
consider some realistic applications, especially in the case of deformation effects in
molecules and nuclei.

7.1 Construction of Quasispin Models

7.1.1 Examples and Motivation

Probably the simplest quantum-mechanical example for a quasispin model is a
spin- 1

2 system. It allows a fully analytic treatment using algebraic methods and is
a generic system which turns out to be applicable as a simple model for a broad
variety of physical systems which are seemingly very different, but share a common
formal structure. In this section, we will discuss quasispin models in the spirit of the

J.A. Maruhn et al., Simple Models of Many-Fermion Systems,
DOI 10.1007/978-3-642-03839-6 7, C© Springer-Verlag Berlin Heidelberg 2010
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Lipkin–Meshkov–Glick (LMG) model [64] as a particular case which we develop
in depth. Other applications are then discussed in brief.

Let us consider many-fermion compounds with a closed shell like, e.g., rare-gas
atoms, magic nuclei, metal clusters, 3He clusters, or quantum dots. The typical spec-
tral situation is sketched in Fig. 7.1. The occupied and unoccupied levels next to the
Fermi energy are the ones reacting most sensitively to any perturbation. The 1ph
energies are lowest and the coupling matrix elements are generally largest for these
transitions. For highly symmetric systems (as closed-shell systems usually are), the
levels are bunched in shells such that there emerges a more or less clear distinction
between the last occupied shell and those farther below and between the first unoc-
cupied one and others farther up, see, e.g., Fig. 3.3. The most active zone is given
by the two shells just below and just above the Fermi energy. It can be described
schematically by two highly degenerate levels as indicated in the step from the left
part to the right part in Fig. 7.1, further simplified by assuming the same degree of
degeneracy in both shells and by considering only vertical transitions. The occupied
states share one level, denoted m = −1, and the relevant unoccupied ones the other
level, m = +1. The energy difference ε between these two levels represents the shell
gap. The states within each level are labeled through the secondary quantum num-
ber α = 1 . . . N . The zeroth-order Hamiltonian then defines these single-particle
energies εmα and the transitions go from the lower to the upper level. For sake of
simplicity we consider only transitions which preserve the α-quantum number, as
indicated.

V12 schematic reduction
for active space

εF

ε
2

−

ε
2

+

near Fermi surface
Typical spectrum 

ignored (less active)

ignored (less active)

2 3 N. . . . 

Lipkin−Meskov−Glick model

m = −1

m = +1

  =1α

Fig. 7.1 Schematic view of the LMG model. Left panel: A typical spectrum for a small spherical
system (atom, nucleus, metal cluster, quantum dots) with a closed shell near the Fermi surface.
Occupied states are indicated by a filled circle, unoccupied ones by an empty circle, and levels
farther away from the Fermi energy only by a line. Transitions are indicated by arrows. Interactions
induce two simultaneous, coupled transitions. That is indicated by a horizontal dashed line (labeled
by V12). Right panel: The same for the LMG model. Labels and notations for the model states are
also indicated
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7.1.2 The Model Hamiltonian

It is now crucial to realize that an isolated two-level system is isomorphous to a
spin- 1

2 system. This is visualized in Fig. 7.2. The three operators for excitation

â†
+1â−1, de-excitation â†

−1â+1, and measurement of status â†
+1â+1 − â†

−1â−1 obey
the same commutator algebra as the three spin- 1

2 operators ŝ+, ŝ−, and ŝz , as will
be shown in Sect. 7.2. Many-particle systems translate to systems of many coupled
spins, and this is the point where the powerful techniques from angular-momentum
algebra can be applied.

Having sorted out this analogy to spin, we continue with the construction of
the Hamiltonian for the quasispin model of a many-fermion system near the Fermi
energy. The intended α ↔ α′ symmetry of the model suggests a two-body interac-
tion which has the same strength for all 2ph excitations, i.e., for all â†

+1,α â†
+1,α′ â−1,α′

â−1,α , and similarly for the other ups and downs. All this together yields the model
Hamiltonian

Ĥ = Ĥ0 + V̂ , Ĥ0 = ε Ĵ0, V̂ = G

2

(
Ĵ+ + Ĵ−

)2
, (7.1a)

Ĵ0 =
∑

α

1

2

[
â†

1,α â1,α − â†
−1,α â−1,α

] ≡
∑

α

ŝ(α)
0 , (7.1b)

Ĵ+ =
∑

α

â†
+1,α â−1,α ≡

∑
α

ŝ(α)
+ , (7.1c)

Ĵ− =
∑

α

â†
−1,α â+1,α ≡

∑
α

ŝ(α)
− , Ĵ− = Ĵ †

+, (7.1d)

where the fermion operators obey, of course, the standard fermion algebra as sum-
marized in Appendix A.4.

In spite of the dramatic simplifications, the setup still reflects many essential
features of a realistic situation. In the stationary regime, it is a useful model to
explore the restructuring of states in the Hartree–Fock ground state including the
occurrence of spontaneous symmetry breaking (see Sect. 7.7) and related questions
like restoration of symmetry and soft modes. In the dynamical regime, the LMG
model is perfectly suited to explain the emergence of collectivity out of a coher-
ent superposition of single-particle excitations like, e.g., the plasmons in metallic
systems and quantum dots (see Sects. 1.1.5 and 8.4.2.2).

The quasispin algebra defines a quite generic scenario. There is a large number of
similar models in many different fields. There are applications where one would not
expect a relation to quasispin at first glance. In this book, we will have the example
of pairing in the BCS approximation, as introduced in Sect. 9.3.1 and worked out in
Sect. 9.4, for which we also find a close relation to quasispin. In addition there is, of
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transition spin−op. transition spin−op.

+1â −1â+
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−
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Fig. 7.2 Illustration of the equivalence of a two-level scenario with a spin- 1
2 system

course, the huge family of genuine spin models going back to the celebrated Ising
model [12], whose Hamiltonian reads in its most general form

Ĥ = ε
∑

α

ŝ(α)
0 −

∑
αβ

∑
i∈{x,y,z}

Vαβ,i ŝ
(α)
i ŝ(β)

i . (7.2)

This covers a large variety of applications depending on the choice of the interaction
matrix elements Vαβ,i . The above LMG model is recovered with Vαβ,i = 2Gδαβ .
A linear chain with nearest-neighbor coupling is realized with Vαβ,i = δα,β+1 and it
can be closed to a ring with Vαβ,i = δα,mod(β+1,N ) where α, β ∈ {0 . . . N − 1}. In the
case of magnetic systems, the first term in the Hamiltonian (7.2) stems from an exter-
nal magnetic field B0 producing a basic energy splitting ε = μB0, where μ is the
magnetic moment of the basic constituents. The example of an anti-ferromagnetic
ring makes it clear, though, that this modeling is not restricted to plain spins. The
ring is also used to describe the electron cloud in a circular quantum dot [87], and
“spin” can stand for any decision among two choices. Thus it is natural that coupled
spin models play a role in quantum computing [51]. There is also a close relationship
to lattice gas models like, e.g., the Hubbard model [94]. We cannot cover the full
richness of quasispin models in this book, so that we confine the discussion to a few
crucial examples which illustrate basic physical mechanisms (mean field, symmetry
breaking, collective motion) and which also serve to develop some experience with
the handling of quasispin models.

In the remainder of this chapter, we will work out the structure of the model and
its operator algebra, derive the exact ground-state solution, develop and discuss the
HF solutions, and finally remark on spontaneous symmetry breaking. Dynamical
aspects will be taken up in Chap. 8 at the example of the random-phase approxima-
tion (RPA), the dynamic mean-field theory for small-amplitude oscillations.
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7.2 The Quasispin Algebra

Figure 7.2 has suggested an identification of a two-level system with a spin- 1
2 sys-

tem. Many-fermion systems and other applications provide several similar two-level
systems, or spins respectively, labeled here by the index α. We summarize the
properties:

â†
+1,α â−1,α ≡ ŝ(α)

+
â†

−1,α â+1,α ≡ ŝ(α)
−

â†
+1,α â+1,α − â†

−1,α â−1,α ≡ 2ŝ(α)
0

[
ŝ(α)

0 , ŝ(α′)
+
] = δαα′ ŝ(α)

+[
ŝ(α)

0 , ŝ(α′)
−
] = −δαα′ ŝ(α)

−[
ŝ(α)
− , ŝ(α′)

+
] = 2δαα′ ŝ(α)

0

Ĵν =
N∑

α=1

ŝ(α)
ν , [ Ĵ0, Ĵ±] = ± Ĵ±, [ Ĵ+, Ĵ−] = 2 Ĵ0 .

(7.3)

In the following, we will briefly provide the proof for the commutator algebra in the
setup (7.3). The factors δαα′ are trivial as different spins (levels) do not communi-
cate. It remains to prove the basic spin commutators for one system α. We simplify
the notations by dropping the counter α.

[ŝ0, ŝ+] = [1

2
(â†

+1â+1 − â†
−1â−1), â†

+1â−1

]

= 1

2

{ [
â†

+1â+1, â†
+1â−1

]
︸ ︷︷ ︸

â†
+1â−1

− [â†
−1â−1, â†

+1â−1

]
︸ ︷︷ ︸

−â†
+1â−1

}
= 1

2
2â†

+1â−1 = +ŝ+.

The proof for the commutator with ŝ− proceeds in the same fashion. We leave it as
an exercise to the reader. The third commutator reads in detail

[ŝ+, ŝ−] = [â†
+1â−1, â†

−1â+1

] = â†
+1â−1â†

−1â+1 − â†
−1â+1â†

+1â−1

= â†
+1â+1 − â†

+1â†
−1â−1â+1 − â†

−1â−1 + â†
−1â†

+1︸ ︷︷ ︸
â†

+1â†
−1

â+1â−1︸ ︷︷ ︸
â−1â+1

=
{

â†
+1â+1 − â†

−1â−1

}
= 2ŝ0.

The algebra for the total quasispin Ĵν follows trivially from these basic commu-
tators.

The analogy to angular momentum also suggests an alternative representation of
the algebra. The operators Ĵ± are extremely useful for stepping through the chains
of excitations, as we will see, but they are not Hermitian and thus not suited as
observables. We introduce instead the Hermitian combinations
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Ĵx = 1

2

(
Ĵ+ + Ĵ−

)
, Ĵy = − i

2

(
Ĵ+ − Ĵ−

)
, Ĵz ≡ Ĵ0, (7.4)

where the third operator has just been renamed to fit better into the usual x–y–z
notations. These three operators fulfill the angular momentum algebra in the better-
known form

[
Ĵx , Ĵy

] = i Ĵz,
[
Ĵy, Ĵz

] = i Ĵx ,
[
Ĵz, Ĵx

] = i Ĵy, (7.5)

It is interesting to express the two-body interaction V̂ in the model Hamiltonian
(7.1) through these operators, which yields

V̂ = 2G Ĵ 2
x . (7.6)

7.3 The Unperturbed Ground State

The unperturbed system is the case when the two-body interaction V̂ disappears,
i.e., for G = 0 or Ĥ = Ĥ0. The ground state of this unperturbed system is simply

|Φ0〉 = â†
−1,N . . . â†

−1,1|0〉 ≡ χ
(1)
↓ . . . χ

(N )
↓ , (7.7a)

with the basic properties

〈Φ0|Φ0〉 = 1, Ĵ−|Φ0〉 = 0, 〈Φ0| Ĵ+ = 0. (7.7b)

Note that it is an independent-particle state, which is no surprise as Ĥ0 is a one-body
Hamiltonian. It is an eigenstate of quasispin with the following properties:

Ĵ2|Φ0〉 = J (J + 1) |Φ0〉, Ĵ0|Φ0〉 = −J |Φ0〉, J = N
2 (7.8a)

Jx = 〈Φ0| Ĵx |Φ0〉 = 0, Jy = 〈Φ0| Ĵy|Φ0〉 = 0, (7.8b)

Δ2 Jx = 〈Φ0| Ĵ 2
x |Φ0〉 = N

4 , Δ2 Jy = 〈Φ0| Ĵ 2
y |Φ0〉 = N

4 ,

Δ2 Jz = 〈Φ0| Ĵ 2
z − Jz

2|Φ0〉 = 0 . (7.8c)

This means that the unperturbed ground state has total angular momentum J = N/2
and its z component is Jz = −N/2, so that it is fully aligned in the negative z
direction. This nicely corresponds to the view of a system composed of N times
spin- 1

2 , initially all aligned with − 1
2 .
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The expectation values (7.8b) are derived simply from the combinations (7.4)
and

〈Φ0| Ĵ−|Φ0〉︸ ︷︷ ︸
=0

= 0, 〈Φ0| Ĵ+︸ ︷︷ ︸
=0

|Φ0〉 = 0.

The eigenvalue relation (7.8a) is obvious for Ĵ0. For Ĵ2 we first prove

Ĵ+ Ĵ−|Φ0〉︸ ︷︷ ︸
=0

= 0, Ĵ− Ĵ+|Φ0〉 = [ Ĵ−, Ĵ+
]

︸ ︷︷ ︸
−2 Ĵ0

|Φ0〉 + Ĵ+ Ĵ−|Φ0〉︸ ︷︷ ︸
=0

= N |Φ0〉,

and can then deduce

Ĵ2|Φ0〉 = ( Ĵ 2
x + Ĵ 2

y + Ĵ 2
z

) |Φ0〉 = 1

2

(
Ĵ− Ĵ+ + Ĵ+ Ĵ− + 2 Ĵ 2

0

) |Φ0〉

= N

2

(
N

2
+ 1

)
|Φ0〉.

To evaluate the variances, heavy use is again made of Ĵ−|Φ0〉 = 0 and 〈Φ0| Ĵ+ = 0
to obtain

Δ2 Jx = 〈Φ0| Ĵ 2
x |Φ0〉 = 1

4
〈Φ0| Ĵ+ Ĵ+ + Ĵ+ Ĵ− + Ĵ− Ĵ+ + Ĵ− Ĵ−|Φ0〉

= 1

4
〈Φ0| Ĵ− Ĵ+|Φ0〉 = N

4
,

Δ2 Jy = 〈Φ0| Ĵ 2
y |Φ0〉 = 1

4
〈Φ0| − Ĵ+ Ĵ+ + Ĵ+ Ĵ− + Ĵ− Ĵ+ − Ĵ− Ĵ−|Φ0〉

= 1

4
〈Φ0| Ĵ− Ĵ+|Φ0〉 = N

4
,

Δ2 J0 = 〈Φ0| Ĵ 2
0 − J0

2|Φ0〉 =
(

N

2

)2

−
(

N

2

)2

= 0,

7.4 The Elementary Excitations

An elementary excitation of an N -spin system is ŝ(α)
+ |Φ0〉, the lifting of one spinor

α from ↓ to ↑. There are N different basic excitations. All α are equivalent in the
LMG model. We have learned in the tight-binding model for benzene, see (4.22),
and we will find for the dynamics of the LMG model (see Sect. 8.3.7) that the
excitation eigenmodes of such symmetric systems are superpositions with cyclic
symmetry, i.e., Â†

ν = ∑N
α=1 eiν2π/N ŝ(α)

+ with ν = 0, 1, . . . N − 1. It is obvious
that mode ν = 0 which excites all α-modes with equal phase and weight plays
a preferred role. It is A†

ν = Ĵ+, just the operator which appears in the interaction
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term in the Hamiltonian (7.1). Thus we can simplify the further considerations by
dealing only with that coherent excitation

Ĵ+|Φ0〉 =
N∑

α=1

s(α)
+ |Φ0〉 =

N∑
α=1

â†
+1,α â−1,α|Φ0〉.

This corresponds to a collective mode where each particle contributes a small piece
to a large deformation of the whole system. We will see that this collective defor-
mation exclusively accumulates all interaction effects and thus plays the dominant
role in finding the HF ground state as well as collective excitation modes (see
Sect. 8.3.7). The same reasoning applies when stepping up to higher excitations.
We will continue the restriction to the coherent mode and consider the family of
n-particle–n-hole states

|Φn〉 = Ĵ n
+|Φ0〉

√
(N − n)!

N !n!
, (7.9a)

with the properties

〈Φn|Φn′ 〉 = δnn′ , Ĥ0|Φn〉 =
(

n

2
− N − n

2

)
ε|Φn〉. (7.9b)

The structure (7.9) is easily proven with the equivalence to the quasispin states and
the known properties of the angular-momentum stepping operators

|Φ0〉 ≡ |J,−J 〉, |Φn〉 ≡ |J,−J + n︸ ︷︷ ︸
M

〉,

|J M+1〉 = Ĵ+|J M〉 1√
(M+1)(2J −M)

,

|J M−1〉 = Ĵ−|J M〉 1√
M(2J +1−M)

. (7.10)

Orthonormality thus holds by construction and the normalization factor√
(N − n)!/N !n! is easily derived by iterating the factors in each step.

7.5 Exact Solution

The exact solution is a superposition of all conceivable excitations. We know that
it will preserve the α-symmetry of the Hamiltonian (7.1), so that it can only be
composed of the coherent excitations (7.9b). What remains is the rather simple
expansion
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|Ψ 〉 = c0|Φ0〉 + c1|Φ1〉 + c2|Φ2〉 + · · · =
N∑

n=0

cn|Φn〉. (7.11a)

The expansion coefficients are determined in standard manner [24] by the
Schrödinger equation in matrix form

∑
n′

Hnn′cn′ = Ecn′ , Hnn′ = 〈Φn|Ĥ |Φn′ 〉. (7.11b)

The matrix elements are trivial for the unperturbed Hamiltonian Ĥ0 because the
|Φn〉 are eigenstates, see (7.9b). For the two-body interaction we first derive, invok-
ing (7.9a) and (7.10),

〈Φn| Ĵ 2
+|Φn′ 〉 = δn,n′+2

√
n(n − 1)(N + 2 − n)(N + 1 − n),

〈Φn| Ĵ 2
−|Φn′ 〉 = δn,n′−2

√
n′(n′ − 1)(N + 2 − n′)(N + 1 − n′) ,

〈Φn| Ĵ− Ĵ+|Φn′ 〉 = δn,n′ (n + 1)(N − n) ,

and decompose

V̂ = 2G Ĵ 2
x = G

2

(
Ĵ 2
+ + Ĵ 2

− + 2 Ĵ0 + 2 Ĵ− Ĵ+
)
.

Altogether this yields the Hamiltonian matrix elements

〈Φn|Ĥ |Φn′ 〉 = δn,n′

[(
− N

2
+ n

)
ε + G

(
− N

2
+ n + (n + 1)(N − n)

)]

+δn,n′+2
G

2

√
n(n − 1)(N + 2 − n)(N + 1 − n)

+δn,n′−2
G

2

√
n′(n′ − 1)(N + 2 − n′)(N + 1 − n′). (7.12)

There is no simple closed form for the solution of (7.11b) with the matrix elements
(7.12), but the resulting N ×N eigenvalue problem can easily be solved on a com-
puter, thus providing exact solutions as benchmarks for testing approximations.

7.6 Hartree–Fock Solution

7.6.1 The Space of Slater States in the LMG

The Hartree–Fock approximation seeks to find an optimum solution to the full
Hamiltonian Ĥ in the space of independent particle states, called Slater states. The
aim of this section is to develop a convenient parametrization of the space of Slater



172 7 Quasispin Models

states in the LMG model. The most general Slater state in the LMG model is com-
posed of transformed single-particle states as

|Φ〉 = b̂†
−1,1 . . . b̂†

−1,N |0〉, b̂†
mα =

∑
m ′α

u(α)
m,m ′ â

†
m ′α.

It is natural to confine the considerations to “relevant” Slater states, i.e., those states
which preserve the α-symmetry of the LMG model. This means that the transfor-
mation becomes independent of α, i.e., u(α)

m,m ′ −→ um,m ′ , and um,m ′ is the matrix
of a 2×2 unitary transformation Û , which can be expressed through the generators
of the Lie group SU(2) (i.e., the spin operators) as a rotation characterized by three
Euler angles [30, 70] as

b̂†
mα = eiφŝ(α)

z eiθ ŝ(α)
y eiψ ŝ(α)

z â†
mαe−iψ ŝ(α)

z e−iθ ŝ(α)
y e−iφŝ(α)

z .

The fermion operator â†
mα generates an eigenstate of ŝ(α)

z . Thus the innermost rota-
tion about the angle ψ induces only an irrelevant phase factor. Moreover, we exploit
the fact that all ŝ(α′)

ν commute with â†
mα and ŝ(α)

ν for α �= α′ to define a coherent
rotation for all α as

b̂†
mα = Û (θ, φ)â†

mαÛ †(θ, φ), (7.13a)

Û (θ, φ) = exp (iφ Ĵz) exp (iθ Ĵy) , −π < θ ≤ π , −π

2
< φ ≤ π

2
. (7.13b)

This allows a compact expression of the correspondingly transformed Slater state

|Φ(θ, φ)〉 = b̂†
−1,1 . . . b̂†

−1,N |0〉
= Û â†

−1,1 Û † Û︸ ︷︷ ︸
=∞

â†
−1,2Û † . . . Û â†

−1,N Û †|0〉︸ ︷︷ ︸
=|0〉

= Û â†
−1,1 . . . â†

−1,N |0〉,

which finally reads

|Φ(θ, φ)〉 = Û (θ, φ)|Φ0〉 = exp (iφ Ĵz) exp (iθ Ĵy)|Φ0〉. (7.13c)

A word is in order about the nature of this transformation. The basic operators
Ĵi , as given in (7.1) and (7.4), are composed as

Ĵz = 1

2

N∑
α=1

[
â†

+1,α â−1,α + â†
−1,α â+1,α

]
.

Each submode α contributes identically to the whole operator. Correspondingly, the
unitary transformation, e.g., with exp (iθ Ĵy) produces a collective deformation. This
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becomes apparent in the limit of small θ , i.e.,

exp (iθ Ĵy)|Φ0〉 ≈ |Φ0〉 − iθ

2

∑
α

[
â†

+1,α â−1,α − â†
−1,α â+1,α

]
|Φ0〉

= |Φ0〉 − iθ

2

∑
α

â†
+1,α â−1,α|Φ0〉.

This describes a coherent superposition of 1ph states, where each 1ph configura-
tion contributes the same small amount. The N available 1ph excitations together
cooperate coherently to produce a large change in the wave function. This can be
read off from the factor N/2 in the expectation value J z = sin(θ ) N

2 , see (7.22).
It often happens that the residual two-body interaction acts particularly strongly
between collective excitations which, in turn, leads to the appearance of collective
modes with low excitation energies and/or large transition strengths. This aspect of
collective dynamics will be discussed for the example of the LMG model in Chap. 8.

7.6.2 Expectation Values with the Transformed State

In this section, we are going to evaluate the expectation values of the basic operators
Ĵi and their products for the transformed state (7.13). The general problem is to
compute the expectation value for any observable Â, i.e.,

A = 〈Φ(θ, φ)| Â|Φ(θ, φ)〉 = 〈Φ0|Û †(θ, φ) ÂÛ (θ, φ)|Φ0〉, (7.14)

with Û = Û (θ, φ) as given in (7.13). There are several ways to perform this task.
The most efficient is to evaluate the unitary transformation on the observable. One
starts from the expression of Â in terms of Ĵν , transforms it with Û † ĴνÛ , and then
evaluates it with the known expectation values over |Φ0〉. To that end, we first com-
pute the back-transformed basic operators of the LMG algebra. These become

Û †(θ, φ) Ĵx Û (θ, φ) = cos(θ ) Ĵx − i sin(θ ) sin(φ) Ĵy − sin(θ ) cos(φ) Ĵz,(7.15a)

Û †(θ, φ) ĴyÛ (θ, φ) = cos(φ) Ĵy + i sin(φ) Ĵz, (7.15b)

Û †(θ, φ) ĴzÛ (θ, φ) = sin(θ ) Ĵx +i cos(θ ) sin(φ) Ĵy +cos(θ ) cos(φ) Ĵz, (7.15c)

with Û (θ, φ) as given in (7.13).
This result will now be proven in detail. In a first step, we provide the transfor-

mation for one single spin using the properties [ŝx , ŝy] = iŝz and ŝy ŝx ŝy = −ŝx and
similarly for the other combinations. This yields
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e−iθ ŝy ŝx eiθ ŝy = (cos( θ
2 ) − i sin( θ

2 )ŝy)ŝx (cos( θ
2 ) + i sin( θ

2 )ŝy)

= ŝx
(
cos2( θ

2 ) − sin2( θ
2 )
)− ŝz sin( θ

2 ) cos( θ
2 ) = ŝx cos(θ ) − ŝz sin(θ ),

e−iθ ŝy ŝyeiθ ŝy = ŝy,

e−iθ ŝy ŝze
iθ ŝy = (cos( θ

2 ) − i sin( θ
2 )ŝy)ŝz(cos( θ

2 ) + i sin( θ
2 )ŝy) = ŝz cos(θ ) + ŝx sin(θ ).

This allows to evaluate the full back transformation for θ -rotation as

exp (−iθ Ĵy) Ĵx exp (iθ Ĵy) = cos(θ ) Ĵx − sin(θ ) Ĵ0,

exp (−iθ Ĵy) Ĵy exp (iθ Ĵy) = 0,

exp (−iθ Ĵy) Ĵz, exp (iθ Ĵy) = cos(θ ) Ĵ0 + sin(θ ) Ĵx ,

=⇒

e−iθ Ĵy

⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠ eiθ Ĵy =

⎛
⎝ cos(θ ) 0 − sin(θ )

0 1 0
sin(θ ) 0 cos(θ )

⎞
⎠
⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠ .

With very similar steps (not detailed here) the Ĵx transformation about rotation angle
φ is found to be

e−iφ Ĵz

⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠ eiφ Ĵz =

⎛
⎝ cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0
0 0 1

⎞
⎠
⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠ .

The two results are concatenated to the full transformation with the full Û as given
in (7.13)

Û †

⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠ Û =

⎛
⎝ cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0
0 0 1

⎞
⎠
⎛
⎝ cos(θ ) 0 − sin(θ )

0 1 0
sin(θ ) 0 cos(θ )

⎞
⎠
⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠

=
⎛
⎝ cos(ϑ) cos(φ) sin(φ) − sin(ϑ) cos(φ)

− cos(ϑ) sin(φ) cos(φ) sin(ϑ) sin(φ)
sin(ϑ) 0 cos(ϑ)

⎞
⎠
⎛
⎝ Ĵx

Ĵy

Ĵz

⎞
⎠ ,

This result immediately leads to the form given in (7.15).
The expectation values of the Ĵi can now be evaluated very simply using (7.15)

and the basic relations 〈Φ0| Ĵx |Φ0〉 = 0, 〈Φ0| Ĵy|Φ0〉 = 0, 〈Φ0| Ĵ0|Φ0〉 = −N/2, as
can be seen from (7.7) and (7.8b). For the transformed state this results in |Φ〉 =
|Φ(θ, φ)〉 and
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J x = 〈Φ| Ĵx |Φ〉 = sin(θ ) cos(φ)
N

2
, (7.16a)

J y = 〈Φ| Ĵy|Φ〉 = − sin(ϑ) sin(φ)
N

2
, (7.16b)

J 0 = 〈Φ| Ĵ0|Φ〉 = − cos(θ )
N

2
. (7.16c)

For the total energy, we will also need the expectation value of Ĵ 2
x . We decompose

〈Φ0|Û † Ĵ 2
x Û |Φ0〉 = 〈Φ0|(Û † Ĵx Û )2|Φ0〉, use (7.15a), the expectation values (7.8c),

〈Φ0|{ Ĵx , Ĵy}|Φ0〉 = 0, and 〈Φ0| Ĵ 2
0 |Φ0〉 = N 2/4. This yields

J 2
x = 〈Φ| Ĵ 2

x |Φ〉 = N

4

(
cos2(θ ) − sin2(θ ) sin2(φ)

)+ N 2

4
sin2(θ ) cos2(φ). (7.17)

Note that the leading term ∝ N 2 is eliminated when computing the variance Δ2 Jx =
J 2

x − Jx
2
.

7.6.3 The Energy Landscape and the HF Minimum

The aim now is to compute the total energy for the transformed state (7.13), i.e.,

E(θ, φ) = 〈Φ|Ĥ |Φ〉 = 〈Φ0|Û † ĤÛ |Φ0〉,

for the LMG Hamiltonian

Ĥ = ε Ĵ0 + 2G Ĵ 2
x . (7.18)

All necessary expectation values have been evaluated in the previous section, see
(7.16) and (7.17). The energy thus becomes immediately

E = εN

2

[
− cos(θ ) + χ

cos2(θ ) − sin2(θ )

2(N − 1)
+ χ

2
sin2(θ ) cos2(φ)

]
, (7.19a)

χ = 2G(N − 1)

ε
, (7.19b)

where χ is an effective interaction strength, the two-body interaction strength G
properly scaled in the units of the system. It is interesting to note that the effective
strength is a product of G and particle number N − 1. The relation between the
zeroth-order contribution (∝ Ĥ0) and that of the interaction can be adjusted by
changing G and/or changing the system size N .

The solution of the HF problem becomes particularly simple in this model. It
amounts to finding the minimum of the energy (7.19) within the limits −π < θ ≤ π,
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−π
2 < φ ≤ π

2 . The minimum always occurs at φ = 0. This is obvious for G ≤ 0,
i.e., χ ≤ 0, because both cos(φ) and cos2(φ) have their maxima there with value 1.
The arguments are more involved for large positive couplings G > 0. Without going
into the details we simply assert that here also φ = 0 is related to minimal energy.
What remains is basically a one-dimensional energy landscape,

E = εN

2

[
− cos(θ ) + χ

2
sin2(θ ) + χ

cos2(θ ) − sin2(θ )

2(N − 1)

]
, (7.20)

which is well suited for a detailed discussion of the HF equations. We usually
assume large N and drop the third term. Figure 7.3 illustrates it for a variety of
effective coupling strengths. The energy function is 2π periodic and so are the Slater
states, i.e., |Φ(θ + 2π, φ)〉 = |Φ(θ, φ)〉. The figure shows one relevant interval for
θ in which all states are truly different. The unperturbed case (χ = 0) is a simple
cosine function with one minimum at θ = 0 which represents, of course, the unper-
turbed ground state. Positive couplings χ > 0 maintain θ = 0 as the minimum,
even enhance the curvature there. The HF solution still remains |Φ0〉. Negative χ

start to soften the minimum until a curvature of zero is reached at a critical coupling
strength χ = −1. Below this, a new minimum forms at finite angle θ . From a formal
point of view, the HF equation for the LMG model is the variational equation

∂θ E = 0 =⇒ sin(θ )
(
1 + χ cos(θ )

) = 0 , (7.21)

which determines the stationary points in the energy landscape. There is always the
solution sin(θ ) = 0 =⇒ θ = 0 or π . We see from Fig. 7.3 that θ = 0 indeed
represents the HF minimum for χ > −1 and becomes a maximum (i.e., an unstable
solution) for χ < −1. The other solution θ = π is a maximum for χ < 1 and
turns into a minimum for χ > 1. This implies that for χ > 1 there is a second,
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Fig. 7.3 The total energy (7.19) of the LMG model versus transformation angle θ for various
choices of the effective coupling strength χ as indicated
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stable minimum which, however, never becomes the deepest one. Such a minimum
is called an isomer. A second branch of solutions emerges from the second factor
in condition (7.21), i.e., 1 + χ cos(θ ) = 0 =⇒ cos(θ ) = −1/χ . This condition
cannot be met for |1/χ | > 1, i.e., |χ | < 1. In this regime, there remain only the two
solutions θ = 0 and π as discussed above. Two new solutions come up for |χ | > 1
at the finite angles θ = ± arccos(−χ−1). These are minima for χ < −1. As soon as
these minima appear, the formerly deepest minimum θ = 0 turns into a maximum,
see Fig. 7.3. For χ > 1, we obtain two new maxima while the former maximum at
θ = ±π is turned into an (isomeric) minimum.

The very simple LMG model thus already shows a rich variety of solutions of
the HF equation (7.21). We see that this equation is only a necessary condition
for finding a HF minimum. It embraces all stationary states. Maxima (or saddle
points) are unstable solutions, and isomeric minima have to be kept in mind as
well. The unstable solutions are rarely a problem in practical numerical solution
schemes which can only end up in a stable solution. The isomeric minima remain
a source of uncertainty. Realistic systems with their huge number of degrees of
freedom have very complex energy landscapes in which it is never certain that the
deepest minimum has in fact been found. The safeguards against this irreducible
uncertainty are physical intuition, experience, diligence, and a healthy amount of
residual skepticism.

Figure 7.4 compares the HF solution with the exact one as function of the dimen-
sionless coupling strength χ for a small system N = 8 and a medium large one
with N = 32. The comparison concentrates on the region of the critical point
near χ = −1 where the HF minimum starts to develop a finite deformation θ .
The lower panels of Fig. 7.4 compare the total energies. HF turns out to gener-
ally be a good approximation. The largest deviations can be seen near the critical
point and these shrink with increasing system size N . The exact energy has a much
smoother trend than the HF energy, which has, in fact, a non-analytical point at
the critical χ , namely, a discontinuous derivative. This becomes more apparent in
the two detailed observables shown in the other panels. The expectation value of
Ĵx in the middle panels exhibits a dramatic difference: the exact solution maintains
〈 Ĵx 〉 = 0 throughout, while HF develops a large finite value. This is due to a spon-
taneous symmetry breaking induced by the mean-field approximation and will be
discussed further in Sect. 7.7.1. The upper panel shows the expectation value of
the squared operator Ĵ 2

x . This quantity develops large values in the critical regime;
trends and values are remarkably similar for the exact solution and HF. Differences
are largest near the critical point where HF has a discontinuous first derivative while

the exact result is smooth. It is instructive to decompose 〈 Ĵ 2
x 〉 = 〈 Ĵx 〉2 + 〈Δ̂J

2
x 〉 .

The exact solution has 〈 Ĵx 〉 = 0 and all 〈 Ĵ 2
x 〉 are produced from the (large) variance

〈Δ̂J
2
x 〉, while the mean-field solution has the dominant contribution from 〈 Ĵx 〉2.

This suggests that the finite deformation with accompanying finite 〈 Ĵx 〉 carries
physical information hinting at the exact result for the squared expectation value
〈 Ĵ 2

x 〉.
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the expectation value J 2

x , the middle panels Jx , and the lowest ones the total energy

7.7 Spontaneous Symmetry Breaking

7.7.1 Violation of “Reflection Symmetry” in the LMG Model

The LMG model is extremely rich and allows much more than just a discussion of
the structure of a HF solution. It also comprises concepts such as collective defor-
mation (see Sect. 7.6.1), spontaneous symmetry breaking, symmetry restoration, or
various aspects of dynamics. The dynamical aspects will be taken up in Chap. 8.
Here, we will continue with the structural features of symmetry breaking. For this
purpose, it suffices to consider only Slater states (7.13) with φ = 0, as done already
when discussing the HF solutions.

We start again by having a quick look at Fig. 7.3 showing the energy as function
of deformation angle θ for various coupling strengths. The patterns are symmetric
under “reflection,” i.e., under the transformation θ −→ −θ . It is important to point
out that the Slater states change under reflection, i.e., |Φ(−θ )〉 �= |Φ(+θ )〉, while
both states have the same energy E(−θ ) = E(+θ ). We already know the α ←→ α′-
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symmetry of the LMG model and have exploited it extensively. Now there appears
a further symmetry in the LMG Hamiltonian related to reflection θ −→ −θ . First
recall the expectation values of the basic observables Ĵi for the case φ = 0. Special-
izing the expressions (7.16) yields

J x = sin(θ )
N

2
, J y = 0 , J 0 = − cos(θ )

N

2
. (7.22)

The operation θ −→ −θ is obviously related to reflection of the Ĵx observable, i.e.,
Ĵx −→ − Ĵx , while Ĵ0 remains unchanged. A quick glance at the LMG Hamilto-
nian (7.18) shows that it has precisely this reflection symmetry because Ĵx appears
squared. The symmetry property can thus be formalized by introducing the opera-
tion Π̂ of reflection which is defined via

Π̂ ĴxΠ̂ = − Ĵx , Π̂ ĴyΠ̂ = − Ĵy , Π̂ Ĵ0Π̂ = Ĵ0 , Π̂ † = Π̂ . (7.23a)

The action on a Slater state is

Π̂ |Φ(θ )〉 = |Φ(−θ )〉. (7.23b)

Note that the Slater states are generally not symmetric under reflection, except for
the unperturbed ground state |Φ0〉. The reflection symmetry of the Hamiltonian is
formulated compactly as

Π̂ ĤΠ̂ = Ĥ . (7.23c)

Whatever the detailed form of Ĥ might be, the symmetry property (7.23c) suffices
to obtain the feature

E(−θ ) = 〈Φ(−θ )|Ĥ |Φ(−θ )〉 = 〈Φ(θ )| Π̂ ĤΠ̂︸ ︷︷ ︸
Ĥ

|Φ(θ )〉 = E(θ ). (7.24)

There are now two basically different scenarios conceivable: the first one has the
energy minimum occurring at θ = 0 (as it does in the LMG model for under-
critical coupling). In this case the ground state is unique and symmetric (because
of Π̂ |Φ0〉 = |Φ0〉). More surprising is the second scenario. The energy minimum
appears at a finite angle θmin �= 0. Now there is a pair of HF states each of which
violates reflection symmetry but which are related to each other by the symmetry
operation

|Φ(−θmin)〉 �= |Φ(+θmin)〉 ←→ EHF = E(+θmin) = E(−θmin). (7.25)

They are thus necessarily degenerate in energy. Each single HF state |Φ(±θmin)〉
breaks the reflection symmetry. The transition from the first (and symmetric) sce-
nario to the second, asymmetric case is triggered by a change in the coupling
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strength which turns the stable minimum at θ = 0 to a maximum, i.e., to an unstable
point in the energy landscape (see Fig. 7.3 in the step from χ > −1 to χ < −1).
This is the typical mechanism for spontaneous symmetry breaking which occurs in
many different places in physics. In the following we will briefly discuss the Jahn–
Teller effect for clusters and molecules (Sect. 7.7.3), the competition between spher-
ical and deformed nuclei (Sect. 7.7.2) as examples. A further important example is
the pairing transition to a condensate of pairs of fermions which will be considered
extensively in Sect. 9.4. Further examples are the laser transition from stochastic
to coherent light [45], the Higgs mechanism, and chiral symmetry breaking in field
theory [116].

7.7.2 Transition from Spherical to Deformed Nuclei

The trend of nuclear observables with changing proton or neutron number shows
that there is often a transition from spherical shape to stable ground-state deforma-
tion. This is a shell effect as discussed extensively in Chap. 3. Magic nucleon num-
bers, which form a closed shell for a spherical mean field, lead to a spherical ground
state, while any non-magic nucleon number drives to deformation. Reality is more
involved than this simple picture. Figure 7.5 shows quadrupole excitation energies
(lower panel) and quadrupole ground-state deformations (upper panel) along a chain
of Sr isotopes (proton number Z = 38). The deformations are expressed in terms of
the axis ratio 〈z2〉 relative to 〈x2〉. A value of η = 0 signifies spherical shape, η > 1
prolate deformations, and η < 0 oblate ones. The deformation should be viewed
similar to 〈 Ĵ 2

x 〉 in the LMG model (upper panel of Fig. 7.4).
The pattern in Fig. 7.5 clearly indicates a region of spherical nuclei and a tran-

sition to deformed ones, which is corroborated by the trend of the quadrupole

Fig. 7.5 Experimental data in
Sr isotopes [86]. Lower:
excitation energies of the
lowest 2+ modes. Upper:
nuclear deformations
expressed as axis ratio
η = 〈z2〉/〈x2〉 − 1
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Fig. 7.6 Quadrupole
deformation energy curves
for the nucleus 46Ca
computed with quadrupole
constrained
Skyrme–Hartree–Fock using
the parametrization SLy6
[22]. Compared are a
calculation using standard
BCS pairing (solid line) with
one without pairing (dashed),
see Chap. 9. The quadrupole
deformation is characterized
by the axis ratio
η = 〈z2〉/〈x2〉 − 1
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excitation energies in the lower panel. A transition to deformed nuclei is expected in
view of the shell effects discussed in Sect. 3. Pure shell effects, however, would leave
only the magic N = 50 nuclei spherical and induce deformation immediately in the
vicinity. What is seen instead is a whole region of spherical nuclei next to the magic
point. The situation is qualitatively similar to the trend in the LMG model where the
minimum at θ = 0 stays stable for a long time until the interaction becomes strong
enough to overrule the spectral gap. From analogy we conclude that there must be
a basic gap in the nuclear case which stabilizes sphericity for a while before the
shell effects take over. This is the pairing gap (see Sect. 9.4). This situation is called
a dynamical Jahn–Teller effect [32, 88] where a residual interaction (here pairing)
can counterweight the spontaneous symmetry breaking (by shell effects).

The stabilization through the pairing gap was deduced in Fig. 7.5 from an isotopic
trend. A direct observation is provided in Fig. 7.6 where we show the deformation
energy curves for one nucleus, 46Ca, with and without pairing interaction. The defor-
mation energies correspond to Born–Oppenheimer energy curves (see Sect. 4.2)
and are produced here by adding a quadrupole constraint −λQ̂20 to the mean-field
Hamiltonian (Chap. 5). 46Ca has magic proton number Z = 20 but non-magic neu-
tron number N = 26. The effect of pairing seen in Fig. 7.6 is dramatic. Without
pairing, the shell model drives to a well-developed deformation (as the examples in
Chap. 3). The pairing interaction restores the spherical shape for this nucleus, which
is still semi-magic and whose neutron number is still close to the next magic shell
at N = 28.

Summarizing, we see that the LMG model provides a realistic mapping of the
counteracting effects taking place in the nuclear phase transition.

7.7.3 The Jahn–Teller Effect

The Jahn–Teller effect in molecular and solid-state physics also deals with this sort
of spontaneous symmetry breaking [32]. The typical situation is that an electronic
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configuration is degenerate for a symmetric shape, so that the system is driven to a
lower symmetry. Electronic correlations can counteract this deformation, like pair-
ing does in the nuclear example above, but they are usually too weak for substan-
tial symmetry restoration. A stronger counteracting effect here is thermal excitation
which also serves to produce a unique electronic configuration. We exemplify this
for the simple case of a Na14 cluster, a type of system which has already been
discussed in Chap. 3. We have learned from Fig. 3.4 that Na14 has an open shell
(i.e., degenerate) electronic configuration at spherical shape and thus develops a
substantial ground-state deformation.

Figure 7.7 shows the deformation energy curves for Na14, the total energy as
function of ionic deformation, computed with density functional theory at the level
of LDA (see Sect. 6.1). In order to have a simple description of symmetry and
symmetry breaking, we use the deformed jellium model for the ionic background.
All shapes are axially symmetric and are characterized by the driving quadrupole
moment α20 in the jellium model (1.1). The point α20 = 0 corresponds to perfect
spherical symmetry and α20 �= 0 to broken symmetry. The curve at temperature
T = 0 clearly shows the shell effect, producing a deep minimum at well-deformed
shapes, as discussed in connection with Fig. 3.4. The temperature T = 0.14 eV
does already soften the trend to deformation and T = 0.27 eV finally produces a
(shallow) minimum at spherical shape. This symmetry restoration through thermal
excitation temperature is also known from the pairing transition where the pairing
gap disappears at a critical temperature (see Sect. 9.4). The temperatures in the
present example Na14 are very high, indicating that the restoration of a high sym-
metry, here sphericity, can be costly and corresponding to the high reaction barrier
of more than 0.6 eV. Realistic examples deal with lower symmetries [32] and relate
to more moderate temperatures but require a deep knowledge of the various point
symmetries as they occur in molecules.

Fig. 7.7 Quadrupole
deformation energy curves
for the metal cluster Na14

computed with LDA (see
Sect. 6.1) and the deformed
jellium model (1.1) for the
ionic background. The total
energy is drawn versus the
dimensionless quadrupole
momentum of the jellium
distribution. Results for three
different temperatures are
shown
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7.7.4 Symmetry Restoration by Projection

In the critical regime, the HF ground state of the LMG model breaks reflection sym-
metry and appears as two degenerate states. The exact ground state as constructed
in Sect. 7.5 is always unique and maintains symmetry. The symmetry breaking and
degeneracy arises from the HF approximation. The energetic degeneracy suggests
a strategy to restore at least the symmetry and so come closer to the exact ground
state. It is known from quantum-mechanical perturbation theory that perturbations
become arbitrarily important in case of degeneracies and that the full interaction
must be diagonalized in the degenerate subspace [24]. Similarly, we here build
a unique ground state from a coherent superposition of the two equivalent HF
states, i.e.,

|Ψrestor〉 = c+|Φ(θmin)〉 + c−|Φ(−θmin)〉. (7.26a)

Symmetry arguments fix the expansion coefficients c± without painful diagonal-
ization. The symmetry-restored state |Ψrestor〉 should be symmetric under reflec-
tions, i.e.,

Π̂ |Ψrestor〉 = +|Ψrestor〉 =⇒ c+ = c− . (7.26b)

What remains is to compute the overall normalization. The energy of the symmetry-
restored state becomes

Erestor(θ ) = 〈Ψrestor|Ĥ |Ψrestor〉
〈Ψrestor|Ψrestor〉 = E(θmin) + 〈Φ(−θmin)|Ĥ |Φ(θmin)〉

1 + 〈Φ(−θmin)|Φ(θmin)〉

=
EHF(θ ) − Nε

2

(
cosN−1(θ ) + χ

2(N − 1)
cosN (θ )

)

1 + cosN (θ )
. (7.26c)

The evaluation is done most simply by mapping into spin space. The overlap
separates into single system (≡ particle) overlaps because operators for different α

commute. We start with the norm overlap

〈Φ(−θ )|Φ(θ )〉 = 〈0|b̂−1,1(−θ ) . . . b̂−1,N (−θ )b̂†
−1,1(θ ) . . . b̂†

−1,N (θ )|0〉

=
N∏

α=1

〈0|b̂−1,α(−θ )b̂†
−1,α(θ )|0〉

≡ 〈χ↓| exp (2iθ ŝy)|χ↓〉N = 〈χ↓|(cos(θ ) + i sin(θ )ŝy)|χ↓〉N

= cos(θ )N .
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Here the well-known relations for Pauli spin matrices exp (2iθ ŝy) = cos(θ ) +
i sin(θ )ŝy and 〈χ↓|ŝy|χ↓〉 = 0 were used. The expectation value of Ĵ0 with a similar
decomposition becomes

〈Φ(−θ )| Ĵ0|Φ(θ )〉 =
N∑

α=1

〈Φ(−θ )|ŝ(α)
0 |Φ(θ )〉

≡ N 〈χ↓| exp (iθ ŝy)ŝ0 exp (iθ ŝy)|χ↓〉 〈χ↓| exp (2iθ ŝy)|χ↓〉N−1

= N cos(θ )N−1〈χ↓|(cos( θ
2 ) + i sin( θ

2 )ŝy)ŝ0(cos( θ
2 )

+i sin( θ
2 )ŝy)|χ↓〉

= − N

2
cos(θ )N−1

(
cos2( θ

2 ) + sin2( θ
2 )
) = − N

2
cos(θ )N−1 ,

where {ŝy, ŝ0} = 0 and ŝy ŝ0ŝy = −ŝ0 were used. The operator Ĵ 2
x requires a few

more steps. Separating

〈Φ(−θ )| Ĵ 2
x |Φ(θ )〉 ≡

∑
α �=α′

〈Φ(−θ )|ŝ(α)
x ŝ(α′)

x |Φ(θ )〉︸ ︷︷ ︸
=0

+
∑

α

〈Φ(−θ )| (ŝ(α)
x )2︸ ︷︷ ︸
=1

|Φ(θ )〉

N 〈Φ(−θ )|Φ(θ )〉 = N cos(θ )N ,

the first term vanishes because of

〈χ↓|eiθ ŝy ŝx eiθ ŝy |χ↓〉 = 〈χ↓|(cos( θ
2 ) + i sin( θ

2 )ŝy)ŝx (cos( θ
2 ) + i sin( θ

2 )ŝy)|χ↓〉
= 〈χ↓|ŝx |χ↓〉︸ ︷︷ ︸

=0

(
cos2( θ

2 ) + sin2( θ
2 )
)
.

Putting all pieces together leads to the closed expression for the projected energy as
given in (7.26c).

In a first step, it seems natural to project the HF state at a given deformation
θmin. This is called Projection After Variation (PAV) [92], i.e., EPAV = Erestor(θmin)
with the energy expression as given in (7.26c). Figure 7.8 compares the energies.
As the HF result already provides reasonable quality (see Fig. 7.4), we enhance the
graphical resolution by comparing the error relative to the exact result. The HF result
in the figure shows, of course, the largest error and this error has a maximum near
the critical point χ = −1. where the optimal angle θmin starts to deviate from zero.
The PAV energy follows the HF result from χ = 0 up to the critical point because
there is nothing to gain for θmin = 0, but the PAV-projected energy yields substantial
improvements near θmin. There is, in fact, no need to stick to the HF angle θmin. The
energy (7.26c) can be considered as a freely varying function of θ and it is obvious
that the optimum choice is the deformation θ which minimizes the energy. This is
called Variation After Projection (VAP) with the energy EVAP = minθ {Erestor(θ )}.
VAP allows to deal with finite θ already in the under-critical regime and so can
provide improvements in all regimes. That is obviously the case, as can be seen
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Fig. 7.8 Energy error relative
to the exact solution of the
LMG model for particle
number N = 8 for three
approximations: HF, parity
projected HF energy state
(PAV), and minimized
projected energy (VAP)
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from Fig. 7.8. In all regimes VAP is a big step forward toward the exact result. It
incorporates a great deal of correlations, namely, those related to soft modes of the
system. Practical examples are rotational projection for deformed nuclei or parity
projection in symmetry-broken molecules.

7.8 Concluding Remarks

Quasispin models provide ideal simple models for the description of many physi-
cal situations in a rather realistic way, at least what concerns the understanding of
shortcomings of mean-field models. Because they can be worked out analytically
at a high level of detail thanks to the simplifications they are constructed on, these
difficulties can be identified in an explicit and transparent manner. We have illus-
trated these aspects in quite some detail in this chapter, basing our discussion on
the prototypical LMG model. We have discussed in detail its analytical mean-field
solutions and its shortcomings and have in particular detailed the mechanism of
symmetry breaking and seen how such mechanisms are observed in the case of
molecules and nuclei. The LMG model can also be used in dynamical situations
and again serve as a prototypical model to test linearized dynamics. These aspects
will be discussed in Chap. 8.



Chapter 8
Excitation Spectra

One of the most common ways to analyze the properties of a many-fermion system
is to study its excitation spectrum, which can largely be described in terms of small-
amplitude oscillations. Such oscillations constitute the response of the system to a
small perturbation and thus help to understand linear response dynamics. The small
amplitude allows a handling by linearized analysis of motion, a generalization of
the harmonic motion around the ground state in any simple system [40]. In a many-
fermion system, the harmonic analysis is similar but a bit more complex because
of the quantum nature and the large number of degrees of freedom involved [10]. It
amounts to exploring the space of one-particle–one-hole (1ph) excitations about the
ground state. A particularly interesting feature is that individual perturbations couple
to collective (harmonic oscillations) similarly to a set of coupled oscillators. This
collective (small-amplitude) motion has been widely studied in self-bound fermion
systems such as nuclei, metal clusters, quantum dots, or atomic traps.

In nuclei, small-amplitude collective oscillations are known as Giant Resonances
(GR) and were identified in the late 1940s [92]. They can be characterized by
a multipole order depending on the global characteristics of the oscillations. The
most widely studied GR is the Giant Dipole Resonance (GDR), in which the
protons oscillate as a whole against the neutrons. It directly reflects the strong
interaction between neutrons and protons, a key constituent of the nuclear interac-
tion. One should also mention the Giant monopole resonance which corresponds
to a breathing mode of the nucleus and gives access to the compressibility of
nuclei and ultimately nuclear matter. The next higher modes are the quadrupole
and octupole modes, in which the nucleus explores prolate and oblate deformations
for the quadrupole and pear-shape deformations for the octupole mode, respectively.
Note that in GR protons and neutrons can vibrate in phase (isoscalar) or in opposite
phase (isovector), the two modes leading to different frequencies.

In metal clusters, collective motion is dominantly associated with the Mie plas-
mon, following the early work of Mie in 1908 in which the response of a metal
sphere to light was explored [71]. The Mie plasmon corresponds to a collective
oscillation of the center of mass of the electron cloud with respect to the ionic back-
ground. It is the dominant response mechanism of a metal cluster subject to an elec-
tromagnetic perturbation such as delivered by a laser or a charged projectile [89].

J.A. Maruhn et al., Simple Models of Many-Fermion Systems,
DOI 10.1007/978-3-642-03839-6 8, C© Springer-Verlag Berlin Heidelberg 2010
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188 8 Excitation Spectra

Because lasers usually have a well-defined frequency, the response mechanisms can
furthermore become resonant (resonance between collective oscillation frequency
and laser frequency) and thus lead to complex dynamical scenarios. The analysis
of the eigenfrequencies of the system through the Mie plasmon is thus crucial in
this field. Note also that the Mie plasmon is the analogue of the nuclear GDR with
which it shares many properties, such as the access it gives to the system’s shape
(the oscillation frequency depends on the spatial extension of the system: a long axis
implies a low frequency, a small axis a high one) [117, 19].

Even if collective dynamics may provide a doorway to the understanding of the
dynamical response of a system, it primarily characterizes low-energy phenomena,
since by construction it is confined to small-amplitude motion. It thus also offers a
unique access to ground-state properties of the system to the extent that it character-
izes small vibrations around it. Not surprisingly the theory of such small-amplitude
motion is thus formulated in the approximation of harmonic motion in which real
time is merely contained in the actual frequencies involved. The aim of this chapter
is to formulate a theory for the analysis of such small-amplitude motion. We shall
derive it starting from a dynamic equation, the direct time-dependent generalization
of the static Hartree–Fock approach, which then is linearized.

8.1 Collective Effects in Excitation Spectra

In previous chapters, we have presented several stages of approach to describe
the ground-state structure of fermion systems in a mean-field picture, simple shell
models in Chap. 3, and self-consistent models in Chap. 5. A key feature was the
single-particle levels, which determine crucial quantum effects like magic numbers
or Jahn–Teller deformation, see e.g., Sect. 3.2.4. One expects that the single-particle
levels also play a role in excitations. This was discussed in Sect. 5.3.3 and these
formal considerations point out the importance of the difference of single-particle
energies but also indicate a remaining residual two-particle interaction whose effects
on excitation spectra have yet to be explored. This will be done in the present
chapter.

The left part of Fig. 8.1 shows as example the level scheme for the cluster Na+
93.

A few possible 1ph excitations staying close to the Fermi surface are indicated.
From a pure 1ph picture we thus expect a fuzzy multitude of excitations with com-
parable (small) strength and energy of about 1 eV. The right panels of the figure
show various stages for computing the optical absorption strength (for its definition
see Sect. 8.3.5). The experimental strength in panel (a) exhibits a totally different
pattern, a single strong peak at about 3 eV. On the other hand, the pure spectrum of
L = 1 excitations (without dipole weight) in panel (d) confirms the naive expecta-
tion. A block of 1ph states around 1 eV and several others at higher energies. Panel
(c) shows the dipole transition strength S1 = ∑ph |dph |2(εp − εh) for the pure 1ph
picture. It is concentrated at low energies because higher transitions have only small
dipole moments. We now take into account the residual interaction with the RPA
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method as outlined below. This leads to the result in panel (b) which on average is
already very close to experiment. In a final step, thermal shape fluctuations of the
cluster are taken into account (measurements are done at about room temperature).
This smoothes the calculated results to the pattern shown in panel (a), very nicely
agreeing with the experimental strength.

Although the background and details of the example can only be understood at
the end of this chapter, we see here that there are situations where the pure 1ph pic-
ture fails badly. The necessary complete treatment will be described in this section.
A few more words are in order for the present example. Closer analysis will show
that the strong resonance peak, called the Mie plasmon resonance (Sect. 8.4.2.2),
corresponds to collective motion where all electrons close to the Fermi surface per-
form dipole oscillations in phase with each other. Such collective motion coherently
collects all contributions from the residual interaction to eventually produce a large
collective shift away from the 1ph energies. This appearance of collective reso-
nances is ubiquitous in almost all fermion systems. We have seen here the surface
plasmon resonance in metal clusters. In nuclei, one has the multitude of giant res-
onances of various multipolarities and the low-energy collectivity in rotations and
vibrations. Quantum dots can show collectivity of the plasmon type as well as in spin
modes. Atom clouds in traps can also rotate and vibrate as a whole. The collective
energy shift can go both directions, as compared to pure ph transitions, depending
on the sign of the residual interaction. Surface plasmons and nuclear giant reso-
nances show upward shifts. Nuclear vibrations and spin modes in electronic systems
are related to downward shifts. A further distinction concerns the amplitude of the
motion. Modes which are up-shifted usually oscillate with small amplitudes (for
simple energetic reasons) and can thus be described by linearized TDHF (=RPA)
as outlined in this chapter. Note, though, that there are also some excitation modes
with large amplitudes which require methods beyond RPA. These are, e.g., nuclear
rotations or vibrations and in the extreme nuclear fission, see Sect. 3.3.3.3.

8.2 The Time-Dependent Hartree–Fock Approximation

The time-dependent Hartree–Fock approximation, widely known by its abbrevia-
tion TDHF appears like a simple generalization of static Hartree–Fock. We will
introduce it in an intuitive way and subsequently derive it through a time-dependent
variational principle. TDHF will be used as a formal basis for deriving RPA, the
linearized version of TDHF. RPA can be derived in many ways but the path through
TDHF provides a rather transparent access to the theory.

8.2.1 Intuitive Formulation

The TDHF approximation can be superficially obtained by replacing the stationary
Schrödinger-like equation (5.15) by a time-dependent one
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i�
∂

∂t
ϕα(x, t) = ĥϕα(x, t), (8.1)

where the mean-field operators remain the same as in Eqs. (5.15c) and (5.15d).
While this may appear quite natural, it should of course be legitimated from under-
lying principles.

8.2.2 Time-Dependent Variational Principle

A better founded formulation of TDHF is obtained from the stationary variational
principle (5.6) by replacing the energy by the time derivative

δ

∫
dt
(〈Φ|i� ∂

∂t
− Ĥ |Φ〉) = 0, (8.2)

where Ĥ is the total many-body Hamiltonian. This does reproduce the time-
dependent Schrödinger equation for an unrestricted wave function. For a restricted
wave function it seems to imply only that the time development should in some
sense be close to that of the unrestricted one, so that there is no assurance that the
approximate solution will not go totally bad as time progresses.

We can now carry through the same variation as in Chap. 5. The time derivative
at first seems not to be a one-body operator, but applied to a product wave function it
effectively reduces to a sum over time derivatives of the individual wave functions,
so that the matrix elements can be calculated just as for the kinetic energy. As a
result the Hartree–Fock conditions are generalized to (we write them immediately
using the single-particle Hamiltonian)

(
i�

∂

∂t
− ĥ

)
ph

= 0 or 〈Φ(t)|â†
hâp

(
i∂t − Ĥ

) |Φ(t)〉 = 0, (8.3)

where p and h again refer to unoccupied (particle) and occupied (hole) states,
respectively. The meaning of these conditions is that time development using the
single-particle operator ĥ should not mix occupied and unoccupied states. As in
the static case, the simplest way to assure this is to use the single-particle states
propagated by this operator, i.e., to calculate their time dependence using (8.1).
Since ĥ is a Hermitian operator, the subspaces will nicely remain orthogonal.

In practice, only the occupied states have to be followed in time, as the unoccu-
pied ones simply span the space orthogonal to these. Note, however, that as in the
static case, there is an arbitrariness: a time-dependent unitary transformation mixing
the occupied states among themselves would not change the physical solution.
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8.2.3 TDHF Beyond the Linear Domain

In the following the TDHF approximation will serve as a starting point for deriv-
ing the RPA which corresponds to the linearized version of TDHF. As always in
linearized theories the explicit time dependence of the processes under study dis-
appears to the benefit of an analysis of motion in terms of harmonic modes. The
full TDHF approximation, however, covers a much wider range of physical situ-
ations than the ones explored in the sequel of this chapter. In particular, it allows
to describe large amplitude motion and higher excitations. Typical applications for
large amplitudes are nuclear fission, fusion, and fragmentation [74]. Higher exci-
tations play a large role in laser-induced dynamics of electronic systems, e.g., in
cluster dynamics [89].

It should also be noted that TDHF may serve as a basis for the development
of other approximations, especially in the semi-classical domain. One major case
is the Vlasov equation, which corresponds to the classical analogue of TDHF and
which can be derived from TDHF for applications to fermion systems. Going to the
classical (or semi-classical when properly including fermion statistics) limit implies
a loss of some quantal effects (especially the ones associated with shell structure)
which means that such a theory can mostly be applied to energetic situations. The
Vlasov strategy is especially suited to that domain, not per se, but because it pro-
vides the most efficient basis for the inclusion of dynamical correlations through the
addition of collisions terms “à la Boltzmann” [11, 89], a step which has not yet been
convincingly (and practically) achieved in the fully quantal domain. Another typical
approximation possibly derived from TDHF is the Time-Dependent Thomas–Fermi
Approximation (TDTF) in which one imposes a specific collective form for the
many-body wave function which finally reduces the dynamical equation to a fluid
dynamics description of the system. This TDTF approximation has been used in
many domains of physics, in nuclear physics [92], and more recently in the case
of fermionic traps [38]. We will not use these approaches (Vlasov and beyond or
TDTF) here and focus the forthcoming analysis on the quantal linear domain.

8.3 RPA – the Algebra of Small-Amplitude Oscillations

Small amplitude means small deviations from the mean-field ground state. We have
learned in Chap. 5 in the context of the Hartree–Fock variation that the space of
small-amplitude deviations is spanned by the complete set of 1ph excitations. The
aim is thus to develop an approach which takes care of the residual interaction in
1ph space. Motion has a natural connection with TDHF and we will develop that
method as the small-amplitude limit of TDHF. The same result can be obtained in
many different ways (e.g., with diagrammatic perturbation theory [13] or equations
of motion techniques [93]). From its early diagrammatic derivation [16] it inherited
the name Random-Phase Approximation (RPA) because a cancellation of compli-
cated diagrams due to random-phase fluctuations was assumed. We ought also to
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mention that actual content of RPA may differ in different fields and applications.
For example, RPA in solid-state physics often embodies only the direct part of the
Coulomb residual interaction. In finite systems (nuclei, clusters), usually the fully
consistent approach as outlined below is intended.

8.3.1 The Starting Point: TDHF

The small-amplitude limit of TDHF and the subsequent derivation of the random-
phase approximation (RPA) becomes particularly transparent in a representation
of Slater states and generating operators. This establishes a great similarity to the
quantum-mechanical oscillator problem in Heisenberg representation. We therefore
chose that line of development for the presentation here.

The one key ingredient for the description now becomes the time-dependent
Slater state |Φ(t)〉, given in detail as

|Φ(t)〉 = â†
1(t)â†

2(t) · · · â†
N (t)|0〉 ≡ A {ϕ1(x1, t) . . . ϕN (xN , t)} , (8.4)

where the â†
i (t), or ϕi (x, t) correspondingly, constitute the set of occupied time-

dependent single-particle states. The time evolution of these single-particle states
is optimized by the TDHF equations (8.3), which here are used in the second form
given there. We are now interested in types of motion which oscillate only with
small amplitude about a stationary Hartree–Fock state |Φ0〉. The HF state fulfills
the stationary HF equations (5.10), i.e.,

〈Φ0|â†
hâp Ĥ |Φ0〉 = 0 , 〈Φ0|Ĥ â†

pâh |Φ0〉 = 0 .

This motivates making the ansatz

|Φ(t)〉 ≈ [|Φ0〉 + |δΦ(t)〉]e−iE0t , (8.5a)

where E0 is the HF ground-state energy, and then linearizing the TDHF equations
with respect to |δΦ(t)〉. As already worked out in Chap. 5, the manifold of small
changes of a Slater state spans the space of 1ph states (5.8). It is important to
emphasize what 1ph means in this context of linearization. As we consider vari-
ations about the basis state |Φ0〉, these are the 1ph states with respect to |Φ0〉 and
the single-particle states associated with â†

α or âα are the single-particle states of the
HF ground state |Φ0〉. This is parametrized here as

|δΦ(t)〉 = iηĜ|Φ0〉 , Ĝ =
∑

p>N ,h≤N

{
G phâ†

pâh + Ghpâ†
hâp

}
, (8.5b)



194 8 Excitation Spectra

where η is a small number and the matrix elements G ph and Ghp are still arbitrary.
We take the liberty to chose Ĝ as being Hermitian, so that Ghp = G∗

ph and conse-
quently

〈δΦ(t)| = −iη〈Φ0|Ĝ , Ĝ† = Ĝ . (8.5c)

8.3.2 Linearization

The aim is to expand the TDHF equation (8.3) in first order using the expanded state
(8.5). We start with the time derivative

〈Φ|â†
hâpi∂t |Φ〉 ≈ E0〈Φ0|â†

h âp|Φ0〉︸ ︷︷ ︸
=0

+iη〈Φ0|â†
hâpi∂t Ĝ|Φ0〉

+iηE0

[
〈Φ0|â†

hâpĜ|Φ0〉 − 〈Φ0|Ĝâ†
hâp|Φ0〉

]
.

The term with the action of Ĥ becomes

〈Φ|â†
hâp Ĥ |Φ〉 ≈ 〈Φ0|â†

hâp Ĥ |Φ0〉︸ ︷︷ ︸
=0

+iη〈Φ0|â†
hâp Ĥ Ĝ|Φ0〉 − iη〈Φ0|Ĝâ†

hâp Ĥ |Φ0〉

= iη〈Φ0|
[
â†

hâp Ĥ , Ĝ
]|Φ0〉

= iη〈Φ0|â†
hâp

[
Ĥ , Ĝ

]|Φ0〉 + iη〈Φ0|
[
â†

hâp, Ĝ
]
Ĥ |Φ0〉 .

The second term is disentangled as

〈Φ0|
[
â†

hâp, Ĝ
]
Ĥ |Φ0〉 =

∑
h′

G ph′ 〈Φ0|â†
hâh′︸ ︷︷ ︸

=δhh′ 〈Φ0|

Ĥ |Φ0〉 −
∑

p′
G p′h 〈Φ0|â†

p′ âp︸ ︷︷ ︸
=0

Ĥ |Φ0〉

= G ph〈Φ0|Ĥ |Φ0〉 = E0〈Φ0|â†
hâpĜ|Φ0〉

and thus

〈Φ|â†
hâp Ĥ |Φ〉 ≈ iη〈Φ0|â†

hâp

[
Ĥ , Ĝ

]|Φ0〉 + iηE0〈Φ0|â†
hâpĜ|Φ0〉 .

Combining these results we find the linearized TDHF equation as

0 = 〈Φ0|â†
hâp

(
i∂t Ĝ − [Ĥ , Ĝ]

)|Φ0〉 = 〈Φ0|
[
â†

hâp, i∂t Ĝ − [Ĥ , Ĝ]
]|Φ0〉,
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where a zero was inserted, namely â†
hâp|Φ0〉 = 0, to reshape the expression in terms

of commutators throughout. That will simplify the treatment later on. The conjugate
equation involving â†

pâh can be derived similarly.
Altogether the linearized TDHF equations are thus

〈Φ0|[â†
pâh, i∂t Ĝ − [Ĥ , Ĝ]]|Φ0〉 = 0 = 〈Φ0|[â†

hâp, i∂t Ĝ − [Ĥ , Ĝ]]|Φ0〉,
(8.6)

to be considered for all conceivable combinations of h ≤ N and p > N . The
complete manifold of 1ph operators projects out the 1ph part of the other operators
in the commutator. ∂t Ĝ is already purely 1ph by construction, while [Ĥ , Ĝ] as such
contains much more. The equation of motion for Ĝ could thus be written more
compactly as

i∂t Ĝ = [Ĥ , Ĝ]ph ,

where the suffix ph denotes the 1ph part of the commutator.

8.3.3 Eigenmodes and Eigenfrequencies

The equation of motion (8.6) poses an initial value problem like TDHF: giving an
initial state |Φ(t = 0)〉 ≈ [

1 + iĜ(t = 0)
]|Φ0〉 also determines the corresponding

initial generator Ĝ(t = 0). Equation (8.6) then allows determining Ĝ(t) at later
times. Equation (8.6) is a linear equation for Ĝ(t). This means it is an equation
for coupled harmonic modes. From the theory of coupled harmonic oscillators, it is
known that every linear propagation can be decomposed in terms of eigenmodes m

Ĝ =
∑

m

[
Ĉ†

me−iωm t − Ĉmeiωm t
]

, ωm > 0 . (8.7)

The positive definiteness of the ωm is needed to render the decomposition unam-
biguous. The time derivative is then reduced to a simple algebraic operation

i∂t Ĝ =
∑

m

ωm
[
Ĉ†

me−iωm t + Ĉmeiωm t
]

. (8.8)

We insert this expansion into the linearized TDHF equation (8.6) and sort the terms
according to the frequency factor e−iωm t . Each factor is linearly independent of the
others, which implies that the equation for each m has to be fulfilled separately,
leading to the eigenvalue equations
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〈Φ0|
[ { â†

hâp

â†
pâh

}
, [Ĥ , Ĉ†

m]
]|Φ0〉 = ωm〈Φ0|

[ { â†
hâp

â†
pâh

}
, Ĉ†

m

]|Φ0〉 , (8.9)

and the conjugate equations for Ĉm . A particularly instructive form of the equa-
tions is obtained by realizing that the space of variations â†

hâp, â†
pâh is equally well

spanned by the set of eigenmode operators Ĉ†
m and Ĉm , i.e.,

{
â†

hâp, â†
pâh

}
≡ {Ĉ†

m, Ĉm

}
, (8.10)

where p, h runs over all 1ph combinations and m over the full spectrum of eigen-
modes of the linearized equations. Running through all these m is equivalent to
checking all conceivable variations in ph space. This yields the eigenmode equa-
tions as

〈Φ0|[Ĉn, [Ĥ , Ĉ†
m]]|Φ0〉 = ωm〈Φ0|[Ĉn, Ĉ†

m]|Φ0〉 ,

〈Φ0|[Ĉ†
n, [Ĥ , Ĉ†

m]]|Φ0〉 = ωm〈Φ0|[Ĉ†
n, Ĉ†

m]|Φ0〉 .

The commutators on the right-hand sides can be simplified. To that end, we con-
sider the complex conjugate of the above equations:

〈Φ0|[Ĉm, [Ĥ , Ĉ†
n]]|Φ0〉 = ωm〈Φ0|[Ĉm, Ĉ†

n]|Φ0〉,
〈Φ0|[Ĉ†

m, [Ĥ , Ĉ†
n]]|Φ0〉 = ωm〈Φ0|[Ĉ†

m, Ĉ†
n]|Φ0〉 ,

and exchange labels n ←→ m, yielding

〈Φ0|[Ĉn, [Ĥ , Ĉ†
m]]|Φ0〉 = ωn〈Φ0|[Ĉn, Ĉ†

m]|Φ0〉 ,

〈Φ0|[Ĉ†
n, [Ĥ , Ĉ†

m]]|Φ0〉 = ωn〈Φ0|[Ĉ†
n, Ĉ†

m]|Φ0〉 .

We assume that all eigenfrequencies are different and subtract the two equations.
The left-hand sides cancel and we are left with

0 = (ωn − ωm)〈Φ0|[Ĉn, Ĉ†
m]|Φ0〉 ,

0 = (ωn + ωm)〈Φ0|[Ĉ†
n, Ĉ†

m]|Φ0〉 .

The second equation requires the commutator part to vanish because ωn + ωm > 0.
The first equation acts similarly for n �= m, but leaves a choice for n = m. Linear
equations do not determine the normalization of an eigenmode. This freedom can
be exploited by normalizing the commutator to one.

This yields the eigenmode equations as
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〈Φ0|[Ĉn, [Ĥ , Ĉ†
m]]|Φ0〉 = ωmδnm, (8.11a)

〈Φ0|[Ĉ†
n, [Ĥ , Ĉ†

m]]|Φ0〉 = 0, (8.11b)

〈Φ0|[Ĉn, Ĉ†
m]|Φ0〉 = δnm, (8.11c)

〈Φ0|[Ĉ†
n, Ĉ†

m]|Φ0〉 = 0 . (8.11d)

They are homogeneous linear equations for the generators Ĉ†
m of the eigenmodes

with eigenfrequency ωm . They are often called the equations of the random-phase
approximation (RPA). The notion “random phase” becomes apparent in a derivation
from diagrammatic analysis where all diagrams not included in RPA are assumed to
disappear by phase averaging [16].

The algebraic formulation is intuitive because one merely has to skip the “bra”
and the “ket” and to consider the commutators as such, obtaining the quantum-
mechanical algebra of coupled harmonic oscillators. That algebra cannot, however,
be exactly matched for a many-fermion problem. With the expectation values as
given here, we have what is called a weak operator algebra. It keeps closeness to
the basis state |Φ0〉 in accordance with the underlying linearization, and it is an
oscillator algebra because every system in the limit of small amplitudes becomes a
system of coupled oscillators. The above algebraic formulation is also very useful in
developing approximation schemes for which one has simply to invent a convenient
subset of 1ph operators for the expansion of the Ĉ†

m . Moreover, it is a very elegant
formulation in connection with model Hamiltonians which comply very well with
algebraic treatment like the quasispin, or LMG, model, see Sect. 7.2.

8.3.4 The RPA Equations in Matrix Form

The RPA equations in the form (8.11) require some more steps to develop a practical
solution scheme. There are different ways to do this. An example for a purely alge-
braic solution is given in Sect. 8.3.7. Here we present the conceptually simplest
(not necessarily most efficient) representation as a matrix equation. A complete
basis of the space of 1ph operators is provided trivially by the set of all conceiv-

able 1ph operators, i.e.,
{

â†
pâh, â†

hâp, h ≤ N , p > N
}

. Expanding the sought-for

eigenmode operators in terms of this 1ph basis yields

Ĉ†
m =

∑
ph

{
x (m)

ph â†
pâh − y(m)

hp â†
hâp

}
, (8.12a)

Ĉm =
∑

ph

{
x (m)

ph

∗
â†

hâp − y(m)
hp

∗
â†

pâh

}
. (8.12b)
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We insert this expansion into the RPA equations (8.9)

∑
p′h′

(
〈Φ0|

[ { â†
hâp

â†
pâh

}
, [Ĥ , â†

p′ âh′ ]
]|Φ0〉x (m)

p′h′ − 〈Φ0|
[ { â†

hâp

â†
pâh

}
, [Ĥ , â†

h′ âp′ ]
]|Φ0〉y(m)

p′h′

)

= ωm

∑
p′h′

(
〈Φ0|

[ { â†
h âp

â†
pâh

}
, â†

p′ âh′
]|Φ0〉x (m)

p′h′ − 〈Φ0|
[ { â†

hâp

â†
pâh

}
, â†

h′ âp′
]|Φ0〉y(m)

p′h′

)
,

and employ the key commutators

〈Φ0|[â†
hâp, â†

p′ âh′]|Φ0〉 = δph,p′h′ ,

〈Φ0|[â†
hâp, â†

h′ âp′ ]|Φ0〉 = 0 .

This yields the RPA equation in matrix representation:

ωm x (m)
ph =

∑
p′h′

Aph;p′h′ x (m)
p′h′ +

∑
p′h′

Bph;p′h′ y(m)
p′h′ , (8.13a)

− ωm y(m)
ph =

∑
p′h′

Bph;p′h′ x (m)
p′h′ +

∑
p′h′

Aph;p′h′ y(m)
p′h′ , (8.13b)

Aph;p′h′ = 〈Φ0|[â†
hâp, [Ĥ , â†

p′ âh′ ]]|Φ0〉, (8.13c)

Bph;p′h′ = 〈Φ0|[â†
pâh, [Ĥ , â†

p′ âh′ ]]|Φ0〉 . (8.13d)

This is obviously a set of linear homogeneous equations for the coefficients x (m)
ph

and y(m)
ph . It determines the eigenfrequencies ωm and the corresponding eigenvectors

x (m)
ph , y(m)

ph . The matrices A and B are determined by the underlying Hamiltonian.
Further evaluation depends on the details of the model. The orthonormality con-
ditions (8.11c) and (8.11d) for the operators Ĉ†

m , Ĉm become conditions for the
expansion coefficients as

∑
ph

x (m)
ph

∗
x (n)

ph − y(m)
ph

∗
y(n)

ph = δmn , (8.14a)

∑
ph

x (m)
ph

∗
y(n)

ph − y(m)
ph

∗
x (n)

ph = 0 . (8.14b)
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In order to exemplify the evaluation of the RPA equations in more detail, consider
the example of a many-particle system with a local two body interaction V (|r − r′|)

ωm x (m)
ph = (εp − εh)x (m)

ph +
∑
p′h′

Vph;p′h′
[
x (m)

p′h′ + (y(m)
p′h′)∗

]
, (8.15a)

−ωm y(m)
ph = (εp − εh)y(m)

ph +
∑
p′h′

Vph;p′h′
[
(x (m)

p′h′)∗ + y(m)
p′h′

]
, (8.15b)

Vph;p′h′ =
∫

d3r d3r ′ ϕ(0)
p

†
(r)ϕ(0)

h′
†
(r′)V (|r − r′|)ϕ(0)

h (r)ϕ(0)
p′ (r′) , (8.15c)

h, h′ ≤ N , p, p′ > N . (8.15d)

8.3.5 Transition Moments and Strength Distributions

The RPA equations (8.11) or (8.13) provide the spectrum of eigenfrequencies ωm

and corresponding eigenmodes Ĉ†
m . The latter allow to compute the transition

strength for a given one-body observable Q̂ where Q̂ is typically some multipole
moment. Most important is the case of the dipole moment, which is related to the
photo-absorption strength

SQ(ω) = 2π
∑

m

ω
∣∣〈Φ0|[Q̂, Ĉ†

m]|Φ0〉
∣∣2 [δ(ω − ωm) + δ(ω + ωm)] . (8.16)

RPA provides discrete spectra. Realistic strength distributions are smoothed by
several effects (particle emission, two-body correlations, thermal averaging). This
is often accounted for in practice by replacing the δ-distribution by a smooth
Lorentzian or Gaussian of small, but finite, width.

The derivation of the strength (8.16) proceeds quite similarly to the derivation
of Fermi’s golden rule [24]. We add an external time dependent dipole field as
a perturbation η f (t)D̂ where f (t) is the temporal profile and η contains the field
strength together with other factors. The solution to the now time-dependent Hamil-
tonian Ĥ −η f (t)Q̂ is sought again in the small amplitude limit by the superposition
(8.5). The steps of linearization are run through as in Sect. 8.3.2. A new feature
is now that the perturbation Ŵ does not belong to the HF optimization and thus,
there is a non-vanishing 〈Φ0|â†

hâpŴ |Φ0〉. We keep this term as the leading order of
perturbation and obtain the modified linearized equations as

i∂t Ĝ = [Ĥ , Ĝ]ph − η f (t)Q ph .

The dynamic generator Ĝ is expanded as
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Ĝ =
∑

m

[
Ĉ†

me−iωm t cm(t) − Ĉmeiωm t c∗
m(t)

]
, ωm > 0,

with expansion coefficients cm yet to be determined. Inserting this expansion into
the above dynamic equation for Ĝ yields the equations of motion for the coefficients

i�ċm = η f (t)〈Φ0|[Q̂, Ĉ†
m]|Φ0〉eiωm t =⇒

cm = − iη

�
〈Φ0|[Q̂, Ĉ†

m]|Φ0〉
∫ t

−∞
dt ′ f (t ′)eiωm t ′

,

where final transitions are evaluated at t −→ ∞. We consider a perturbation of
finite duration f (t) = θ (T/2 − |t |)e−iωt in the limit of large T , which yields the
asymptotic transition probability

|cm(∞)| ∝ T
sin2 (ωT/2)

(ωT/2)2
−→ T 2πδ(ω − ωm) .

The photo-absorption cross section is related to the transition rate, which is the
transition probability per time unit. Thus dividing by the factor T in the probability
and evaluating the appropriate photon normalization factors [24, 46] yields (8.16)
for the absorption strength.

8.3.6 RPA Equations in Connection with DFT

Up to now, we have worked as if we were given a microscopic Hamiltonian Ĥ con-
sisting of a one-body and a two-body part. In density functional theory (see Chap. 6),
the one-body part (kinetic energy and external field) is still given as an operator,
but the potential energy is packed into a functional of the local density Epot[ρ(r)]
where Epot combines the Hartree part and exchange-correlation functional of (6.5).
The question is thus how to compute a double commutator in terms of an energy
functional E[ρ(r)].

We consider double commutators 〈Φ0|[Q̂, [Ĥ , P̂]]|Φ0〉 for arbitrary one-body
operators Q̂ and P̂ . First we argue that it suffices to compute the double commuta-
tor for Hermitian one-body operators. An arbitrary operator Q̂ can be decomposed
into Hermitian and anti-Hermitian part and thus be represented by two Hermitian
operators ÂR and ÂI as Q̂ = ÂR + i ÂI . Inserting this representation into the
double commutator yields the simpler task to evaluate four double commutators
all composed of Hermitian one-body operators, i.e., finally to evaluate

〈Φ0|[ Â, [Ĥ , B̂]]|Φ0〉 , Â† = Â , B̂† = B̂ , Â, B̂ ∈ {1ph} .

The proper evaluation of such double commutators is achieved by working out the
linearization of the time-dependent DFT. The result is
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〈Φ0|[ Â, [Ĥ , B̂]]|Φ0〉 = 〈Φ0|[ Â, [ĥ, B̂]]|Φ0〉

+
∫

d3rd3r ′ρA(r)
∂2 Epot

∂ρ(r)∂ρ(r′)
ρB(r′), (8.17)

ρA(r) =
∑

α

[
( Âϕα)†(r)ϕα(r) − ϕ†

α(r)( Âϕα)(r)
]

, (8.18)

where ρB is built analogous to ρA and ĥ is the mean-field Hamiltonian of the DFT
scheme (Sect. 6.1). Let us briefly sketch how this result could be derived. Two key
ingredients for the reasoning are as follows: (i) the Thouless theorem which states
that a unitary transformation |Φ ′〉 = eiÂ|Φ〉 generated by an arbitrary Hermitian
one-body operator Â transforms a Slater state |Φ〉 into a new state which is again
a Slater state [92] and (ii) the energy-density functional which defines a unique
total energy E = E[|Φ〉] for any given Slater state |Φ〉 or associated density ρ,
respectively.

Since Â and B̂ are one-body operators, they can be used to build a unitary trans-
formation (Thouless transformation) to another Slater state |Φ(a, b)〉, i.e.,

|Φ(a, b)〉 = eibB̂eia Â|Φ0〉 , (8.19)

where a and b are some real numbers, in fact, very small ones as we will see. Con-
sider the energy expectation value with |Φ(a, b)〉 and perform a Taylor expansion
about |Φ0〉 up to first order in both a and b (we abbreviate 〈Φ0| . . . |Φ0〉 = 〈. . .〉) :

E(a, b) = E[|Φ(a, b)〉] ≡ 〈Φ(a, b)|Ĥ |Φ(a, b)〉
≈ E0 + ib〈[Ĥ , B̂]〉 + ia〈[Ĥ , Â]〉 + ab〈[ Â, [Ĥ , B̂]]〉 .

The double commutator can obviously be extracted through a double derivative,
yielding the identification

〈Φ0|[ Â, [Ĥ , B̂]]|Φ0〉 = ∂a∂b〈Φ(a, b)|Ĥ |Φ(a, b)〉
∣∣∣
a,b=0

≡ ∂a∂b E(a, b)
∣∣∣
a,b=0

.

(8.20)
In DFT the key quantity is the density. We thus need to express the above double

derivative through the density or rather variations thereof. For this the effect of the
shift (8.19) on the local density has to be evaluated. This unitary transformation
transforms the single-particle states as ϕα −→ ϕα,ab ≈ (1 + ia Â + ibB̂ − abB̂ Â

)
ϕα

where terms ∝ a2, b2 have been dropped because they will not be needed. This
yields the local density (again expanded to the same order)

ρab(r) = ρ(r) + iaρA(r) + ibρB(r) + abρAB(r) ,

ρAB(r) = �
{∑

α

[
( Âϕα)†(r)(B̂ϕα)(r) − ϕ†

α(r)( Â B̂ϕα)(r)
]}

,
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and ρA, ρB as given in (8.18). We insert the shifted density ρab(r) into the energy-
density functional E[ρ]. Roughly speaking the double derivation may be attained
by deriving either both the energy and the density once or the energy twice. This
yields two contributions to the double derivative of the energy:

∂a∂b E[ρab]
∣∣∣
a,b=0

=
∫

d3r
∂ E

∂ρ(r)
ρAB(r) +

∫
d3rd3r ′ρA(r)

∂2 E

∂ρ(r)∂ρ(r′)
ρB(r′) ,

and finally the desired result (8.17), where the term with ρAB was reformulated as a
double commutator with the DFT mean-field Hamiltonian ĥ (see Sect. 6.1).

The above reasoning assumes an energy-density functional for the total energy as
it is used, e.g., in Thomas–Fermi approximation. The Kohn–Sham scheme treats the
kinetic energy in terms of wave functions. The final formula remains valid for this
case; one merely has to separate kinetic from potential energy and apply the above
steps to the energy-density functional for the potential energy. Recombining kinetic
and potential part in the mean-field ĥ then again leads to the expression (8.17).

8.3.7 RPA in the LMG Model as Example

The LMG model, discussed extensively in Chap. 7, is also very well suited to exem-
plify the RPA equations. We consider the under-critical regime where the unper-
turbed state |Φ0〉 is also the HF ground state. That is technically much simpler and
already delivers sufficient insight into the structure of RPA. The basic 1ph operators
in the LMG model are â†

+1,α â−1,α ≡ s(α)
+ . The most general 1ph excitation would

then read

Ĉ†
m =

∑
α

{
x (m)

α â†
+1,α â−1,α − y(m)

α â†
−1,α â+1,α

}
≡
∑

α

{
x (m)

α s(α)
+ − y(m)

α s(α)
−
}

.

(8.21)

The RPA equations as matrix equations then become

(
Â − ω1̂ B̂

B̂ Â + ω1̂

)(
x

y

)
= 0 , (8.22a)

Aαβ = 〈Φ0|
[
ŝ−,α,

[
Ĥ , ŝ+,β

]]|Φ0〉 , (8.22b)

Bαβ = 〈Φ0|
[
ŝ+,α,

[
Ĥ , ŝ+,β

]]|Φ0〉 . (8.22c)

We now need to evaluate the RPA matrices Â and B̂. This amounts to computing
the double commutators with Ĵ0 and Ĵ 2

x . The basic commutators are given by the
spin algebra (7.3) leading to

[
Ĵ0, ŝ±,α

] = ±ŝ±,α ,
[
Ĵx , ŝ±,α

] = ±ŝ0,α .
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Furthermore, we recall the properties of the ground state ŝ−,α|Φ0〉 = 0, ŝ0,α|Φ0〉 =
−|Φ0〉, 〈Φ0|ŝ+,α = 0, and 〈Φ0|ŝ0,α = −〈Φ0|. This yields the expectation values

〈Φ0|
[
ŝ−,α,

[
Ĵ0, ŝ+,β

]]|Φ0〉 = −2δαβ〈Φ0|ŝ0,α|Φ0〉 = δαβ ,

〈Φ0|
[
ŝ+,α,

[
Ĵ0, ŝ+,β

]]|Φ0〉 = 0 ,

〈Φ0|
[
ŝ−,α,

[
Ĵ 2

x , ŝ+,β

]]|Φ0〉 = −〈Φ0|
[
ŝ−,α,

{
Ĵx , ŝ0,β

}]|Φ0〉

= 〈Φ0|
{
ŝ0,α, ŝ0,β

}− δαβ

{
Ĵx , ŝ−,α

}|Φ0〉
= 1 − δαβ ,

〈Φ0|
[
ŝ+,α,

[
Ĵ 2

x , ŝ+,β

]]|Φ0〉 = −〈Φ0|
[
ŝ+,α,

{
Ĵx , ŝ0,β

}]|Φ0〉

= 〈Φ0| − {ŝ0,α, ŝ0,β

}+ δαβ

{
Ĵx , ŝ+,α

}|Φ0〉
= −1 + δαβ .

Combining these results yields the RPA matrices as

Aαβ = δαβ (ε − G) + G , Bαβ = −G(1 − δαβ) . (8.23)

The RPA equations in full detail are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε − ω G G . . . G 0 −G . . . −G

G ε − ω G . . . G −G 0 . . . −G
...

...
...

...
...

...
...

...

G G G . . . ε − ω −G −G . . . 0
0 −G . . . −G ε + ω G G . . . G

−G 0 . . . −G G ε + ω G . . . G
...

...
...

...
...

...
...

...

−G −G . . . 0 G G G . . . ε + ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xN

y1

y2
...

yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

This is a combination of a diagonal matrix and a quite homogeneous matrix having
the same entry everywhere. The equation is invariant under a shift on a ring α −→
mod (α, N )+1. This means that it has cyclic Z (N ) symmetry (see Sect. 4.3.1). The
eigenvectors will thus have the form

x (m)
α = x (m) exp

(
imα

2π

N

)
, y(m)

α = y(m) exp

(
imα

2π

N

)
,
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with m = 0, . . . , N −1 and for all m > 0 the relation
∑

α x (m)
α = 0 =∑α y(m)

α holds
so that the contribution of the equidistributed matrices G vanishes. There remains a
2×2 equation for the α-independent coefficients

m > 0 :
(ε − ω − G) x (m) + G y(m) = 0

G x (m) + (ε + ω − G) y(m) = 0
,

having the positive energy solution ωm>0 = ε

√
1 − 2G

ε
. The case m = 0, on the

other hand, collects all contributions from the G accumulating them to a large net
result. Summing over the α, a 2×2 problem remains.

(
ε(1 + χ

2 ) − ω
)

x (0) − ε
χ

2 y(0) = 0

−ε
χ

2 x (0) + (ε(1 + χ

2 ) + ω
)

y(0) = 0
, χ = 2G(N − 1)

ε
,

together with the normalization (8.14), which here means N ((x (0))2 − (y(0))2) = 1.
Note that here we use the same reduced coupling strength as in the ground-state
studies, see (7.19). The resulting homogeneous linear equation for x and y has two
solutions. The one with positive energy is ω0 = ε

√
1 + χ . Altogether, we obtain the

spectrum

ω0 = ε
√

1 + χ , x (0)
α = 1 + χ

2 + ω0√
2ω0(1 + χ

2 + ω0)
,

y(0)
α =

χ

2√
2ω0(1 + χ

2 + ω0)
,

ωm>0 = ε
√

1 + χ

N−1 , x (m>0)
α ∝ exp

(
imα 2π

N

)
,

y(m>0)
α ∝ G

ε−ωm>0
exp
(
imα 2π

N

)
,

(8.24)

where we did not care to normalize the eigenvectors for m > 0 because that will not
be needed in the following. There is one solution, m = 0, which gathers the whole
effect of the two-body interaction and undergoes a dramatic shift by a factor

√
1 + χ

while the remaining N −1 solutions remain almost unchanged near the unperturbed
energy ε (remember that the effective interaction strength χ is reduced by a factor
1/(N −1) which makes it a negligible effect for large particle numbers). Particularly
intriguing is the case of attractive interaction G < 0. There is obviously a critical
point at 1 + χ = 0, i.e., χ = −1, where the lowest oscillation energy becomes
imaginary, so that these solutions turn to exponential growth rather than oscillations
and the ground-state |Φ0〉 becomes unstable (recall that when χ → −1, ω0 → 0,
x (0)

α → ∞, and y(0)
α → −∞). That is precisely what we observed in Sect. 7.6.3 for

the HF ground state. We thus see that the RPA solution signals the phase transition
by a mode becoming unstable. The region before onset of instability is associated
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with a very soft mode having low energy and large amplitude, thus already violating
the presupposition of small amplitude which was assumed for the derivation of RPA.

The spectrum (8.24) simulates a further important effect, the reshuffling of tran-
sition strength into one collective peak, see the discussion in Sect. 8.1. Let us take
as observable the operator Q̂ ≡ Ĵx . It represents a typical collective operator which
acts equally strongly in all 1ph states, similar to a multipole operator. The 1ph
transitions all have equal strength

∣∣〈Φ0|[Q̂, ŝ+,α]|Φ0〉
∣∣2 = 1 .

The transition strength for the RPA states becomes, inserting the eigenmode (8.21)
with the solutions (8.24),

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2 =
∣∣∣∑

α

(
x (m)

α + y(m)
α

) ∣∣∣2 =
{ N

ω0
m = 0

0 m > 0
. (8.25)

The one mode m = 0 with the strong shift accumulates all collective transition
strength, leaving not the slightest bit for the remaining modes m > 0. The LMG
model thus achieves a perfect collectivity because it has an exactly degenerate 1ph
spectrum and exactly equal coupling among all 1ph states. This is the mechanism
for the collective shift we had seen in Fig. 8.1. The collection of all strength into
exactly one resonance is not perfectly realized there. In reality there are often some-
what degenerate 1ph spectra and slightly fluctuating coupling matrix elements,
which makes the accumulation of strength in one collective mode incomplete. Still,
the typical resonance modes in realistic many-fermion systems often exhaust about
90% of the total strength, which shows that the collective coupling mechanism mod-
eled here is a very relevant process.

The total strength (8.25) accumulated in the m = 0 mode varies with coupling
strength as ω−1

0 = (ε
√

1 + χ )−1 and thus differs from the total strength of uncou-
pled states which goes as N/ε. It is interesting to note that the photo-absorption
strength (8.16) is an energy-weighted sum. We have only one mode contribution
here and thus find for the photo-absorption strength SJx = N , which is indepen-
dent of the coupling strength and has the same value already for the uncoupled
states. The recoupling by RPA has not changed the total SJx , but rearranged it from
dispersion over many 1ph states to appear only in one collective resonance state.
This observation motivates having a closer look at sum rules, which is done in
Sect. 8.4.

8.3.8 A Practical Example: GDR in the Nucleus 238U

One realistic example was given for the cluster case in Fig. 8.1. We complement
that here by an example from nuclei. Figure 8.2 shows the isovector dipole strength
distribution in 238U (the term “isovector” means the dipole oscillations of neutrons
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Fig. 8.2 The isovector
dipole strength distribution in
238U as computed by RPA
with a Skyrme energy
functional (SkI3). The
contributions from modes in
z and x–y direction are
provided separately. The
experimental strength is
shown for comparison.
Adapted from [68]
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against protons). Similar as in the cluster example, the detailed RPA spectra were
folded by some width to simulate broadening effects not included in RPA. The
strength distribution, being large and concentrated in a narrow energy range, has
resonance character. It is the well-known Giant Dipole Resonance (GDR). We have
chosen a well-deformed nucleus (axis ratio η ≈ 0.4) to demonstrate the effect of
deformation on the resonance. The calculations allow separating the modes in the
three principal directions. The z-mode (elongated axis) has substantially lower reso-
nance energy than the x–y-modes (compressed axes). The total strength still shows
the associated double-peak structure, which complies nicely with the experimental
data. This example demonstrates how excitation spectra provide crucial information
on the underlying ground-state properties. The deformation splitting, demonstrated
here, was a key observable to establish the systematics of cluster deformations
[44, 89] (see Chap. 3 and Fig. 3.5). In fact, the collective splitting is much better
visible in clusters. Nuclei are usually not so strongly deformed which makes it rather
hard to clearly see the splitting above background. The above example stems from
a rather well-deformed nucleus.

8.4 Sum Rules and Sum-Rule Approximations

8.4.1 RPA Sum Rules

Key quantities in RPA are the multiple commutators which appear notoriously in
several places, see, e.g., (8.11) and (8.15). Commutators with observables also play
an important role for simple estimates of global excitation strengths, called sum
rules. The detailed strength was given in (8.16). Its computation requires the full
RPA solution. Global strengths are integrated into sum rules, which are deduced by
integrating the transition strength (8.16) over energy augmented with various powers
of energy, and amount to energy-weighted moments of the Q transition elements.
These are
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M (N )
Q =

∫ ∞

0
DωωN−1SQ(ω)

=
∑

m

ωN
m

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2 ( ∫ Dωδ(ω − ωm)
︸ ︷︷ ︸

=1

+
∫

Dωδ(ω + ωm)
︸ ︷︷ ︸

=0

)

=
∑

m

ωN
m

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2 . (8.26)

For odd moments N , these sum rules can be expressed as multiple commutators of
two Q̂ with several Ĥ as

M (N )
Q =

∑
m

ωN
m

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2

= 1

2
〈Φ0|[Q̂, [Ĥ , [[. . . , [Ĥ ,︸ ︷︷ ︸

N times

Q̂] . . .]]]]|Φ0〉 . (8.27a)

Of particular practical importance is the first and the third moment

M (1)
Q =

∑
m

ωm

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2 = 1

2
〈Φ0|[Q̂, [Ĥ , Q̂]]|Φ0〉 , (8.27b)

M (3)
Q =

∑
m

ω3
m

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2 (8.27c)

= 1

2
〈Φ0|[Q̂, [Ĥ , [Ĥ , [Ĥ , Q̂]]]]|Φ0〉 . (8.27d)

To prove these relations, we expand the 1ph part of a given operator into the com-
plete set of 1ph operators Ĉ†

m , Ĉm as

Q̂ =
∑

m

[
Ĉ†

m〈Φ0|[Ĉm, Q̂]|Φ0〉 − Ĉm〈Φ0|[Ĉ†
m, Q̂]|Φ0〉

]
. (8.28)

The proof for the expansion (8.28) relies first on that the Ĉ†
m , Ĉm constitute a

complete set, so that an expansion is capable of describing any 1ph operator. The
actual expansion coefficients are derived with the help of the orthonormality condi-
tions (8.11c, 8.11d). We start from the general form

Q̂ =
∑

m

[
Ĉ†

mλm − Ĉmμm
]
,

where the λm and μm are to be determined; we then apply the commutator with Ĉm ,
which successively gives
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〈Φ0|[Ĉm, Q̂]|Φ0〉 =
∑
m ′

[
〈Φ0|[Ĉm, Ĉ†

m ′ ]|Φ0〉︸ ︷︷ ︸
=δmm′

λm ′

− 〈Φ0|[Ĉm, Ĉm ′ ]|Φ0〉︸ ︷︷ ︸
=0

μm ′
]

= λm .

In a similar fashion one shows the validity of the other expansion coefficient
〈Φ0|[Ĉ†

m, Q̂]|Φ0〉. With this expansion at hand, we evaluate the double commutator
with the Hamiltonian

〈Φ0|[Q̂, [Ĥ , Q̂]]|Φ0〉 =
∑
mm′

[
〈Φ0|[Ĉm′ , Q̂]|Φ0〉 〈Φ0|[Ĉ†

m′ , [Ĥ , Ĉ†
m]]|Φ0〉︸ ︷︷ ︸

=0

〈Φ0|[Ĉm, Q̂]|Φ0〉

−〈Φ0|[Ĉ†
m′ , Q̂]|Φ0〉 〈Φ0|[Ĉm′ , [Ĥ , Ĉ†

m]]|Φ0〉︸ ︷︷ ︸
=ωm δmm′

〈Φ0|[Ĉm, Q̂]|Φ0〉

−〈Φ0|[Ĉm′ , Q̂]|Φ0〉 〈Φ0|[Ĉ†
m′ , [Ĥ , Ĉm]]|Φ0〉︸ ︷︷ ︸

=ωm δmm′

〈Φ0|[Ĉ†
m, Q̂]|Φ0〉

−〈Φ0|[Ĉ†
m′ , Q̂]|Φ0〉 〈Φ0|[Ĉm′ , [Ĥ , Ĉm]]|Φ0〉︸ ︷︷ ︸

=0

〈Φ0|[Ĉ†
m, Q̂]|Φ0〉

]

= 2
∑

m

ωm

∣∣〈Φ0|[Q̂, Ĉ†
m′ ]|Φ0〉

∣∣2 = 2M (1)
Q .

The other odd sum rules are evaluated in a similar fashion.
Sum rules are powerful tools for several purposes. They can serve as a cross-

check for actual calculations. More importantly, they are an extremely useful ingre-
dient for a simple estimate of resonance frequencies from M (1)

Q and M (3)
Q [15], as

will be outlined in the next section.

8.4.2 Sum-Rule Approximation

8.4.2.1 Assumption of Exhausting Resonance

As outlined in the previous section, it is rather easy to compute the first and third
moments M (N )

Q of a given observable Q̂. One often encounters situations of res-
onant response in which the dominant fraction of the strength distribution (8.16)
is confined to a very narrow frequency window. An example is the Mie plasmon
resonance, which appears in all finite metal drops or in quantum dots. Under these
conditions, it can be assumed that nearly all strength resides in one resonance mode
“m −→ R,” such that

M (N )
Q =

∑
m

ωN
m

∣∣〈Φ0|[Q̂, Ĉ†
m]|Φ0〉

∣∣2 ≈ ωN
R

∣∣∣〈Φ0|[Q̂, Ĉ†
R]|Φ0〉

∣∣∣2 .
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This allows to deduce an estimate for the resonant frequency and corresponding
transition strength from two moments. The most easy to evaluate is M (1)

Q and M (3)
Q ,

yielding the estimate

ωR =
√√√√M (3)

Q

M (1)
Q

=
√

〈Φ0|[Q̂, [Ĥ , [Ĥ , [Ĥ , Q̂]]]]|Φ0〉
〈Φ0|[Q̂, [Ĥ , Q̂]]|Φ0〉

. (8.29)

This is called a sum-rule estimate for a resonant frequency [15].

8.4.2.2 More Details for a Dipole Resonance

We exemplify the power of the sum-rule approximation for the case of the Mie
plasmon in metal clusters. The relevant observable is the dipole moment

Q̂ −→ D̂ =
N∑

n=1

ern . (8.30)

It is important to note that this is a local and, of course, a one-body operator. In
fact, it is a vector of operators, three different operators in one package. The total
Hamiltonian of the system reads (assuming N electrons and N ions)

Ĥ = T̂ + Ûion + V̂el , (8.31a)

T̂ =
N∑

n=1

p̂2
n

2m
, (8.31b)

Ûion =
N∑

n=1

Uion(rn) , Uion(r) =
∫

D3r ′ e2

|r − r′|ρion(r′) , (8.31c)

V̂el = 1

2

N∑
n �=n′=1

∫
D3r D3r ′ e2

|rn − r′
n′ | . (8.31d)

This Hamiltonian consists of the kinetic energy T̂ = p̂2/(2m), the external Coulomb
potential Ûion from the ionic distribution (represented by the density ρion(r)), which
is a local operator, and the Coulomb interaction between the electrons V̂el, which is
a two-body operator and again a local one. This implies the following commutators:

[
T, D̂ j

] = − ie

m

N∑
n=1

p̂n, j

︸ ︷︷ ︸
P̂j

,
[
Ûion, D̂ j

] = 0 ,
[
V̂el, D̂ j

] = 0 ,
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which together yield

[
Ĥ , D̂ j

] = − ie

m
P̂j , P̂j =

N∑
n=1

p̂n, j , (8.32)

where P̂ = (P̂x , P̂y, P̂z) is the total momentum of the electrons. With this we obtain

〈Φ0|[D̂ j , [Ĥ , D̂ j ]]|Φ0〉 = − ie2

m
〈Φ0|[D̂ j , P̂j ]|Φ0〉︸ ︷︷ ︸

=N i

= N
e2

m
.

Adding up the results of all three components to the total first moment of D̂ yields

M (1)
D =

3∑
j=1

M (1)
D j

= 3N
e2

m
. (8.33)

This is an extremely simple result, the famous Thomas–Reiche–Kuhn sum rule, see,
e.g., [92, 36]. It stems exclusively from the kinetic energy. There is no contribution
from the potential energies as long as these are described by local operators. The
third moment becomes somewhat more involved. We first reduce the quadruple
commutator using the elementary commutator (8.32) to

M (3)
D j

= 〈Φ0|[D̂ j , [Ĥ , [Ĥ , [Ĥ , D̂ j ]]]]|Φ0〉 = 〈Φ0|[[D̂ j , Ĥ ], [Ĥ , [Ĥ , D̂ j ]]]|Φ0〉

= e2

m2
〈Φ0|[P̂j , [Ĥ , P̂j ]]|Φ0〉.

Inserting the Hamiltonian (8.31) into the double commutator, there are two vanish-
ing pieces

[
T̂ , P̂j

] = 0,
[
V̂el, P̂j

] = 0.

The commutator with the kinetic energy vanishes because T̂ consists only of
momentum operators which all commute with P̂j . The other commutator van-
ishes because the two-body interaction is translationally invariant and the total
momentum P̂j is the generator of translations. The remaining non-vanishing piece
is the double commutator with the external field. We exploit that the commutator
of the momentum with a local function produces the derivative of that function
([ f (x̂), p̂]ϕ(x) = i�(∂ f/∂x)ϕ(x)). This yields



8.4 Sum Rules and Sum-Rule Approximations 211

M (3)
D j

= e2

m2
〈Φ0|[P̂j , [Ûion, P̂j ]]|Φ0〉 = e2

m2
〈Φ0|[−iP̂j ,

N∑
n=1

∇ jUion(rn)]|Φ0〉

= e2

m2
〈Φ0|

N∑
n=1

∇2
j Uion(rn)|Φ0〉 = e2

m2

∫
D3r ρel(r)∇2

j Uion(r).

We sum again over all three space directions and obtain

M (3)
D =

3∑
j=1

M (3)
D j

= e2

m2

∫
D3r ρel(r)ΔUion(r).

At this stage, a compact expression for the average resonance frequency is reached as

ω2
R = M (3)

Q

M (1)
Q

=
∫

D3r ρel(r)ΔUion(r)

Nm
. (8.34)

This estimate is the starting point for applications in a broad variety of systems. It
can be further reduced for saturating, self-bound systems like metal clusters, see
Sect. 8.4.2.4. It is still applicable in situations with dominating external field like in
quantum dots where the external field is given by design. This case will be addressed
in the following section.

8.4.2.3 Kohn Theorem

The sum-rule estimate (8.34) shows that the dipole resonance frequency is deter-
mined exclusively by the external fields. The fermion cloud as such does not con-
tribute to its own dipole oscillation frequency. The case becomes particularly simple
for an electron cloud in a trap. Trap potentials usually are largely harmonic (see
Sect. 3.2.4). Let us assume that Uion = m

2 ω2
extr

2. This yields ΔUion = 3ω2
ext and

finally ω2
R = ω2

ext, which is the remarkable result that the dipole frequency is just
the frequency of the external oscillator field.

The result is not as surprising as it may look at first glance. Self-bound fermion
systems which are not confined by any external fields have free translation of the
static ground-state HF solution as one solution of the TDHF equations. This feature
emerges from momentum conservation guaranteed for a Hamiltonian consisting of
kinetic energy and a two-body interaction [92]. The estimate (8.34) is more general,
as it is also applicable in connection with DFT, and the example of free translation
could also be carried through in connection with density functionals, as it is prac-
ticed, e.g., with nuclear TDHF calculations which are, in fact, TDDFT calculations.
It is a remarkable feature that conservation of center of mass momentum of a free
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Fermion cloud is also correctly reproduced in TDLDA. This yields free translational
motion if no external field is present. The considerations can be extended to the
case of a purely harmonic external field, for then the mean-field state as a whole
oscillates with given oscillator frequency in the external field. That is the content of
the harmonic-potential theorem, an extended version of the Kohn theorem and often
also called zero-force theorem [26, 110].

8.4.2.4 Mie Plasmon Frequency in a Metal Drop

For a metal drop, we can go one step further and exploit the fact that Uion is the
Coulomb field generated by the ionic background density, see (8.31c). The Poisson
equation then provides the simple relation ΔUion = 4πe2ρion, which yields

M (3)
D = 12π

e4

m2

∫
D3r ρelρion , (8.35)

already a quite simple result, but one can go a few steps further in producing a
robust and even simpler estimate. For the purpose of a simple estimate, the ionic
background density ρion is approximated roughly by the jellium model (1.1). We fur-
thermore assume that at equilibrium ρel = ρion. There remains the simple integration
over a homogeneous sphere yielding its volume 4π R3

jel/3. This allows evaluating the
third moment as

M (3)
D = = 12π

e4

m2

4π R3
jel

3

(
3

4π R3
jel

)2

= e4

m2

9

r3
s N

.

Putting all pieces together, we eventually find the sum-rule estimate for the reso-
nance frequency of the Mie plasmon in a spherical metal cluster

ωMie =
√√√√M (3)

D

M (1)
D

=
√

e2

mr3
s

. (8.36)

This is the famous Mie plasmon frequency. It was derived a century ago by a purely
classical consideration of dielectric vibrations of a charged sphere [71]. The estimate
reproduces the observed resonance frequencies in simple metal clusters (Li, Na, K,
Cs, Rb) within better than 10% [19]. It thus serves as an extremely useful guideline
for the resonance position.

Note that the sum-rule approximations together with local potentials reduce to
simple expressions involving only the local densities, see (8.35), and/or local exter-
nal potentials, see (8.34). The detailed quantum-mechanical information contained
in the single-particle wave functions is not required. This means that these estimates
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can be equally well be used in connection with semi-classical approaches like the
Thomas–Fermi method [89].

8.5 Concluding Remarks

Small-amplitude oscillations are a characteristic feature of any physical system.
They provide a complementing view on the ground-state properties as well as a
doorway for the exploration of dynamical scenarios, typically the response of a sys-
tem to an external perturbation. The analysis of such small-amplitude oscillations in
a complex system such as a many-fermion one requires some formal development to
properly account for the interactions between the constituents of the system. In this
chapter we thus have derived the linearized version of TDHF, known as RPA, which
provides a basis for the analysis of small-amplitude oscillations in many-fermion
systems. The RPA gives access to the strength distribution, which can be directly
measured experimentally. The RPA furthermore possesses interesting formal prop-
erties which can be cast into simple expressions through the so-called sum rules.
The latter quantities even provide simple estimates of dominant response peaks and
can thus be used for estimating the response frequency.



Chapter 9
Coherent Two-Body Correlations

The previous chapters dealt predominantly with a mean-field description of
many-fermion systems. These are all approximate and leave space for correlations
beyond the mean field. Correlations naturally cover a very broad field. We will dis-
cuss here three illustrative examples. A global measure for the strength of correla-
tions is deduced from perturbation theory: it is the ratio of the average strength of the
residual two-body interaction over the typical excitation energies of the system, the
latter being easily quantified by the HOMO–LUMO gap. We have learned in Chap. 3
that fermion systems very much prefer situations with a large HOMO–LUMO gap
which keeps correlation effects low. We have also seen that such a favorable situa-
tion is not necessarily given from the outset. In particular, highly symmetric configu-
rations tend to produce an open-shell situation where the ground state is degenerate.
Think, e.g., of the example given in Fig. 3.4, where most system sizes do not relate
to closed shells at spherical mean field (δ = 0 in that figure). Other situations may
have a unique ground state, but low excitation energies as is the case, e.g., in the
Fermi gas, see Chap. 2. One way out of such unwanted configurations is achieved
by the Jahn–Teller effect. The system breaks a symmetry and undergoes a deforma-
tion until the resulting level shifts have produced a maximal HOMO–LUMO gap,
see the example in Fig. 3.4. This Jahn–Teller mechanism, originally discovered for
molecules [52], is also found in many other systems [32] like solids, nuclei, clusters
and shows up in field theories under the label of spontaneous symmetry breaking and
Goldstone modes [113]. A second solution to avoid degenerate ground states con-
sists in spin alignment (Hund’s rules) which is the preferred remedy in most atoms
[36] and in quantum dots [87]. A third way of resolving the open-shell dilemma is
to take the residual interaction into account, thus proceeding to a correlated state. A
leading portion of the interaction can often be incorporated by pairing correlations.
This will be discussed extensively in Sects. 9.3 and 9.4.

Pairing is an example of strong global correlations. There are often cases where
correlations are weak at a global scale but can make, nonetheless, significant effects.
We will discuss two examples. The first one is the van der Waals interaction (see
Sect. 9.1) which is a long-range effect between atoms and/or molecules. The other
is Hooke’s atom model (Sect. 9.2.2) which allows to scrutinize short-range spatial
correlations.

J.A. Maruhn et al., Simple Models of Many-Fermion Systems,
DOI 10.1007/978-3-642-03839-6 9, C© Springer-Verlag Berlin Heidelberg 2010
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9.1 Van der Waals Interaction

Van der Waals interactions play a key role to understand binding in rare gases in
which atomic electronic closure leads to high ionization potentials and correspond-
ingly vanishing chemical activity. Binding between rare-gas atoms is thus very faint
and stems from correlations between dipole excitations of each atom. The perturba-
tive approach allows to estimate this effect and provides an estimate of its magni-
tude.

9.1.1 Perturbative Estimate of Dipole–Dipole Correlations

The starting point is the standard formula for 2ph correlations from the Coulomb
potential VCoul in second-order perturbation theory

ΔE (2) = −
∑

pp′hh′

∣∣〈ϕhϕh′ |VCoul|ϕpϕp′ 〉∣∣2
εp − εh + εp′ − εh′

, (9.1)

where the expression in the numerator is a two-particle matrix element and the
denominator contains the unperturbed 2ph excitation energies. This expression is
hard to evaluate in general and even diverges in the bulk limit [43]. Substantial
simplifications are possible if we consider two systems separated by some distance
from each other. The perturbation energy (9.1) then can be reduced to a very sim-
ple formula which is not only simple to evaluate but also provides an enlightening
schematic view of correlations in general and of the van der Waals interaction in
particular.

The basic assumption is that the system can be divided into two subsystems
which have no spatial overlap, as is typically the case for two atomic or molecular
systems with a relative distance R which is larger than each system’s spatial dimen-
sions. Let us henceforth call them system “1” and system “2” and label all relevant
quantities with this system number. We are interested in the effect of correlations
on the atom–atom interaction at long distances. Thus we consider only that part of
the correlation energy (9.1) which has one 1ph excitation in “1” and the other in
“2”, i.e., we associate in (9.1) the pair (ph) to system 1 and (p′h′) to system “2”.
Now the fact can be exploited that the two systems have negligible spatial overlap
and that the two systems are far from each other. It is then not necessary to stay
strictly in the ph perturbational scheme. One can equally well consider the exact
excitation spectrum of each of the separate systems at both sites. We call the ground
states |ψ (i)

0 〉, the excited states |ψ (i)
N 〉, and E (i)

N their excitation energies. The 1ph
state becomes the general excitation (pi hi ) −→ |ψ (i)

N 〉 and εp1 − εh1 −→ E (i)
N . This

finally yields the van der Waals energy as
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ΔE (VdW) =
∑
N1 N2

∣∣∣〈ψ (1)
N1

ψ
(2)
N2

|VCoul|ψ (1)
0 ψ

(2)
0 〉
∣∣∣2

E (1)
N1

+ E (2)
N2

, (9.2)

where |ψ (1)
N1

ψ
(2)
N2

〉 stands for the combined states of systems 1 and 2. The situation
is sketched in Fig. 9.1. We introduce the center of mass for each system Ri and
express the coordinates as ri = Ri + xi where all relevant values of xi are small
compared to the overall distance R. In this case the standard multipole expansion
for the Coulomb potential (Taylor expansion in x1 and x2) may be used up to second
order, i.e.,

e2

|r1 − x2| = e2

|x1 − x2 − R|

= e2

R

[
1 − 2

eR ·(x1−x2)

R
− x2

1 + x2
2 − 2x1 ·x2

R2

]−1/2

≈ e2

R︸︷︷︸
monopole

+ e2 eR ·(x1−x2)

R2︸ ︷︷ ︸
monopole−dipole

+ e2 x1 ·x2 − 3(eR ·x1)(eR ·x2)

R3︸ ︷︷ ︸
dipole−dipole

+ e2 x2
1 − 3(eR ·x1)2 + x2

2 − 3(eR ·x2)2

2R3︸ ︷︷ ︸
monopole−quadrupole

.

The monopole operator e2/R here is just a constant. The monopole transition ele-
ments then vanish due to orthogonality, i.e., 〈ψ (i)

Ni
|ψ (i)

0 〉 = 0. There remains only the
dipole–dipole coupling. This allows rewriting

R1

R2

x1

x2

r1

r2

R = R 2 −
 R 1

x2 << R

x1 << R

System 2

System 1

0

Fig. 9.1 The typical setup for deriving the van der Waals energy. The grey spheres indicate the
extension of systems 1 and 2



218 9 Coherent Two-Body Correlations

〈ψ (1)
N1

ψ
(2)
N2

|VCoul|ψ (1)
0 ψ

(2)
0 〉

≈ e2〈ψ (1)
N1

ψ
(2)
N2

|x1 ·x2 − 3(x1 ·eR)(eR ·x2)

|R1 − R2|3 |ψ (1)
0 ψ

(2)
0 〉

= 〈ψ (1)
N1

|x1|ψ (1)
0 〉·〈ψ (2)

N2
|x2|ψ (2)

0 〉 − 3(〈ψ (1)
N1

|x1|ψ (1)
0 〉·eR)(eR ·〈ψ (2)

N2
|x2|ψ (2)

0 〉)
|R1 − R2|3 .

Thus we obtain, introducing the dipole operator D̂i of each system,

ΔE (VdW) = −e4

|R1−R2|6
∑
N1 N2

∣∣D(1)
N10 ·D(2)

N20−3D(1)
N10 ·eReR ·D(2)

N20

∣∣2
EN2 + EN1

,

D(i)
Ni 0

= 〈ψNi |D̂i |ψ0〉i , D̂i = ri − Ri , (9.3)

where the index i on the brackets of the matrix element D(i)
Ni 0

indicates that this is an
expectation value in the Hilbert space of system i .

The energy (9.3) depends on the distance of the two systems. It is negative as a
second-order perturbative correction should be. It increases in value with decreasing
distance, thus representing an attractive potential between the two systems, the well-
known van der Waals potential. Its typical behavior ∝ |R1−R2|−6 emerges from the
squared dipole–dipole interaction. It is interesting to note that the van der Waals
contribution does not require the systems to have a non-vanishing ground-state
dipole momentum 〈ψ (i)

0 |D̂i |ψ (i)
0 〉. What is activated here are virtual dipole excita-

tions driven by the perturbation. The “generation” of the two dipoles is weighted
with |R1 −R2|−3 and the “interaction” between them explores another |R1 −R2|−3

which together yield the final |R1−R2|−6 behavior.

9.1.2 Simple Estimate in Terms of Polarizability

For the following, we assume two spherically symmetric systems. It is then advan-
tageous to recouple into spherical representation as

D̂(1) ·D̂(2) − 3D̂(1) ·ezez ·D̂(2) = D̂(1)
+ D̂(2)

− + D̂(1)
− D̂(2)

+ − 2D̂(1)
z D̂(2)

z ,

D̂(i)
± = D̂(i)

x ± iD̂(i)
y√

2
, D̂(i)

m =
√

4π

3
ri Y1m(Ωi ) , (9.4)

where we identify D̂z = D̂0 and where Ωi is the solid angle in system i . The
ground state |Ψ0〉 has angular momentum zero and the excitations Ni are classified
according to angular momentum. Thus the D̂(i)

+ , D̂(i)
− , and D̂(i)

0 all couple to different
excited states and the van der Waals energy becomes
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ΔE (VdW) = −e4
∑
N1 N2

∑
m=−1,0,1(1 + 3δm0)

∣∣∣(D(1)
m )N10 ·(D(2)

−m)N20

∣∣∣2
(EN2 + EN1 )|R1−R2|6

= −6e4

|R1−R2|6
∑
N1 N2

∣∣(D(1)
z )N10 ·(D(2)

z )N20

∣∣2
EN2 + EN1

,

where we have exploited the relation |〈ψN |D̂z|ψ0〉|2 = |〈ψN |D̂+|ψ0〉|2 = |〈ψN |D̂−
|ψ0〉|2 which, again, follows from spherical symmetry.

The dipole polarizability αD of a system as computed by perturbation theory for
spherically symmetric systems is [24]

αD = 2
∑

N

|〈ψN |D̂z|ψ0〉|2
EN

. (9.5)

This expression for αD has some similarity with the expression for the van der
Waals energy. There is still a difference in the denominator where the van der Waals
energy combines the two energies EN2 and EN1 . We specialize to symmetric cases
where systems 1 and 2 belong to the same sort of atom having the same excitation
spectrum and assume that the dipole response can be represented by one dominant
dipole excitation ND . This assumption is well justified for simple metal atoms (H,
Li, Na, K, Cs, Rb) and for rare gases (He, Ne, Ar, Kr, Xe). Reduction to one relevant
excitation yields a simplified polarizability and van der Waals energy

αD = 2e2 |〈ψND |D̂z|ψ0〉|2
END

,

ΔE (VdW) = −6e4

|R1−R2|6
∣∣〈ψND |D̂(1)

z |ψ0〉
∣∣2∣∣〈ψND |D̂(2)

z |ψ0〉
∣∣2

2END

.

This can finally be resolved to

ΔE (VdW) = −3

4

α2
D END

|R1−R2|6 , (9.6)

which allows very simple order-of-magnitude estimates for several dimers.
Figure 9.2 compares the van der Waals energies for several dimers. It shows the pure
van der Waals energy for the H2 dimer and the full atom–atom interaction potentials
for the He2 and Ar2 dimer. The latter is known as the Lennard–Jones potential [3]
and its long-range, attractive part is just the van der Waals interaction (9.6). The
atomic dipole polarizability for each system is also indicated. The relation between
αD and the van der Waals attraction is obvious. It is to be noted that the van der
Waals potential is responsible for all the molecular attraction only in the case of the



220 9 Coherent Two-Body Correlations

Fig. 9.2 The Born–
Oppenheimer (BO) energy
curves for several rare-gas
dimer molecules as indicated
scaled to have zero energy in
the asymptotics of two
separate atoms. Only the van
der Waals energy is shown
for H2 and the full interaction
potential for the two rare-gas
dimers, He2 and Ar2
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rare gases where all other molecular binding mechanisms do not contribute. The van
der Waals potential is at best a small correction in all other molecules dominated
by covalent, ionic, or metallic binding (see Chap. 4). For the H2 dimer, e.g., the
covalent binding overrules van der Waals by orders of magnitude and is thus not
included in the figure.

9.2 Electron Correlations in Small Systems

9.2.1 Empirical Findings

Modern experimental techniques such as collisions of highly charged and fast ions
on atoms or intense and short laser pulses combined with elaborate coincidence
measurements have allowed to obtain information on spatial electron correlations in
atoms, for a review see [28]. An example was given in Fig. 1.15. This motivates us
to present a model study of spatial correlations adapted to a two-electron system. It
deals with a widely used, analytically solvable model called Hooke’s atom.

9.2.2 Hooke’s Atom

Hooke’s atom is a model for two electrons in an external field having the Hamilto-
nian

Ĥ = − �
2

2m

(
Δr1 + Δr2

)+ c

2

(
r2

1 + r2
2

)+ e2

|r1 − r2| . (9.7)

It is the Hamiltonian (5.27) of the He atom, but with the external Coulomb fields ∝
e2/ri replaced by harmonic potentials ∝ r2

i . The basic mechanisms, binding through
external field versus electron–electron repulsion, remain the same, but the harmonic
external field allows to exactly separate relative from center of mass coordinates,
which is the key to simplicity. At first glance this modeling appears like wishful
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thinking, as it leads to a solvable model. Yet Hooke’s atom also has a touch of reality.
It corresponds to a quantum dot with two electrons [23]. The harmonic confining
field is a reality for quantum dots.

Hooke’s atom model is used for a great variety of studies. It is a nice testing
ground for developments in DFT (see, e.g., [2]). Such investigations, however, go
deeply into the subtleties of DFT and thus beyond the scope of this book. Another
useful aspect of the model is that it provides a correlated wave function in closed
form, which allows analyzing correlation effects in coordinate or momentum space.
It is this second line of application which we will follow here.

9.2.2.1 The Analytic Solution for the Ground State

We introduce center of mass and relative coordinates via

R = 1

2
(r1 + r2) , r = r1 − r2 ←→ r1,2 = R ± 1

2
r , (9.8)

use the well-known separation of the kinetic energy in these coordinates, and obtain
the Hamiltonian in the form

Ĥ = − �
2

4m
ΔR + cR2 − �

2

m
Δr + c

4
r2 + e2

r
, (9.9)

where R = |R| and r = |r| as usual.
The equation to be solved is the two-electron Schrödinger equation

ĤΨ (x1, x2) = EΨ (x1, x2), (9.10)

with x1 and x2 referring to the combination of spin and spatial coordinates. We are
interested in the ground-state solution, for which the spin is in the antisymmetric
state and the spatial wave function remains symmetric. As the model Hamiltonian
(9.9) separates into relative and c.m. motion, we can separate the spatial ground-state
wave function similarly and obtain

Ψ (x1, x2) = Ψ̃ (R)ψ(r)
1√
2

(
χ

(1)

+ 1
2

χ
(2)

− 1
2

− χ
(1)

− 1
2

χ
(2)

+ 1
2

)
, (9.11a)

(
− �

2

4m
ΔR + cR2

)
Ψ̃ = EcmΨ̃ , (9.11b)

(
−�

2

m
Δr + c

4
r2 + e2

r

)
ψ = Erelψ . (9.11c)

The center of mass equation (9.11b) is a pure oscillator problem with the standard
solution [24]
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Ψ̃ (R) =
(

Λ

π

)3/4

exp

(
−Λ

2
R2

)
, Λ = 2

√
mc

�
. (9.12)

The asymptotic behavior for r −→ ∞ of (9.11c) for the relative wave function is
also governed by a harmonic potential. Thus we make the ansatz

ψ = f (r ) exp

(
−λ

2
r2

)
, λ =

√
mc

2�
,

where f (r ) is in general a series in r . The equation determining f (r ) becomes

−1

r
∂2

r (r f ) − 2λr∂r f + me2

�2r
f =

(
2m Erel

�2
− �

2

√
c

m

)
︸ ︷︷ ︸

Ẽ

f .

Inserting the power series ansatz f = ∑
n cnrn yields a recurrence relation for the

coefficients as

cn+1 = me2

�2(n + 1)(n + 2)
cn + Ẽ + 2λ(n − 1)

(n + 1)(n + 2)
cn−1 ,

which may be iterated to

c0 = 1 , c1 = me2

2�2
, c2 = +

(
me2

2�2

)2
1

3
+ Ẽ

6
,

c3 = +
(

me2

2�2

)3
1

18
+ me2

2�2

Ẽ

9
+ me2

2�2

2λ

12
.

The choice of c0 is arbitrary and selected for convenience. The aim is to terminate
the series as early as possible. The coefficient c1 is fixed by the interaction strength.
We try to arrange c2 = 0 = c3 which then would guarantee the disappearance of
all further terms. The condition c2 = 0 determines Ẽ = −2(me2/(2�

2))2, which is
inserted into condition c3 = 0. This yields

λ = −
(

me2

2�2

)2
1

3
+
(

me2

2�2

)2
4

3
=
(

me2

2�2

)2

. (9.13)

It turns out that the series terminates for one certain choice of c or λ, respectively.
We take the liberty to choose that parameter according to (9.13) and so obtain an
exactly solvable model for two electrons interacting via Coulomb repulsion.
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Altogether, the model and its solution are

Ĥ = − �
2

2m

(
Δr1 + Δr2

)+ 2
�

2

2m
λ2
(
r2

1 + r2
2

)+ e2

|r1 − r2| ,

Ψ ∝
(

1 +
√

λr
)

e−λ(r2
1 +r2

2 ) 1√
2

(
χ

(1)

+ 1
2

χ
(2)

− 1
2

− χ
(1)

− 1
2

χ
(2)

+ 1
2

)
,

with λ given by (9.13). The correlation is contained in the factor 1 + √
λr = 1 +√

λ|r1 − r2|, having a non-analytic point, a cusp, at r1 −→ r2, which is obviously
related to the singularity of the repulsive electron–electron interaction at that point of
contact. The result should be compared with a HF solution which, however, cannot
be worked out analytically. But there are some qualitative features which can safely
be concluded. The one-body density is regular at the origin and starts out as 1+cr2

i .
The same property is acquired by the self-consistent mean field. This, in turn, yields
single-particle wave functions which also start with 1 + c′r2

i . The behavior at small
relative distances is then also a smooth function starting also as 1 + c′′(r1 − r2)2,
quite different from the non-analytic behavior of the correlated wave function Ψ .

The further discrimination of correlation effects versus mean-field properties can
be carried forth analytically to a large extent but becomes quite involved. We close
the example with a few qualitative remarks. The most prominent global measure
is, of course, the correlation energy, i.e., the energy gain when proceeding from
a Hartree–Fock (HF) calculation to a fully correlated wave function. This has tra-
ditionally been studied intensively for the He atom, and it is found that correla-
tions in the energy are rather weak (compare the exact energy with the HF result
in Table 6.1) and can be well described by perturbative corrections [53]. A more
specific and still global measure for correlations is the entanglement L which can
be deduced from the one-body density matrix as

L = tr{�̂1} − tr{�̂2
1} , �1(x, x ′) =

∫
dx2Ψ

∗(x, x2)Ψ (x ′, x2) .

This measure exploits the fact that the one-body density from a pure mean-field state
is a projector, i.e., �̂2

1 = �̂1, in which case we would have L = 0. Correlated states
produce a �̂1 with eigenvalues 0 ≤ �n ≤ 1. The trace is the sum of eigenvalues and
�2

n ≤ �n . Thus we find L ≥ 0 and the limit L = 0 indicates an uncorrelated state.
The entanglement has been evaluated for Hooke’s atom in [23]. Considering a quan-
tum dot of width λ = 10 nm and CdS as carrier material, one finds L ≈ 0.005 which
is an extremely small value, again indicating weak correlations at a global scale. On
the other hand, there is a strong, even qualitative, correlation effect when looking at
spatial structures with high resolution. The correlated wave function at short relative
distance has a kink ∝ λ|r1 −r2|. This is a non-analytic point which cannot be repro-
duced by any perturbation series. A similar kink is to be expected for the correlated
wave function of the He atom, and there are model wave functions which explicitly
take that into account as, e.g., the Hylleraas ansatz [103]. The question remains how
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one could access these spatial details experimentally. This is done indirectly through
measuring the momentum distributions [28]. A study of momentum-space effects in
Hooke’s atom compared to a realistic He atom is found in [76], again analytically
solvable but cumbersome. The effects are subtle, though, and would require high
resolution to be seen.

9.3 Pairing Correlations in a Simple Model

9.3.1 Evidence for Pairing Correlations

As discussed in several places in this book, there often arise situations where the
mean-field description produces a high-level density near the Fermi energy which,
in turn, means a high density of unperturbed excitations with low energy. We
know from quantum-mechanical perturbation theory that small energy differences
between unperturbed states can make perturbations look relatively large, so that a
full treatment of them in the subspace near degeneracy becomes compulsory [24].
In the many-body context this means that the residual interaction can cause large
effects. It adds a substantial amount to binding and re-establishes the gap in the
excitation spectrum. Probably the most prominent member of this class of mecha-
nisms is the pairing gap appearing in a great variety of many-fermion systems. In
this section the basic mechanisms of pairing correlations will be discussed in terms
of simple models.

A well-known example of pairing is superconductivity in metals [91, 79, 3]. The
traditionally most prominent example for pairing in finite systems is atomic nuclei
where the pairing gap is identified from the odd–even staggering of binding energies
and, less directly, from superfluidity in nuclear rotations [17, 18, 92, 42]. More
recent achievements are the observation of superfluidity in liquid 3He (bulk as well
as finite droplets) [41, 111] and in fermion clouds in atomic traps [14]. Table 9.1
gives an order-of-magnitude overview of physical systems where pairing plays a
role. The finite members of that table are fermionic atoms in a trap, droplets of 3He,
and nuclei. The mechanisms for pairing are very similar in all systems such that the
schematic models outlined below have a broad range of applications. Note that the

Table 9.1 A selection of systems where pairing plays a role with their Fermi energy εF and critical
temperature Tc. The pairing gap is typically twice Tc. These physical quantities indicate orders of
magnitude

System Fermion εF Tc Evidence

Atoms trap Whole atom nK nK Superfluidity
Liquid 3He 3He atom 2.7 K 2.5 mK Superfluidity
Bulk Al Electron 11.7 eV 1.2 K Superconductivity
Bulk Nb Electron 5.3 eV 9.3 K Superconductivity
Nuclei Nucleons ≈35 MeV 0.5–1 MeV Odd–even staggering
Neutron star Neutron ≈ 60 MeV ∼ 1 MeV Superfluidity



9.3 Pairing Correlations in a Simple Model 225

famous high-temperature superconductors were not included in the discussion nor
in Table 9.1 because their pairing mechanisms are not yet fully understood [72] and,
up to now, they are all bulk material.

9.3.2 A Schematic Description of the Pairing Interaction

The starting point is a case where the pure mean-field description in terms of single-
fermion states produces an open-shell configuration with zero or very small 1ph
excitation energies, so that the residual interaction can become important. The full
Hamiltonian has to be reconsidered. We write it in the form

Ĥ =
∑

α

εα â†
α âα +

∑
αβγ δ

V (res)
αβδγ â†

α â†
β âγ âδ, (9.14)

where the optimized mean field already went into the single-particle states α

and energies εα and where the residual interaction V (res) embraces everything not
accounted for by the mean field (see Sect. 5). The 1ph–1ph residual interaction is
dealt with in the RPA, see Chap. 8. Much more important for the open-shell situation
is the part of the residual interaction which describes two-fermion encounters. We
point that out by collecting the pair operators in brackets

V̂ (res) −→
∑
αβγ δ

V (res)
αβδγ

(
â†

α â†
β

) (
âγ âδ

)
.

It is now found that the pp residual interaction is strongest between pairs of time-
reversal conjugate states. In bulk systems, these are the partners of opposite momen-
tum and spin, i.e., ϕk↑ ←→ ϕ−k↓ . In finite systems, we associate the partners in
Kramers-degenerate doublets (see Appendix A.6), e.g., for axially symmetric sys-
tems the states ϕnm,1/2 ←→ ϕn−m,−1/2 where n is the combination of principal
quantum numbers, m the z-component of orbital angular momentum, and ± 1

2 labels
the spin (for the quantum numbers, see the discussion of the cylindrical oscillator
in A.1.2). The strong coupling between Kramers pairs is due to a short range of the
interaction, which favors coupling between states with the same spatial probability
distribution.

To stay independent of a system’s symmetry, we will henceforth indicate these
conjugate states by the general labeling +α ←→ −α. The most relevant part of the
residual interaction then becomes

V̂ (res) −→ V̂ (pair) =
∑
αβ

V (pair)
αβ

(
â†

α â†
−α

) (
â−β âβ

)
, V (pair)

αβ = V (res)
α−αβ−β .

A further piece of experience is that the matrix elements V (pair)
αβ have a maximum

near the Fermi energy, i.e., for εα, εβ ≈ εF and decrease quickly when moving
away from εF. There remains a narrow zone (“active” zone Ω) where pairing is
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Fig. 9.3 Sketch of a typical
level sequence for a
many-fermion system with
the pairing active shell near
the Fermi surface εF

Fε

ε

inert core
fully occupied

out of reach
unoccupied states

} pairing active shell Ω

active as sketched in Fig. 9.3. This suggests simplifying the residual interaction to a
schematic pairing interaction, thus dealing with

Ĥ =
∑

α

εα â†
α âα − G

∑
α

â†
+α â†

−α

︸ ︷︷ ︸
Â†

∑
β

â−β â+β

︸ ︷︷ ︸
Â

. (9.15)

The single-particle spectrum needs further modeling if one aims at analytic solu-
tions. We will discuss the seniority model which approximates the active space
Ω by one degenerate shell, in Sect. 9.3 and the Fermi gas model as introduced in
Sect. 2.2.

It is important to note that the pair creator Â† and the annihilator Â together
with a third operator Ŝ0 = [ Â†, Â] form a quasispin algebra such that the analytic
solution can reuse many of the useful relations established for the quasispin model
in Sect. 7.2.

9.3.3 Seniority Model and Quasispin Algebra

The seniority model starts from the model Hamiltonian (9.15) and simplifies it fur-
ther by assuming that all single-particle energies in the pairing active shell (see
Fig. 9.3) are practically degenerate, i.e., εα = ε = constant. We thus can ignore the
single-particle term and remain with the seniority Hamiltonian

Ĥ = V̂P = −G Â† Â , Â† =
Ω∑

α=1

â†
+α â†

−α . (9.16)

The degenerate shell covers 2Ω single-particle states. The particle number thus can
range from N = 0 (empty shell) up to N = 2Ω (totally filled shell). We are now
going to develop the spectrum for this seniority Hamiltonian. Thereby we will con-
fine ourselves to the case of even particle numbers N with the limiting cases N = 0
and N = 2Ω .
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First, we realize that the operators Â† and Â together with the particle number
operator N̂ form a quasispin algebra. We can identify

Ĵ+ = Â† =
Ω∑

α=1

â†
α â†

−α ,

Ĵ− = Â =
Ω∑

α=1

â−α âα ,

Ĵ0 = 1
2

Ω∑
α=1

(
â†

α âα + â†
−α â−α − 1

) = 1
2

(
N̂ − Ω

)
. (9.17)

It is straightforward to show that these operators Ĵ± and Ĵ0 fulfill the quasispin
algebra (7.3). Thus all useful consequences of angular momentum algebra can be
taken over from Chap. 7.

Note that the total quasispin can be decomposed as

Ĵ 2 = Ĵ+ Ĵ− − Ĵ0 + Ĵ 2
0 ,

which yields the pairing potential in the form

V̂P = −G
(
Ĵ 2 − Ĵ 2

0 + Ĵ0
)
. (9.18)

In this way it can be expressed completely in terms of the diagonal quasispin oper-
ators. The problem is thus essentially solved, at least formally. The eigenvalues
of Ĵ0 are simply j0 = 1

2

(
N − Ω

)
, where N is the actual particle number. This

eigenvalue is fixed for given N . The different classes of solutions for given N are
characterized by the principal quantum number j for spectrum of Ĵ 2. The allowed
values for J are the integers or half-integers j = | j0|, | j0| + 1, . . . , 1

2Ω (note that
the sequence proceeds in steps of 1). This yields the spectrum for an N -particle
system

E (N )
j = −G

[
j( j + 1) − 1

4 (N − Ω)2 + 1
2 (N − Ω)

]
, (9.19)

j = |N −Ω|
2

, . . . ,
Ω

2
−1,

Ω

2
.

It is obvious that the ground state is the state with maximum quasispin j = 1
2Ω

and the highest excited state the one with lowest quasispin j = 1
2 |(N − Ω

)|. It
is to be noted that the spin quantum numbers j and j0 yield only part of the clas-
sifying quantum numbers, fortunately just the part which suffices to compute the
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spectrum. We do not need to specify all other quantum numbers but want to find out
the degeneracy of a given energy level in the spectrum (9.19). To this end, it has to
be examined in more detail how the states are built.

The starting point is the state |0〉 associated with an empty shell, i.e., N = 0. It
is a non-degenerate state with the properties

N = 0 ←→ |0〉 : j0 = −Ω

2
, j = | j0| = Ω

2
,

much in analogy to the ground state in the LMG model, see Sect. 7.3. The next stage
along even particle numbers is N = 2. The value of N = 2 fixes j0 = 1

2 (2−Ω) and
in turn the two possible values of j , namely j = | j0| = | 1

2 (2 − Ω)| = 1
2Ω − 1 and

j = j0 + 1 = 1
2Ω , the largest acceptable value of j . There are Ω(2Ω − 1) ways

(binomial of 2Ω over 2) to build an N = 2 state â†
α â†

β |0〉. The ground state is built
from the coherent superposition of pairs

Â†|0〉 = Ĵ+|0〉 =⇒ j = Ω

2
, j0 = −Ω

2
+ 1 = 2 − Ω

2
.

This ground state is non-degenerate because Â† = Ĵ+ is unique. There remain
the combinations of â†

α â†
β orthogonal to Â†. We denote them by B̂(2)

i |0〉, i =
1, . . . ,Ω(2Ω −1)−1 and orthogonality implies 〈0| Â B̂(2)

i |0〉 = 0. By the rules of
angular momentum coupling, all B̂(2)

i states have to belong to the only alternative
j = 1

2Ω − 1 which complies perfectly well with the degeneracy of Ω(2Ω − 1) − 1.
The energies of the quasispin states are given by the general expression (9.19)
using the specific values of j defined above for N = 2. Altogether, the spectrum
becomes

state quasispin energy degeneracy

Â†|0〉 j = Ω
2 : −GΩ ν = 1

B̂(2)
i |0〉 j = Ω

2 − 1 : 0 ν =
(

2Ω

2

)
− 1

The ground state gathers all binding energy from the seniority Hamiltonian and
the many other states, generated by the B̂(2)

i , remain at the unperturbed value. For
N = 4, the total number of quasispin states equals the binomial of 2Ω over 4. They
are distributed over ground-state ( Â†)2|0〉, again unique with maximum j = 1

2Ω , a

group of states Â† B̂(2)
i |0〉 with j = 1

2Ω , and a group constructed from new genera-

tors B̂(4)
i . This can be continued to general N . The degeneracies of the various states

are attained in a recursive way by counting the number of excitations. The degen-
eracies sum up to the total number of states for a given N , namely, the binomial of
2Ω over N .
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state quasispin energy degeneracy

( Â†)N/2|0〉 j = Ω
2 : E (N )

Ω/2 ν = 1

( Â†)N/2−1 B̂(2)
i |0〉 j = Ω

2 − 1 : E (N )
Ω/2−1 ν =

(
2Ω

2

)
− 1

( Â†)N/2−2 B̂(4)
i |0〉 j = Ω

2 − 2 : E (N )
Ω/2−2 ν =

(
2Ω

4

)
−
(

2Ω

2

)

. . . .

. . . .

. . . .

B̂(N )
i |0〉 j = Ω−N

2 : E (N )
(Ω−N )/2 ν =

(
2Ω

N

)
−
(

2Ω

N − 2

)

up to N ≤ Ω . That series holds up to N ≤ Ω . The number of states shrinks for
larger N as the binomials shrink. The extreme of a totally filled shell again has
only one unique state. The branch N > Ω can be coped with by starting from the
filled shell N = 2Ω and depleting it successively, thus considering the holes as
quasi-particles. We will not detail that here.

So far, we have characterized the states by j0, which is equivalent to particle num-
ber N , and by the total quasispin j . The latter quantum number is often expressed in
terms of a more physical quantity, the seniority s, which is the number of particles
not generated in pairs by Â†. The ground-state ( Â†)N/2|0〉 is fully paired and has
s = 0. The next excitation has s = 2 and so forth. Thus we have in general the
relation between j and s as s = Ω − 2 j .

Figure 9.4 shows the spectrum of the seniority model for the case of Ω = 6
(the trivial cases of empty or filled shell are omitted). The fully paired ground state
(seniority s = 0) is always well separated in energy from the many other states. The
energy difference between the ground state (s = 0 or j = Ω/2) and the multitude
of first excited states (s = 2 or j = Ω/2 − 1) is always ΔE = GΩ , as indicated
in the figure. This is the well-known pairing gap, which separates the unique, fully
paired ground states from the many other states in a system.

9.3.4 Odd N and Odd–Even Staggering

Figure 9.4 has shown one important observable consequence of pairing, namely, the
gap in the excitation spectrum. It leads to effects as superfluidity and superconduc-
tivity in very large systems or bulk. Another important effect, which is particularly
well visible in small systems, is the odd–even staggering of binding energies. Odd
particle number N means that there is at least one non-paired particle which will
thus be “kept apart” from the particles taking part in pairing. Let us assume that
the odd particle resides in state β. Then both states β and −β will not contribute
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Fig. 9.4 The spectrum of the seniority model for Ω = 6. The states are labeled in terms of particle
number N and seniority s = Ω − 2 j . The number above a line indicates the degeneracy ν. The
spectra are scaled to place all ground states at energy zero

to the
∑

α in Â† and Â, so that odd systems are consistently less well bound. The
energy difference to even systems is directly related to the pairing gap as we will
see shortly.

The ground state of an odd system contains as many pairs as possible and one
unpaired particle remains, i.e.,

|ΦN ,β〉 = ( Â†)(N−1)/2â†
β |0〉 ←→ Eodd(N ) = E (N−1)

Ω/2−1 , (9.20)

with E (N−1)
Ω/2−1 as given in (9.19). Note that the ground state is not unique but can be

built with any choice for the odd-particle state β. The energy is found very quickly.
The one state â†

β effectively removes the pair â†
β â†

−β from the sum in the operator Â†

and similarly in Â. What remains is a seniority model for N − 1 particles in a shell
of Ω − 2 states, which produces precisely the energy as given in (9.20).

The ground-state energy of an even system is Eeven(N ) = E (N )
Ω/2. The staggering

between better-bound even systems and less well-bound odd ones can be charac-
terized by the second difference of energies Δ

(3)
N . With trivial algebra we find the

three-point formula

Δ
(3)
N = 1

2
[Eeven(N +1) − 2Eodd(N ) + Eeven(N −1)] (9.21)

= 1

2

[
E (N+1)

Ω/2 − 2E (N−1)
Ω/2−1 + E (N−1)

Ω/2

]
= GΩ

2
≡ Δ .

This shows the relation between the odd–even staggering quantified in Δ
(3)
N and the

gap Δ in the excitation spectrum. In fact, the odd-even staggering is a key observable
to assess pairing gaps in nuclei. Figure 9.5 shows Δ

(3)
N ≡ Δ for a great variety of

nuclei. It is to be noted that two gaps can be discussed in nuclei, for neutrons and
for protons. Here we show the neutron gap deduced from varying neutron number
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Fig. 9.5 The odd–even
staggering (9.21) for the
neutron gap in nuclei for a
broad variety of sizes drawn
versus total nucleon number
A. The vicinity of magic
neutron shells
(N = 8, 20, 28, 50, 82, 126)
has been excluded to avoid
artifacts from shell effects
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mass number A

by ±1 while keeping the proton number fixed. The figure shows that the nuclear
pairing gap has only a weak dependence on particle number A. We will come back
to this feature at the end of this chapter.

9.4 Pairing and the BCS Model

9.4.1 The BCS State

The seniority and quasispin models illustrate the action of the pairing force and the
interplay of fermion and boson-like behavior quite well, but are severely restricted
by the assumption of a partially filled single shell of states with a quite special
form for the pairing potential. In a more general situation, the pairing potential
will not treat all levels on the same footing. But Kramers degeneracy, related to
time-reversal invariance [70] (see Appendix A.6), ensures the existence of pairs of
degenerate, mutually time-reversed conjugate states. It turns out that these are still
strongly coupled pairwise by the pairing force. An example is continuous systems
where −α stands for the time-reversed state of α having opposite momentum and
spin. Another example is spherically symmetric systems where −α stands just for
the state which has the z-component of angular momentum reversed as compared to
α. In the following α will be used to represent all quantum numbers of the single-
particle states; the only important property we need is that there are always two
states α and −α related to each other by time reversal and coupled preferentially by
the pairing force.

For the Hamiltonian, we take up the reasoning in Sect. 9.3.1 leading to the form
(9.15) which we write here as

Ĥ =
∑

α

ε0
α â†

α âα − G
∑

αα′>0

â†
α â†

−α â−α′ âα′ , (9.22)
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where we now allow the ε0
α to be non-degenerate. The eigenstates in this case cannot

be constructed analytically, but there is an approximate solution based on the BCS
state named after Bardeen, Cooper, and Schrieffer [7]:

|BCS〉 =
∞∏

α>0

(
uα + vα â†

α â†
−α

)|0〉 . (9.23)

In this state, each pair of single-particle levels (α,−α) is occupied with a proba-
bility |vα|2 and remains empty with probability |uα|2. The parameters uα and vα

will be determined through a variational principle. We will assume that they are real
numbers; this will prove sufficiently general for time-independent problems. It is
clear that the state contains contributions with different, but always even, particle
numbers.

We first summarize a few key expectation values of the BCS state:

1
!= 〈BCS|BCS〉 =

∞∏
α>0

(
u2

α + v2
α

)
, (9.24a)

N
!= 〈BCS|N̂ |BCS〉 = 2

∑
α>0

v2
α , (9.24b)

E = 〈BCS|Ĥ |BCS〉 = 2
∑
α>0

ε0
αv2

α − G
(∑

α>0

uαvα

)2
−G

∑
α>0

v4
α . (9.24c)

In order to meet the normalization condition (9.24a), it is most convenient to impose
normalization on each pair of states (α,−α), i.e.,

u2
α + v2

α

!= 1 ←→ u2
α = 1 − v2

α . (9.24d)

This ensures 〈BCS|BCS〉 = ∏∞
α>0

(
u2

α + v2
α

) = ∏∞
α>0 1 = 1 . We are now going to

prove these relations.
A few basic properties of the vacuum are needed:

âα|0〉 = 0 = 〈0|â†
α and 〈0|â−α âα â†

α â†
−α|0〉 = 1 .

The terms
(
uα + vα â†

α â†
−α

)
in the BCS ansatz (9.23) all commute with each other so

that the vacuum expectation value factorizes and only the products of α = α′ terms
finally appear. This leads for the norm to
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〈BCS|BCS〉 = 〈0|
∞∏

α>0

(
uα + vα â−α âα

) ∞∏
α′>0

(
uα′ + vα′ â†

α′ â
†
−α′
)|0〉

=
∞∏

α>0

〈0|(uα + vα â−α âα

)(
uα + vα â†

α â†
−α

)|0〉

=
∞∏

α>0

〈0|u2
α + uαvα

(
â†

α â†
−α + â−α âα

)+ v2
α â−α âα â†

α â†
−α|0〉︸ ︷︷ ︸

u2
α+v2

α

.

In the following it will be assumed that the normalization condition (9.24a) is ful-
filled such that the operator-free factors (in an average over the BCS state) become
〈0|(uα + vα â−α âα

)(
uα + vα â†

α â†
−α

)|0〉 = 1. We proceed to the expectation value

of the particle number operator N̂ = ∑
α>0

(
â†

α âα + â†
−α â−α

)
and first compute a

single term â†
α âα . The commutator relation [â†

α âα, â†
α â†

−α] = â†
α â†

−α will be used to
move the operator â†

α âα to the right and then apply â†
α âα|0〉 = 0. This leads to

〈BCS|â†
α âα|BCS〉 = 〈0|(uα + vα â−α âα

)
â†

α âα

(
uα + vα â†

α â†
−α

)|0〉
= 〈0|(uα + vα â−α âα

)
vα â†

α â†
−α|0〉 = v2

α ,

and similarly 〈BCS|â†
−α â−α|BCS〉 = v2

α . This together summed over all α yields
(9.24b). It also immediately provides the first term in the energy (9.24c). The inter-
action term in the energy requires two separate calculations. First, we consider the
case α �= α′:

〈BCS|â†
α â†

−α â−α′ âα′ |BCS〉 = 〈0|(uα + vα â−α âα

)
â†

α â†
−α

(
uα + vα â†

α â†
−α

)|0〉
〈0|(uα′ + vα′ â−α′ âα′

)
â−α′ âα′

(
uα′ + vα′ â†

α′ â
†
−α′
)|0〉

= (uαvα)(uα′vα′ ) ,

where we used 〈0|â†
α â†

−α â†
α â†

−α|0〉 = 0 and 〈0|â−α′ âα′ â−α′ âα′ |0〉 = 0, which can
be deduced from the Pauli principle in terms of Fermi operators, â†

α â†
α|0〉 = 0 and

âα âα|0〉 = 0. Second, we go for α = α′ which reads

〈BCS|â†
α â†

−α â−α âα|BCS〉 = 〈0|(uα + vα â−α âα

)
â†

α â†
−α â−α âα

(
uα + vαâ†

α â†
−α

)|0〉
= v2

α〈0|â−α âα â†
α â†

−α â−α âα â†
α â†

−α|0〉 = v2
α .

Realizing that
∑

α �=α′ (uαvα)(uα′vα′ ) = ∑
αα′ uαvαuα′vα′ − ∑

α u2
αv2

α and using
(9.24d), we come to the expression for the G terms in the energy (9.24c).

It may be mentioned in passing that the variance of particle number can be eval-
uated in a similar fashion and becomes

Δ2 N = 〈BCS|(N̂ − N )2|BCS〉 = 4
∑
α>0

u2
αv2

α = 4
∑
α>0

(1 − v2
α)v2

α .
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This shows that the BCS ansatz sacrifices a clean particle number. The uncertainty
in the particle number is caused just by those single-particle states that are frac-
tionally occupied, i.e., for which 0 < v2

α < 1. Allowing only values of 0 or 1 for
the occupation probabilities would mean reverting to the pure single-particle model
with well-defined particle number. The uncertainty in the particle number, while
strictly speaking incorrect, may not be important as long as ΔN � N . This has to
be checked in the practical results.

9.4.2 The Gap Equation

We are now going to determine the optimal occupation amplitudes vα by minimizing
the total energy. As the trial wave function does not conserve the particle number, the
desired expectation value has to be achieved through a constraint with a Lagrange
multiplier. This leads to the variational problem

δ〈BCS|Ĥ − λN̂ |BCS〉 = 0 ,

where the variation is with respect to the occupation probabilities uα and vα . Note
that uα depends on vα through (9.24d).

For the detailed evaluation, we insert the expectation values (9.24b) and (9.24c)
and reformulate them all in terms of vα inserting the relation uα = √

1 − v2
α both

ways several times. The variational equation thus becomes

0 = ∂

∂vα

[
2
∑
α′>0

(ε0
α′ − λ) v2

α′ − G
(∑

α′>0

√
1 − v2

α′vα′
)2

− G
∑
α′>0

v4
α′

]

= 4(ε0
α − λ)vα − 2G

(
uα − v2

α

uα

)∑
α′>0

uα′vα′−4Gv3
α

= u−1
α

[
4(ε0

α − λ − Gv2
α︸ ︷︷ ︸

εα

)uαvα − 2G
(
u2

α − v2
α

)
G
∑
α′>0

uα′vα′

︸ ︷︷ ︸
Δ

]
,

where we have used as abbreviation an effective single-particle energy εα and the
pairing gap Δ. The latter will turn out to be a key quantity describing pairing prop-
erties. The variational equations thus take the compact form

2εαvαuα + Δ
(
v2

α − u2
α

) = 0 . (9.25)

Squaring this equation allows replacing u2
α by 1 − v2

α , and it may then be solved for
the latter:

v2
α = 1

2

(
1 ±

√
1 − Δ2

ε2
α + Δ2

)
= 1

2

(
1 ± εα√

ε2
α + Δ2

)
.
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The ambiguous sign results from the fourth-order equation appearing during the cal-
culation; taking the square root of ε2

α contributed no further ambiguity. The correct
sign can be selected by noting that for very large single-particle energies εα → ∞
the occupation probabilities must go to zero; this requires the negative sign.

The final result is thus

v2
α = 1

2

(
1 − εα√

ε2
α + Δ2

)
, u2

α = 1

2

(
1 + εα√

ε2
α + Δ2

)
.

If we assume that λ and Δ have been determined, the behavior of these expressions
is easily seen. For εα = 0, i.e., when ε0

α − Gv2
α = λ, both u2

α and v2
α are equal

to 1
2 . For large negative values of εα we will have u2

α ≈ 0 and v2
α ≈ 1 and the

reverse is true for large positive values. The width of the transition is governed by
Δ. This behavior is illustrated in Fig. 9.6. We note that λ obviously plays the role of
a generalized Fermi energy.

The unknown parameters λ and Δ can now be determined by inserting the
explicit forms for uα and vα into the variational equations (9.25) with Δ =
G
∑

α uαvα and into the particle-number condition (9.24b). This yields

2

G
=
∑
α>0

1√
ε2
α + Δ2

, (9.26a)

N =
∑
α>0

2v2
α =

∑
α>0

(
1 − εα√

ε2
α + Δ2

)
, (9.26b)

εα = ε(0)
α − Gv2

α − λ ≈ ε(0)
α − λ, (9.26c)

where the first is the famous gap equation. The coupled equations can be solved
iteratively using the known values of G and the single-particle energies ε0

α . The
other parameter λ then follows from simultaneously fulfilling the condition for the
total particle number (9.26b). To do this the term −Gv2

α in the definition of the

Fig. 9.6 The BCS occupation
numbers in dependence on
the single-particle energies
(scaled in terms of the Fermi
energy λ). The size of the gap
parameter is indicated by the
horizontal line

0

0.2

0.4

0.6

0.8

1

v2

0 1 2

∇∇

ξ /λ



236 9 Coherent Two-Body Correlations

εα of (9.26a) has to be neglected. This is usually done with the argument that it
corresponds only to a renormalization of the single-particle energies.

The gap equation, (9.26a), always has the trivial solution Δ = 0. For sufficient
pairing strength, there is also the non-trivial paired solution with Δ > 0 and lower
total energy. The switch from a non-pairing to a pairing regime is sort of a phase
transition somewhat similar to the one discussed in connection with the quasispin
model, see Sect. 7.7.

9.4.3 BCS for Continuous Spectra

The gap equation (9.26a) can be solved analytically for the case of a continuous
spectrum. This is a good approximation if the single-particle energies have a spacing
small compared to the gap Δ. In this case we can replace the sum by an integral and
obtain the gap equation together with the particle number condition (9.26b) as

2

G
=
∫ ε0

2−λ

ε0
1−λ

dεD(ε)
1√

ε2 + Δ2
, N =

∫ ε0
2−λ

ε0
1−λ

dεD(ε)

(
1 − ε√

ε2 + Δ2

)
,

where D(ε) denotes the density of states (see Sect. 1.2.4.3 and Chap. 2). The limits
of integration, ε1 and ε2, are required when using a simple constant pairing matrix
element G. More realistic interactions V (pair)

αβ cover the whole space of states, but
fall off quickly with increasing energy difference |εα − εβ |. The simple model here
replaces that by a finite energy interval with constant G inside. The proper choice
of the bounds depends on the system. In nuclear physics, e.g., it typically covers a
major shell ε0

2 − ε0
1 ∼ 5 − 10 MeV. Assuming a constant density of states D(ε) =

D allows to develop a fully analytic solution of these coupled equations which,
however, is rather lengthy to derive. We here consider for simplicity the limit of
small G, and subsequently small gap Δ � |ε0

i − λ| for i = 1, 2. Concerning signs,
it is important to note that ε0

1 < λ < ε0
2.

The two basic equations can be integrated for constant density D yielding

2

GD
= log

⎛
⎝
√

(ε0
2 − λ)2 + Δ2 + ε0

2 − λ√
(ε0

1 − λ)2 + Δ2 − (λ − ε0
1)

⎞
⎠

= log

(
ε0

2 − λ

λ − ε0
1

)
+ log

(√
1 + Δ2

(ε0
2 − λ)2

+ 1

)
− log

(√
1 + Δ2

(ε0
1 − λ)2

− 1

)

≈ log

(
ε0

2 − λ

λ − ε0
1

)
+ 2 log(2) − 2 log

(
Δ

λ − ε0
1

)
,
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N

D
= ε0

2 − ε0
1 −

√
(ε0

2 − λ)2 + Δ2 +
√

(ε0
1 − λ)2 + Δ2

≈ ε0
2 − ε0

1 − (ε0
2 − λ) + (λ − ε0

1) = 2(λ − ε0
1) ,

where we have already invoked the limit of small gap Δ. We resolve the second
equation for λ − ε0

1 and insert that into the first one. This yields

log

(
2ΔD

N

)
= 1

2
log

(
Ω

N
− 1

)
− 1

GD
Ω = 2D(ε2 − ε1).

The factor 2D(ε0
2 − ε0

1) has a simple physical interpretation. D is the number of
states per energy interval. Thus 2D(ε2 − ε1) = Ω is the number of states embraced
in the active energy interval between ε1 and ε2. It corresponds to the parameter Ω

of the seniority model (see Sect. 9.3).
Thus we finally obtain the estimate

Δ = (ε0
2 − ε0

1)

√
N

2Ω

(
1− N

2Ω

)
exp

(
− 1

DG

)
∼ ε0

2 − ε0
1

2
exp

(
− 1

DG

)
. (9.27)

For the last step of simplification, we have exploited that a mid-shell situation is
associated typically with N/(2Ω) ≈ 1/2. The very interesting point to be seen from
this formula is that the gap parameter depends in a quite unexpected way on G when
the pairing strength goes to zero. Although the gap goes to zero with G, it cannot
be expanded into a power series. This is again an indication that there is a phase
transition between the BCS and the HF states, not a gradual transition.

This continuous modeling of the pairing state complements the simple senior-
ity model as outlined in Sect. 9.3. It serves as a reliable estimate in finite systems
and becomes a realistic description for larger systems with high-level density. Let
us briefly discuss the orders of magnitude in nuclear pairing. As pairing between
protons and neutrons is usually negligible, one considers each species, protons
and neutrons, separately. The typical density of states is D ∼ A/26 MeV−1 (see
Sect. 1.2.4.3) and the pairing strength G ∼ 20 MeV/A. Thus we have the remark-
able result that the exponential factor in the pairing gap is exp

(−1/DG
) ≈ 0.5

independent of the size of the nucleus A. There remains the pre-factor. It depends
only weakly on particle number A and the energy span of the active zone is typically
ε0

2 − ε0
1 ∼ 5 − 10 MeV yielding together Δ ∼ 0.7 − 1.4 MeV which complies

nicely with the empirical findings in Fig. 9.5. Note that the exponential factor is
independent of A while the active interval ε0

2 − ε0
1 depends weakly on A as Δ does.

Another quite typical example is also fermion gases in a trap (see Sect. 1.1.8).
Their pairing usually relies on the continuous description [14, 38]. The Fermi energy
and the active zone around it ranges typically in the nK (see Table 9.1). The appeal-
ing feature of traps is that the average interaction strength can be tuned almost
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Fig. 9.7 Pairing gap (critical
temperature Tc respectively)
in units of Fermi energy as
function of inverse
dimensionless interaction
strength as computed in [47].
The BCS estimate is shown
for comparison (dotted line)
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arbitrarily, thus allowing the exploration of the regimes from breakdown of pairing
deep into very strong pairing (the latter appearing in the unitary limit of infinite
scattering length a, see Sect. 6.5.2). One usually identifies a dimensionless coupling
strength as DG ∝ kFa where kF is the Fermi momentum of the gas and a is the
scattering length. In case of attractive interactions, one is in the BCS regime of
pairing and can derive for the gap [38]

Δ = 8εF

e2
exp

(
− π

2kF|a|
)

, (9.28)

which is exactly the trend of (9.27), but now with a detailed prediction for the pre-
factor. Figure 9.7 shows the trend of the pairing gap with interaction strength. The
data are taken from a detailed many-body calculation in [47] yielding the critical
temperature Tc and rescaled to a pairing gap with the BCS relation Δ = 1.76 Tc [3].
The result is compared with the BCS trend (9.28) in the pairing regime of negative
interaction strength. The predictions of the rather simple BCS description are fairly
relevant. The regime of positive interaction strength is associated with the Bose–
Einstein Condensate (BEC). Here the atoms form dimers which then behave like
bosons and reach the Bose condensate in the limit of low temperatures. This is the
famous BCS-BEC crossover [14, 38], somewhat outside the scope of this book.

9.5 Concluding Remarks

In this chapter, we have discussed correlation effects in terms of three very different
examples. The first example was the van der Waals interaction between atoms in
a molecule which is deduced from a perturbative correction. It is nearly negligible
where other binding mechanisms (covalent, ionic) prevail, but it becomes the lead-
ing long-range contribution for rare gases where all other mechanisms fade away.
The second example was Hooke’s atom, a solvable model for two-body correla-
tions in coordinate space. Here we have seen how a singularity of the two-body
interaction strongly modifies the wave function at short distances in the relative
coordinate while the overall effect on global observables remains small. The third
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example dealt with pairing correlations, first in a simple solvable model and then in
BCS approximation. The seniority model makes it very clear how a unique ground
state with large gap to first excitation is produced out of a fully degenerate unper-
turbed spectrum. The gap is in some sense a collective effect cumulating small
contributions from each single pair to a large energy. The more realistic case of
non-degenerate single-particle spectra is handled in the BCS approximation. Par-
ticularly the approximation of continuous spectra allows a closed solution which
provides good order-of-magnitude estimates for finite systems and is often even
used as quantitative description, e.g., in the case of fermion gases in atomic traps.



Chapter 10
Conclusions

The physics of finite fermion systems covers an impressive variety of situations.
Fermion systems exist at all scales of distances and energies in the universe from
inside atomic nuclei to compact stars. The topics covered in this book thus span a
bunch of different scenarios. The theoretical description of finite fermion systems
is usually involved for many reasons. The number of constituents is often large,
which naturally leads to some complexity. The difficulties are strongly enhanced
due to the fermionic nature of the constituents, which, to a large extent, prevents
the use of classical approaches. Finally one is forced to handle possibly singular
interactions and/or interactions spanning a large range of energies. These various
constraints make the description of finite fermion systems a difficult task which
requires well-developed theoretical tools.

The aim of this book is to exemplify the essentials of these involved theories in
terms of simple approaches and so to provide some insight into the basic mecha-
nisms at work in many-fermion systems. As a side product it turns out that these
simple models usually have a large range of applications and allow to describe on
a common basis seemingly very different physical systems at very different energy
and size scales. This aspect is all the more true, the simpler the model under con-
sideration, and it was thus one of our goals to try to keep most developments and
applications at an analytic or quasi-analytic level. It also simply reflects the phys-
ical fact that the systems under consideration share common properties, once their
specific scales are properly re-scaled to generic ones.

Altogether, when looking back at the various developments we have discussed,
we can tentatively make a few general remarks, to some extent draw conclusions,
and also open perspectives for more detailed investigations.

• Old recipes for new physics As illustrated in the course of the book, old simple
models like the Fermi gas or the harmonic oscillator model provide a remarkable
richness in terms of applications even in the most recently emerging domains
such as quantum dots or fermion traps. This is a quite welcome feature in many
respects. First it proves that basic features (Pauli principle, shell effects) as exem-
plified in these simple approaches are extremely robust and remain a key ingredi-
ent to sort our understanding of various physical systems. Of course, in quantum
dots or fermion traps the harmonic oscillator dominates by construction, but even
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in self-bound systems such as nuclei, or more recently metal clusters, the har-
monic oscillator picture provides a remarkably successful first-order approach. A
second aspect concerns the pedagogical interest of such simple models. Having at
hand so beautiful examples of applications render simple approaches especially
attractive for a newcomer in quantum mechanics. It is thus quite instructive to
be able to address such fascinating complex systems as nuclei, metal clusters,
quantum dots, or fermion traps with so few technicalities.

• A simple account of complexity Simplicity beyond any doubt is a key issue in this
book. But such simplicity does not necessarily exclude complexity. As we have
tried to show at many places for various systems, the complexity can often, to a
large extent, be lightened by a properly tuned simple model. This strategy would
be somewhat limited if the building of such approaches led to highly specific
models. Clearly this is not the case, and we have seen that simple models most
often have a strong generic character, allowing to address on the same footing
several a priori very different physical systems. The notion of simplicity also
requires some further comment. We have tried all over the text to exemplify basic
mechanisms in terms of analytic solutions. This usually implies a loss of detail
but a gain of understanding, as a compact formula often allows a quick grasp of
physics and relevant parameters. The case of finite fermion systems, nevertheless,
usually implies painful calculations and analytical solutions are thus rather rare,
whence the particular relevance of the few existing models.

• Complexity beyond simplicity While simple models offer remarkable clues to the
description of complex systems, they do not exhaust all our understanding of such
systems. We have in many places throughout the book identified some limitations
of our approaches. Our line of progression consisting in including interactions
and correlations at a deeper and deeper level is illustrative in that respect. While
the simplest account of interactions may allow rather simple treatments (at the
price of detail), including interactions and/or correlations at a more refined degree
usually leads to more and more complex modeling. This progressively reduces
the chances to find analytical treatments. Still, the stepwise inclusion of correla-
tions helps to disentangle their influence and so provides a very telling illustration
of how more and more subtle effects affect and modify our understanding of such
fascinating systems as finite fermion systems.



Appendix A
Quantum-Mechanical Background

A.1 Spherical Single-Particle Wave Functions

A.1.1 General Form

In nuclear, atomic, and cluster physics the case of spherically symmetric systems has
always been attractive for getting an understanding of the underlying phenomena
because of its simplicity both in analytic and in computational applications. This
appendix summarizes some properties of single-particle wave functions in spheri-
cally symmetric potentials.

The single-particle Hamiltonian for this case can be written in spherical coordi-
nates as

ĥ = − �
2

2m
∇2 + V (r ) = − �

2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ L̂2

2mr2
+ V (r ).

An important consequence of spherical symmetry is that the stationary wave func-
tions can be chosen also as eigenfunctions of the angular momentum operators L̂2

and L̂ z . As is known from elementary quantum mechanics the corresponding eigen-
functions are the spherical harmonics and the single-particle wave function can be
decomposed as

ϕnlm(r) = fn(r )Ylm(Ω),

with n indicating the quantum numbers associated with the radial wave function. It
fulfills the eigenvalue relations

ĥϕnlm = εnlϕnlm

L̂2ϕnlm = �
2l(l + 1)ϕnlm

L̂ zϕnlm = �mϕnlm .

Note that the single-particle energies must be degenerated with respect to the quan-
tum number m.
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The radial wave functions then are solutions of the ordinary differential equation

[
− �

2

2m

1

r2

d

dr

(
r2 d

dr

)
+ �

2l(l + 1)

2mr2
+ V (r )

]
fn(r ) = εnl fn(r ).

In the Hamiltonian as written down above spin does not play a role. The eigen-
states including the spin degree of freedom therefore simply have to be multiplied
by a spinor,

ϕnlms(x) = fn(r )Ylm(Ω)χs .

In this case spin practically only influences the theories by allowing double occu-
pation of these single-particle states. It becomes a more active participant in the
theory only if it is present in the Hamiltonian, for example, via a spin–orbit coupling
containing the operator L̂ · ŝ.

A.1.2 Harmonic Oscillator

The most important set of spherical wave functions is the one for the harmonic
oscillator potential. For V (r ) = 1

2 mω2r2 the complete wave functions are given by

ψnlm(r,Ω) =
√

2n+l+2

n!(2n + 2l + 1)!!
√

πx3
0

× rl

xl
0

Ll+1/2
n (r2/x2

0 ) exp−r2/2x2
0 Ylm(Ω).

with x0 = √
�/mω. Here n = 1, 2, . . . and, as usual, l = 0, 1, . . . and m = −l,−l+

1, . . . + l.
The symbol Lm

n (x) stands for the generalized Laguerre polynomial (for some
properties see Appendix B.2). The eigenenergies are determined by the principal
quantum number N = 2(n − 1) + l as

EN = �ω
(
N + 3

2

)
(A.1)

The computational effectiveness of these functions is due to the fact that many
integrals involving them can be calculated analytically. In addition, many recursion
relations found in the mathematical handbooks make the calculation of derivatives
and specific values quite efficient.

An alternative treatment of the spherical harmonic oscillator can be done in
Cartesian coordinates. The Hamiltonian is decomposed into three parts correspond-
ing to the three coordinate directions
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ĥ = − �
2

2m

d2

dx2
+ 1

2
mω2x2 − �

2

2m

d2

dy2
+ 1

2
mω2 y2 − �

2

2m

d2

dz2
+ 1

2
mω2z2,

so that the eigenfunction becomes a product of three eigenfunctions of the 1D har-
monic oscillator:

ϕnx ny nz = ϕnx (x)ϕny (y)ϕnz (z)

with

ϕn(x) = 1√
2nn!

√
πx0

Hn(x/x0) exp(− 1
2 x/x2

0 )

and the Hn the Hermite polynomials (for properties again see Appendix B.2). The
eigenenergy in this case is

εnx ny nz = �ω
(
nx + ny + nz + 3

2

)
.

The advantage of this formulation is that for the Hermite polynomials even more
useful properties are known than for the Laguerre ones. The drawback is that the
functions are no longer angular momentum eigenstates.

In cylindrical coordinates (ρ, z) the eigenfunctions of the harmonic oscillator can
also be constructed in a simple way. If the z-axis is the symmetry axis, we still have
a quantum number m from L̂ z , and in the z-direction there is a simple 1D harmonic
oscillator with quantum number nz , while for ρ things are a bit more complicated.
Its excitation is given by nρ = 0, 1, . . .. The complete solution is

ψnznρμ(z, ρ, φ) = N exp
[− 1

2 k2(z2 + ρ2)
]

Hnz (kz) ρ|μ| L |μ|
nρ

(kρ2) eiμφ

with N an unspecified normalization constant and k = mω/�. The energy of the
levels is given by

E = �ω
(
nz + 2nρ + |μ| + 3

2

)
.

Note that the number of “quanta” nρ in the ρ direction counts twice in the energy for-
mula because it contains two oscillator directions and that the angular-momentum
projection contributes to the energy because of the centrifugal potential.

Of course the degeneracy of the levels is the same independent of the coordinate
system used, and the principal quantum number N can be split up in three ways:

N = nx + ny + nz = nz + 2nρ + |μ| = 2n + l.

The degeneracy can be computed most easily from the Cartesian form. The dif-
ferent possibilities of choosing 0 ≤ nx , ny, nz ≤ N with nx + ny + nz = N fixed
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is given by choosing a value for nx and then one for ny from the remaining choices,
which determines nz completely, this we get

N =
N∑

nx =0

N−nx∑
ny=0

1 =
N∑

nx =0

(N − nx + 1) = 1
2 (N + 1)(N + 2). (A.2)

The various coordinate systems are useful in different situations; for example, the
spherical basis makes the spin–orbit coupling diagonal, while non-spherical but still
axially symmetric systems are often treated more simply in the cylindrical basis.

A.1.3 The Hydrogen Atom

In the hydrogen atom the potential is V (r ) = −e2/r . This problem can be solved
analytically only in spherical coordinates. The solution of the radial part leads to a
radial quantum number nr = 0, 1, 2, . . ., which is, however, replaced by the prin-
cipal quantum number n = nr + l + 1, since the energy eigenvalues are found to
depend only on n. The familiar angular momentum quantum numbers are, of course,
also present, so that the set of quantum numbers becomes:

n = 1, 2, 3, . . . l = 0, 1, . . . , n − 1, m = −l,−l + 1, . . . ,+l

The energy eigenvalues are given by

EN = −e4me

2�2

1

n2
= −Ry

n2
,

defining the Rydberg constant Ry ≈ 13.6 eV. The normalized eigenfunctions are

ϕ(r, θ, φ) =
√(

2

na0

)3 (n − l − 1)!

2n(n + l)!
e−r/2 rl L2l+1

n−l−1(r ) Ylm(θ, φ).

They again contain the generalized Laguerre polynomials (see Appendix B.2).
The states discussed here are all bound. For positive energies there is a continuous

spectrum with distorted plane waves as eigenfunctions, which will not be used in
this book.

A.1.4 The Spherical Square Well (Box)

The radial wavefunctions for the spherical box potential (as given in Table 3.1) are
determined by
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Table A.1 Left: The zeroes of the spherical Bessel functions jnl (x). Right: The lowest states in
the spectrum of the spherical box potential with quantum numbers n and l, momentum knl , and
single-particle energy εnl . The last column shows the multiplicity of the states including spin

Zeroes of jnl (x)

l\n 1 2 3 4
0 3.142 6.283 9.425 12.566
1 4.493 7.725 10.904 14.066
2 5.764 9.095 12.323
3 6.988 10.417 13.698
4 8.183 11.705
5 9.356 12.967
6 10.513 14.207
7 11.657
8 12.791
9 13.916

Spectrum of spherical box

n l knl [R−1] εnl [ �
2

2m ] 2(2l+1)
1 0 3.142 9.872 2
1 1 4.493 20.187 6
1 2 5.764 33.224 10
2 0 6.283 39.476 2
1 3 6.988 48.832 14
2 1 7.725 59.676 6
1 4 8.183 66.961 18
2 2 9.095 82.719 10
1 5 9.356 87.535 22
3 0 9.425 88.831 2

[
− �

2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ �

2l(l+1)

2mr2

]
fnl(r ) = εnl fnl(r ), (A.3a)

fnl(R) = 0. (A.3b)

These are free spherical waves, except for the boundary condition (A.3b). Solutions
are the spherical Bessel functions

fnl(r ) = jnl(knlr ), εnl = �
2

2m
k2

nl , (A.3c)

where the knl are determined such that the boundary condition (A.3b) is fulfilled.
The zeroes of the jnl can only be found numerically. They are given for small l and
n on the left part of Table A.1. The resulting spectrum is shown on the right part.

A.2 Angular Momentum

A.2.1 Angular Momentum Algebra

In this and the following section a few facts about angular momenta and their cou-
pling are presented. For anything going beyond the elementary treatment given here,
the reader is directed to one of the many excellent textbooks on the field, e.g., [31]
or [108].

The basis for all of angular momentum theory lies in the commutation relations
between the components,

[ Ĵx , Ĵy] = i� Ĵz, [ Ĵy, Ĵz] = i� Ĵx , [ Ĵz, Ĵx ] = i� Ĵy, (A.4)
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which define the angular momentum algebra. The algebra is independent of whether
Ĵ is replaced by the orbital angular momentum operator L̂ = −i�r × ∇ or the spin
operator ŝ = 1

2 �σ .
As should be familiar, an immediate consequence is that the square of the angular

momentum operator

Ĵ
2 = Ĵ 2

x + Ĵ 2
y + Ĵ 2

z

commutes with all of the components and can therefore be diagonalized together
with one of them, for which conventionally Ĵz is chosen. In a spherically symmetric
system, for which [Ĵ, Ĥ ] = 0 holds, we can therefore select eigenstates |α J M〉
fulfilling

Ĥ |α J M〉 = Eα|α J M〉,
Ĵ

2|α J M〉 = �
2 J (J + 1)|α J M〉, (A.5)

Ĵz|α J M〉 = �M |α J M〉.

Here α summarizes all non-angular momentum quantum numbers. The derivation
of the eigenvalues J = 0, 1

2 , 1, 3
2 , . . . and M = −J,−J + 1, . . . ,+J can be found

in quantum-mechanics textbooks [70, 24].
An especially useful alternative set of operators is given by Ĵz together with the

combinations

Ĵ+ = Ĵx + i Ĵy, Ĵ− = Ĵx − i Ĵy . (A.6)

Their commutation relations are

[Ĵ
2
, Ĵ±] = 0, [ Ĵz, Ĵ±] = ± Ĵ±.

These operators have the simple effect of raising or lowering the angular-momentum
projection by one:

Ĵ±|J M〉 =
√

(J ∓ M)(J ± M + 1)|J, M ± 1〉.

The matrix element contained in the equation corresponds to a specific choice of
relative phases of the angular momentum eigenstates according to Condon and
Shortley.

It is also worth keeping in mind that rotation of wave functions can be done using
angular momentum operators. A rotation of a state |Ψ 〉 around the x-axis through
an angle ϕ, e.g., can be written as
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|Ψ ′〉 = exp
(− i

�
Ĵxϕ
)|Ψ 〉,

and Ĵx therefore describes infinitesimal rotations.

A.2.2 Angular Momentum Coupling

A new problem arises when there is more than one angular momentum in a system.
This can occur in two ways: a single particle can have internal angular momentum,
i.e., spin, in addition to its orbital angular momentum, or there may be more than
one particle, each contributing its own orbital angular momentum and spin.

Let us first examine the case of several particles. As long as they all are affected
only by a spherical external potential, they are completely independent of each other
and their angular momenta are seperately conserved. As soon as they interact with
each other, however, the rotational symmetry is fulfilled only for rotating all the
particles together, which is described by the total angular momentum operator. For
two particles it is given by

Ĵ = Ĵ1 + Ĵ2.

Calculating the commutation relations for the components of total angular momen-
tum reveals that they again fulfill the angular momentum algebra as defined in (A.4).
This is very important, because the sum of any number of angular momenta behaves
the same as an elementary angular momentum operator — the eigenvalues and
eigenstates of the total angular momentum of a complete atom or nucleus just follow
the same rule (A.5) as that of an elementary particle.

Rotational symmetry assures us that [Ĵ, Ĥ ] = 0, so that eigenstates of the Hamil-

tonian can also be constructed to be eigenstates of the operators Ĵ
2

and Ĵz ,

Ĥ |α, J, M〉 = Eα|α, J, M〉
Ĵ

2|α, J, M〉 = �
2 J (J + 1)|α, J, M〉

Ĵz|α, J, M〉 = �M |α, J, M〉.

For the spin and orbital angular momentum of a single particle things are quite
analogous, since as soon as the two are coupled, rotational invariance will be valid
only for rotations involving both orbital and internal rotation, so again the total
angular momentum operator, in this case Ĵ = L̂ + ŝ, will be a conserved quantity
and produce good quantum numbers. Things are thus completely analogous to the
coupling of two different particles.
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A.2.3 Coupled and Uncoupled Basis

In constructing states of good angular momentum, normally one has to start with the
eigenstates of the individual angular momenta. Thus we have eigenstates |α1 j1m1〉
for particle 1 fulfilling

Ĵ
2
1|α1 j1m1〉 = �

2 j1( j1 + 1)|α1 j1m1〉, Ĵ1z|α1 j1m1〉 = �m1|α1 j1m1〉,

where α1 summarizes all other quantum numbers of particle 1. Similarly for particle
2 the same properties hold with the index replaced by 2. A set of basis states, the
uncoupled basis, can then be constructed from the direct products,

|α1 j1m1〉|α2 j2m2〉,

and they are eigenstates of all four operators.
To make the transition to a coupled basis we have to investigate which operators

can still be diagonal together with the total angular operators Ĵ
2

and Ĵz . Since Ĵ1

and Ĵ2 refer to different degrees of freedom and thus commute trivially, we get

[Ĵ1,2, Ĵ
2
] = 0 and [Ĵ1,2, Ĵz] = 0, while Ĵ1z and Ĵ2z do not commute with the total

angular momentum operators. A complete set of commuting operators is thus given
by

Ĵ
2
, Ĵz, , Ĵ

2
1, Ĵ

2
2.

The corresponding quantum numbers are J , M , j1, and j2 and lead to the coupled
basis

|J M, j1 j2〉.

The linear transformation between the coupled and uncoupled bases is given by
the so-called Clebsch–Gordan coefficients, but since they are not used in this book
we refer the reader to the angular momentum theory textbooks mentioned above.

The physical meaning of the angular momentum coupling as the addition of two
vectors implies some restrictions on the quantum numbers involved. First, because
Ĵz = Ĵ1z + Ĵ2z , the corresponding quantum numbers must also add up: M = m1 +
m2.

Second, there is the triangle rule concerning the lengths of the vectors: this can
visualized geometrically in that the length of the sum must lie between the differ-
ence and the sum of lengths, corresponding to limiting possible angles between the
vectors. This is expressed as

| j1 − j2| ≤ J ≤ j1 + j2.
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A.2.4 Spin Coupling

An important special case is the coupling of the spins of two spin 1/2 particles.
According to the triangle rule, the resulting total spin S is either 0 or 1. The explicit
formulas are for S = 0

|S = 0, M = 0〉 = 1√
2

(
χ

(1)

+ 1
2

χ
(2)

− 1
2

− χ
(1)

− 1
2

χ
(2)

+ 1
2

)
,

where χ
(1,2)

± 1
2

are the basis spinors of the two particles. This wave function is anti-

symmetric under exchange of the two particles. On the other hand, for S = 1 the
wave functions are symmetric:

|S = 1, M = +1〉 = χ
(1)

+ 1
2

χ
(2)

+ 1
2

,

|S = 1, M = 0〉 = 1√
2

(
χ

(1)

+ 1
2

χ
(2)

− 1
2

+ χ
(1)

− 1
2

χ
(2)

+ 1
2

)
,

|S = 1, M = −1〉 = χ
(1)

− 1
2

χ
(2)

− 1
2

.

A.2.5 Matrix Element of L̂ · ŝ

In some simple cases properties of the coupled state can be calculated without
explicit construction of the pertinent eigenstates. We consider the case of an orbital
angular momentum L̂ coupled with spin ŝ to a resulting Ĵ. The coupled basic states
are |α J M, l 1

2 〉.
Now in many physical systems there is a spin–orbit interaction term in the

Hamiltonian proportional to L̂ · ŝ. The matrix element of this in the coupled states
can be calculated by noting

Ĵ
2 = (L̂ + ŝ)2 = L̂

2 + ŝ2 + 2L̂ · ŝ,

so that

L̂ · ŝ = 1
2 (Ĵ

2 − L̂
2 − ŝ2).

The operators on the right-hand side are all diagonal in the coupled basis and sub-
stituting the eigenvalues yields the diagonal matrix elements

〈α J M, l 1
2 |L̂ · ŝ|α J M, l 1

2 〉 = �
2

2

(
J (J + 1) − l(l + 1) − 3

4

)

with all other matrix elements zero.
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A.3 Independent-Particle Wave Functions

The simplest kind of many-particle system, which serves as the basis for most of the
more complex theories, is one of identical non-interacting particles: an independent-
particle model. In this case the Hamiltonian Ĥ of the N -particle system is just the
sum of the identical single-particle Hamiltonians ĥ for the individual particles,

Ĥ (x1, x2, . . . xN ) =
N∑

k=1

ĥ(xk). (A.7)

Here we have introduced the super-vector x = (r, ν) which stands for both the
configuration space coordinate r and the spin projection ν = ± 1

2 .
Clearly for this Hamiltonian an eigenfunction for the many-body case can be

obtained simply as a product of single-particle eigenfunctions: if we have eigen-
states fulfilling

ĥ(x)ϕα(x) = εαφα(x), (A.8)

the many-body wave function

Ψ (x1, . . . xN ) =
N∏

k=1

φαk (xk) (A.9)

corresponds to a state with the particles in the orbitals labeled αk , k = 1, . . . N , and
fulfilling

ĤΨ = EΨ, with E =
N∑

k=1

εk . (A.10)

In general there will be an infinite number of single-particle eigenstates of hop
forming a complete basis, and the many-particle wave function is determined by the
set of occupied states chosen from them. We will always assume that the single-
particle states are orthonormal,

∫
d3x ϕ∗

α(x)ϕβ(x) = δαβ.

Here the “integration” over x is meant to include the integration over configuration
space as well the scalar product of the spinors. If the single-particle wave functions
are orthonormal, then the many-body one is also normalized.

As it stands, however, the product wave function is not correct, since we are
dealing with Fermions and the many-body wave function must be antisymmetric
under exchange of two-particle coordinates. This can be achieved by using a Slater
determinant
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Ψ (x1, . . . xN ) = 1√
N !

det

⎛
⎜⎜⎜⎝

ϕα1 (x1) ϕα2 (x1) · · · ϕαN (x1)
ϕα1 (x2) ϕα2 (x2) · · · ϕαN (x2)

...
...

. . .
...

ϕα1 (xN ) ϕα2 (xN ) · · · ϕαN (xN )

⎞
⎟⎟⎟⎠ . (A.11)

The normalization factor takes into account the fact that when multiplying out the
overlap of the determinant with itself, the N ! contributions with the same permuta-
tion of coordinates in both wave function products yield a contribution of 1, while
the other products vanish because of the orthonormality.

Since a determinant with two or more identical columns vanishes, we get the
Pauli principle as an immediate consequence: all occupied single-particle states
must be distinct.

Using Slater determinants in calculations quickly becomes extremely cumber-
some. The way to a simpler description of the many-particle product states lies in
the recognition that the physical information characterizing the state is only the set
of occupied states: In (A.11), the particle coordinates are introduced but then imme-
diately made irrelevant by the antisymmetrization. We are thus led to a formulation
of the many-body states in an occupation number representation.

For a few derivations later we will need an explicit form of the Slater determinant
which is easier to manipulate. This is given by

Ψ (x1, x2, . . . , xN ) = 1√
N !

∑
π

(−1)π
N∏

k=1

ϕαkπ
(xk),

for the case of N fermions, where π is a permutation of the indices 1, . . . , N and
(−1)π is its sign, i.e., +1 for even and −1 for odd permutations. The permutation
changes the index i into iπ . The sum is over all N ! permutations of the N indices.

A Slater determinant is a highly restricted state of the many-body system. For
independent-particle models, Slater determinants are the correct eigenstates of the
Hamiltonian, but once interactions are introduced, the true many-body wave func-
tion can be expanded into a sum over a large number of Slater determinants, all
with the same particle number, but with all possible selections of occupied states.
The number of such Slater determinants increases extremely rapidly with particle
number and single-particle basis size.

A.4 Algebra of Fermion Operators

A.4.1 Fock Space

In the occupation number representation each single-particle basis state with label
α has an associated occupation number nα which for fermions can be only zero or
one. For N particles there must be N occupied states, so that N = ∑∞

α=1 nα . The
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many-body states are denoted by ket vectors as |n1, n2, . . .〉 and the Slater deter-
minant of (A.11) would correspond to nαk = 1 for k = 1, . . . N and all other
occupation numbers equal to zero.

States of different particle number N can be combined in what is called Fock
space. Mathematically speaking, Fock space is the direct sum of the Hilbert spaces
for fixed particle numbers, so that a state can contain components with different
N ; direct sum essentially means that states from the different Hilbert spaces can be
added up, but the overlap between states of different N is defined to be zero — in
conventional Hilbert space it would not make sense to calculate such an overlap.

We now introduce operators that allow changing the particle number. The cre-
ation operator â†

α inserts one particle into state α, while the annihilation operator â
deletes it. Their basic action is thus, depending on whether the single-particle state
is already filled or not,

â†
α|n1, n2, . . . nα = 0, . . .〉 = |n1, n2, . . . nα = 1, . . .〉,

âα|n1, n2, . . . nα = 1, . . .〉 = |n1, n2, . . . nα = 0, . . .〉,
â†

α|n1, n2, . . . nα = 1, . . .〉 = 0,

âα|n1, n2, . . . nα = 0, . . .〉 = 0.

The third and fourth conditions reflect the Pauli principle and the impossibility to
delete a nonexisting particle, respectively. These conditions define the behavior of
the operators almost completely, we note especially that it is impossible to create
or destroy two particles in the same state, so that â†

α â†
α = 0 and âα âα = 0, while

applying a combination of both on a state with occupation nα yields

â†
α âα|n1, n1, . . . nα, . . .〉 = nα|n1, n1, . . . nα, . . .〉

âα â†
α|n1, n1, . . . nα, . . .〉 = (1 − nα)|n1, n1, . . . nα, . . .〉,

making it apparent that a particle-number operator can be defined as

N̂α = â†
α âα

that counts how many particles (0 or 1) are in state α.
These properties of the operators are represented by the diagonal (α = β) ver-

sions of the abstract anticommutation relations

{â†
α, â†

β} = 0, {âα, âβ} = 0, {âα, â†
β} = δαβ, (A.12)
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where the anticommutator of two operators is defined as { Â, B̂} = Â B̂ + B̂ Â. It
should be noted as a consequence that

â†
α â†

β = −â†
β â†

α. (A.13)

The nondiagonal versions of these relations imply that creating or annihilating
particles in two different single-particle states in order α → β or β → α produces
the same many-particle wave function, but with opposite sign. This expresses the
antisymmetry for fermions.

We thus have set up a second-quantization formalism for fermions characterized
by the anticommutation rules A.12. Many-particle states can now be produced out
of the vacuum |0〉, which is simply the state with all nα = 0, by the application of
creation operators. Thus, the state corresponding to the Slater determinant A.11 can
be written as

â†
α1

â†
α2

. . . â†
αN

|0〉. (A.14)

The final sign depends on the ordering of the operators, but that is usually no prob-
lem. A convention is, e.g., that the order of the creation operators be the same as
the order of the states in the columns of the Slater determinant. We then have a
one-to-one correspondence between the Slater determinants in configuration space
and the Fock-space states as defined in (A.14).

A.4.2 Operators in Fock Space

For the use of the formalism in actual calculations it is necessary to also trans-
form operators into the second-quantization formalism. To that end it is sufficient to
construct an operator that yields the same matrix elements between the Slater deter-
minants as between the corresponding Fock states. The form of such an operator
will depend on its type, the two most useful being

• one-body operators depending only on the coordinates of one particle, but for
identical particles summed over identical contributions for all particles. An exam-
ple is the kinetic energy

T̂ =
N∑

k=1

t̂k =
N∑

k=1

−�
2

2m
∇2

k .

A general one-body operator will have the form

F̂ =
N∑

k=1

f̂ (xk).
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• two-body operators depending on the coordinates of two particles. A typical
example is the interaction potential given by

V̂ (x1, . . . xN ) = 1
2

N∑
j,k=1

v̂(x j , xk).

The matrix elements of these expressions have to be evaluated between two Slater
determinants and an operator in second-quantization notation must be constructed
that produces identical matrix elements. We take two Slater determinants

Ψ (x1, . . . , xN ) = 1√
N !

∑
π

(−1)π
N∏

j=1

ϕα jπ
(x j ),

Ψ ′(x1, . . . , xN ) = 1√
N !

∑
π ′

(−1)π
′

N∏
j ′=1

ϕ′
j ′
π ′ (x j ′ ).

with the indices α′
j ′ and α j describe the different choices of N occupied single-

particle wave functions from a complete orthonormal set ϕk(x), k = 1, . . . ,∞. The
matrix element becomes

〈Ψ | f̂ |Ψ ′〉 =
N∑

k=1

1

N !

∫
d3x1 · · ·

∫
d3xN

∑
ππ ′

(−1)π+π ′( N∏
j=1

ϕ∗
α jπ

(x j )
)

f̂ (xk)
( N∏

j ′=1

ϕα′
j ′
π ′

(x j ′ )
)
.

From the products we can form single-particle integrals by taking the single-particle
wave functions with identical arguments together. For the special case j = j ′ = k
the matrix element

∫
d3xk ϕ∗

αkπ
(xk) f̂ (xk) ϕα′

k
π ′

(xk) = fαkπ α′
k
π ′

, (A.15)

results, whereas the others simply reduce to

∫
d3x j ϕ∗

α jπ
(x j ) ϕα′

j ′
π ′

(x j ) = δα jπ α′
j ′
π ′

.

The many-body matrix element becomes

〈Ψ | f̂ |Ψ ′〉 =
∑

k

1

N !

∑
ππ ′

(−1)π+π ′
fkπ kπ ′

N∏
j, j ′=1

j �=k, j ′ �=k

δ jπ j ′
π ′ .
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For this matrix element not to vanish, the Kronecker symbols require that the same
states must be occupied in Ψ as in Ψ ′ with a single exception. This implies that a
single-particle operator changes the state of a single particle only.

Now if at most one single-particle state is different between the two occupations,
for a given permutation π there is only one π ′ that makes all Kronecker symbols
nonzero; so the sum over π ′ can be dropped by choosing π ′ correctly for each π .
How is the total sign to be determined? As π and π ′ are the permutations needed to
bring the states numbered by i and i ′ from their original ordering into the same order
(with the indices kπ and kπ ′ also in the same position), the factor σ = (−1)π+π ′

tells
whether an even or odd permutation is needed to transform these original orderings
into each other and it does not depend on π or π ′. The sum over permutations π then
effectively runs only over the various ways to number the N − 1 states occupied in
both Ψ and Ψ ′.

The matrix element is totally independent of the permutation. It only contains the
factor σ , and the single-particle matrix element fkπ kπ ′ always has the same indices:
those of the two single-particle states which differ between Ψ and Ψ ′; let us simply
call them j and j ′. The matrix element is now

〈Ψ | f̂ |Ψ ′〉 =
N∑

k=1

1

N !
σ f j j ′

∑
π, j fixed

1 = 1

N !
σ N f j j ′ (N − 1)! = σ f j j ′ .

What should the equivalent operator in second quantization look like? It must
remove one particle from state j ′ and put it into the state j while not doing anything
to the other states, the resulting matrix element being f j j ′ . Since this must operate
for all combinations of j and j ′ we are led to

F̂ =
∑

j j ′
f j j ′ â†

j â j ′ .

It has to be checked whether the signs are correct. The Fock-space states are

|Ψ 〉 = â†
α1

· · · â†
αN

|0〉 , |Ψ ′〉 = â†
α′

1
· · · â†

α′
N
|0〉,

and the matrix element is

〈Ψ |F̂ |Ψ ′〉 =
∑

j j ′
f j j ′ 〈0|âαN · · · âα1 â†

j â j ′ â†
α′

1
· · · â†

α′
N
|0〉.

It is clear that again the set of indices α must denote the same states as α′, except
that j replaces j ′. Permute the i ′ in such a way that they are in the same order as
the i (and with j ′ at the same place as j), and this will yield the same sign factor
σ as defined above for the Slater determinants. Permuting the operator combination
â†

j â j ′ in front of â†
j ′ does not change the sign, and we get
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〈Ψ |F̂ |Ψ ′〉 =
∑

j j ′
f j j ′ 〈0|âαN · · · âα1 â†

α1
· · · â†

j â j ′ â†
j ′ · · · â†

αN
|0〉.

In this expression the operator combinations â†
i âi ′ all yield factors of 1, and the final

result is

〈Ψ |F̂ |Ψ ′〉 = σ f j j ′

in agreement with the result calculated in the Slater-determinant formulation.
The rule for transcribing a single-particle operator into second-quantized form is

thus

F̂ =
∑

j j ′
f j j ′ â†

j â j ′ with f j j ′ = 〈ϕ j | f̂ |ϕ j ′ 〉.

The analogous result for two-body operators such as the potential energy

V̂ = 1
2

∑
k �=k ′

v̂(xk, xk ′ )

can be obtained in a similar way. Each individual term in the sum can change the
states of two particles now, so that a product of two creation and two annihilation
operators is needed. The calculation can be done in a similar way as above, but is of
course more complex. We skip the cumbersome details and give the final form for
the second-quantized operator:

V̂ = 1
2

∑
i jkl

vi jkl â†
i â†

j âl âk , (A.16)

with the two-particle matrix element defined by

vi jkl =
∫

d3x
∫

d3x ′ ϕ∗
i (x) ϕ∗

j (x
′) v(x, x ′) ϕk(x) ϕl(x

′).

Note the opposite ordering of the last two indices in the matrix element as compared
to the operators in (A.16).

In many calculations the evaluation of the matrix elements leads to an antisym-
metric combination, which is therefore given a special abbreviation:
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v̄i jkl = vi jkl − vi jlk .

Note also the symmetry of the matrix element under the interchange of the two pairs
of single-particle wave functions:

vi jkl = v j ilk .

Two more general properties of these second-quantized expressions are worth
mentioning: they conserve particle number, since both contain the same number of
creation as annihilation operators in each term, and they do not explicitly depend on
the number of particles anymore: this is instead supplied by the Fock-space states.

A.4.3 Field Operators

The creation and annihilation operators discussed up to now have affected particles
in specific states. It is sometimes useful to construct operators for particles at a
specific location in space by defining

ψ̂†(r) =
∑

k

â†
kϕ

∗
k (r), ψ̂(r) =

∑
k

âkϕk(r). (A.17)

These field operators fulfill the anticommutation relations

{ψ̂†(r), ψ̂†(′)} = 0,

{ψ̂(r), ψ̂(r′)} = 0,

{ψ̂(r), ψ̂†(r′)} = δ(r − r′).

The last relation can be probed using the completeness of the single-particle basis.
These definitions also show the origin of the name “second quantization”: the

wave functions themselves become field operators.

A.5 Hierarchy of Density Operators

A.5.1 The One-Body Density

From the many-body wave function it is relatively straightforward to calculate the
probability to find one particle at the location r; this probability is normalized to
one and has to be multiplied by the total number of particles N to obtain the density.
Since we are not interested in the positions of the other particles, they have to be
integrated over and the result is
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�(r) = N
∫

Ψ ∗(r, r2, . . . rN )Ψ (r, r2, . . . rN ) d3r2 . . . d3rN . (A.18)

If Ψ is a Slater determinant built out of the single-particle states φk , k = 1, . . . N ,
this can be reduced to

�(r) =
N∑

k=1

|ϕk(r)|2

by using the orthonormality of the single-particle wave functions. It can also be
formulated as the matrix element of an operator

�̂(r) =
N∑

j=1

δ(r − r j ),

so that

�(r) = 〈Ψ |�̂|Ψ 〉.

A useful generalization of this concept is the nondiagonal density

�(r, r′) = N
∫

Ψ ∗(r′, r2, . . . rN )Ψ (r, r2, . . . rN ) d3r2 . . . d3rN . (A.19)

This concept can be carried over to second quantization. The density can be obtained
by finding the number of particles in a single-particle state, multiplying it by the
corresponding density, and summing over all states,

�(r) =
∞∑
j=1

ϕ∗
j (r)ϕ j (r)〈Ψ |â†

j â j |Ψ 〉 = 〈Ψ |ψ̂†(r)ψ̂(r)|Ψ 〉,

where the result was also expressed through field operators.
For the nondiagonal density we get similarly

�(r, r′) =
∞∑

j,k=1

ϕ∗
j (r

′)ϕk(r)〈Ψ |â†
j âk |Ψ 〉 = 〈Ψ |ψ̂†(r′)ψ̂(r)|Ψ 〉. (A.20)

This also motivates the definition of a nondiagonal density operator

�̂(r, r′) = ψ̂†(r′)ψ̂(r).
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A.5.2 The One-Body Density Matrix

We are thus naturally led to introduce the operator combination just discussed as
the Fock-space version of the nondiagonal one-body density. Given a many-particle
state |Ψ 〉, the one-body density matrix is defined as

�kl = 〈Ψ |â†
l âk |Ψ 〉, (A.21)

where k and l run over the single-particle basic states. |Ψ 〉 need not be a simple
Slater determinant built out of these states but can be a general many-body wave
function, a superposition of such Slater determinants. Note that the one-body density
matrix depends both on the state |Ψ 〉 and on the single-particle basis defining the
operators â†

k and âl . It is customary to use the shorter term “density matrix” for
the one-body density matrix if no confusion with other types of density matrix is
possible.

The following elementary properties of the density matrix are easily derived:

• �kl is hermitian:

�lk = 〈Ψ |â†
k âl |Ψ 〉 = 〈Ψ |(â†

l âk)†|Ψ 〉 = �∗
kl .

• Expectation values of single-particle operators such as

t̂ =
∑

kl

tkl â†
k âl

can be calculated via

〈Ψ |t̂ |Ψ 〉 =
∑

kl

tkl〈Ψ |â†
k âl |Ψ 〉 =

∑
kl

tkl �lk,

which can be rewritten using matrix trace notation:

〈Ψ |t̂ |Ψ 〉 = Tr{�̂t̂}.

This also explains why in the definition (A.21) the order of indices is chosen
oppositely on both sides.
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Here t on the right-hand side stands for the matrix tkl representing the operator
t̂ .1

• If the state |Ψ 〉 is a simple Slater determinant, the form of the density matrix is
quite restricted. We first regard the case that |Ψ 〉 is built out of the same single-
particle states as those contained in the single-particle basis defining the density
matrix. Then we must have

�kl =
{

δkl for k and l occupied in |Ψ 〉
0 otherwise

.

Thus � is diagonal in this case with ones and zeroes on the diagonal depending
on whether the corresponding single-particle state is occupied or empty. Further-
more it fulfills the important relation

�2 = �, (A.22)

which follows immediately from the special form of the matrix. It is important
that this relation continues to hold in the more general case. If the single-particle
states that make up |Ψ 〉 are not included in the basis defining �, they may in any
case be expanded in those using some unitary matrix U ,

β̂k =
∑

k ′
Ukk ′ âk ′ ,

where β̂k now denotes the second-quantization operator for these states occupied
in |Ψ 〉. The density matrix �̃ defined in the basis of the β̂k now is given by

�̃ = U�U †,

so that conversely � = U †�̃U . Since �̃ fulfills (A.22), we get

�2 = U †�̃UU †�̃U = U †�̃2U = U †�̃U = �.

So �2 = � holds for a Slater determinant |Ψ 〉 no matter what single-particle basis
is used for defining �.

This relation for one-body density matrices should not be confused with the
analogous equation for a general density matrix. A general density matrix fulfilling
�2 = � describes a pure state, a totally different implication.

The relation (A.22) shows that � is a projection matrix: it projects any vector
describing a superposition of the basis states onto the subspace of occupied ones.

1 The following notation is used: t̂ denotes an operator, t the corresponding matrix, and tkl the
elements of the matrix.
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A.5.3 The Two-Body Density

The one-body density is suited for the description of one-body operators. Since the
interactions between particles always depend on at least two-particle coordinates, it
is necessary to introduce a two-body density as well. In configuration space it is the
simple generalization of (A.19)

�(r1, r2; r′
1, r′

2) =
∫

Ψ ∗(r1, r2, r3, . . . rN )Ψ (r′
1, r′

2, r3, . . . rN ) d3r3 . . . d3rN .

(A.23)

(In fact, this process can be carried further to yield higher and higher densities up to
the full N -body density |Ψ (r1, . . . rN )|2)

We can now define operators and matrices as in the one-body case. In terms of
field operators the two-body density is given by

�(r1, r2; r′
1, r′

2) = 〈Ψ |ψ̂†(r′
1)ψ̂†(r′

2)ψ̂(r2)ψ̂(r1)|Ψ 〉.

Going over to creation and annihilation operators and a matrix formulation we get
the definition of the two-body density matrix

� jklm = 〈Ψ |â†
l â†

mâk â j |Ψ 〉, (A.24)

which is, however, not as useful for the purposes of this book. The most important
property of the two-body density is that for a Slater-determinant state |Ψ 〉 it can be
split up into products of single-particle densities:

�(r1, r2, r′
1, r′

2) = �(r1, r′
1)�(r2, r′

2) − �(r1, r′
2)�(r2, r′

1).

This result can be shown by using a basis containing the occupied states, evaluating
the matrix element in (A.24) as shown in Chap. 5 and going back to coordinate
space.

A.6 Time Reversal and Kramers Degeneracy

Time-reversal invariance is usually not treated thoroughly in elementary quantum-
mechanics courses, because it is somewhat more complicated than space inversion.
For fermionic systems, however, it has important consequences which we will derive
here.

Time reversal is defined by its effect on the principal physical quantities position,
momentum, angular momentum, spin, and time itself:
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r → r , p → −p , s → −s , L → −L , t → −t .

Hamiltonians should be time-reversal invariant, so that, for example, a term such as
r · p cannot be allowed. This leads to the usual property in microscopic physics that
the evolution of a system and its time-reversed analogue should both be possible.

Time reversal has unusual properties compared with the other symmetries. Denot-
ing the time-reversal operator by T̂ , the commutator of position and momentum
transforms as

T̂
[
x, px

]
T̂ −1 = [x,−px

] = −i�,

so that we must demand T̂ i�T̂ −1 = −i�! The only way to achieve this is to assume
that the time reversal operator includes complex conjugation. This also works for
the Schrödinger equation, where the time-reversal invariance of the Hamiltonian
demands that i�∂/∂t be invariant, too.

The operator for time reversal, T̂ , thus cannot be unitary, because it is not even
linear. A linear operator commutes with an arbitrary c number, so that one should
have

T̂ i�T̂ −1 = i�T̂ T̂ −1 = i�,

whereas we need as the transformation of the constant T̂ i�T̂ −1 = −i�. Operators
with the property T̂ α = α∗T̂ for an arbitrary complex number α are called antilin-
ear operators.

Special care needs to be taken when constructing the eigenstates of T̂ , because
many of the familiar operator properties do not hold. Assume that |A〉 is an eigen-
state of T̂ with eigenvalue A. Applying T̂ 2 then yields

T̂ 2|A〉 = T̂ A|A〉 = A∗T̂ |A〉 = |A|2|A〉.

Now the basic definition of time reversal shows that it must satisfy T̂ 2 = 1, so that
the eigenvalue A must have a magnitude of unity:

A = expiφA

with some phase angle φA. This angle actually depends on the choice of phase for
the eigenstate, because if |A〉 is replaced by a new state

|A′〉 = exp
1
2 iφA |A〉,

the eigenvalue also changes:

T̂ |A′〉 = T̂ exp
1
2 iφA |A〉 = exp− 1

2 iφA T̂ |A〉 = exp− 1
2 iφA expiφA |A〉 = |A′〉.
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So it is possible to make the eigenvalue of T̂ equal to 1 by a change of phase. It
is interesting to note that the properties of time reversal are thus intimately linked
to the phases of the wave functions, which otherwise play little role in quantum
mechanics.

For spherical systems the interplay between angular momentum and time reversal
is interesting. Let us look at total angular momentum Ĵ = L̂ + ŝ, although the
arguments are equally valid for spin and orbital angular momenta. T̂ inverts the
sign of Ĵ, so that it commutes with Ĵ 2 but not with Ĵz . If time reversal is combined
with a rotation R that inverts the direction of the z-axis, it should commute with
both:

[
RT̂ , Ĵ 2] = 0,

[
RT̂ , Ĵz

] = 0,

and this operator RT̂ can then be diagonalized together with Ĵ 2 and Ĵz . The possible
eigenvalues, by the same argument as for T̂ , must have the form exp(iφA) and can
again be made equal to 1 by a change of phase of the wave function. Denoting any
additional quantum numbers by α, we can thus construct a system of eigenfunctions
|α J M〉 such that

RT̂ |α J M〉 = |α J M〉

This works with the usual angular momentum eigenstates, but requires a special
choice of phase for the basic functions.

The rotation R is arbitrary except for the condition of inverting the z-axis. It is
customary to choose a rotation by an angle π about the y-axis, R = Ry(π ).

Let us now examine the action of (RT̂ )2. On the one hand, since its eigenvalue
is 1, we have

(RT̂ )2|α J M〉 = |α J M〉.

On the other hand, R commutes with T̂ , because the rotation Ry(π ) can be
expressed as exp(iπ Ĵy) and T̂ inverts the signs of both Ĵy and the imaginary factor
iπ . Thus we can also write

(
RT̂

)2 |α J M〉 = R2T̂ 2|α J M〉 = Ry(2π )T̂ 2|α J M〉.

Now comes the crucial part. The rotation by 2π is the identity for wave functions
with integral spin, but produces a −1 for half-integer spins. The result is thus

T̂ 2 =
{

+1 for integral spin,

−1 for half-integer spin.

Here we are only interested in the latter case. An eigenvalue of −1 is not possible
because T̂ 2 is the identity operator and thus has only eigenvalues of +1.
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The solution for this apparent contradiction is that for fermions there are no
eigenvectors of T̂ , or, in other words, T̂ |A〉 is always linearly independent of |A〉.
As the Hamiltonian is invariant under time reversal and commute with T̂ , |A〉 and
T̂ |A〉 have the same energy: there are thus two linearly independent but degenerate
eigenstates of the Hamiltonian.

This twofold degeneracy of fermionic states is called Kramers degeneracy. In the
single-particle wave functions, for example, consequences appear in the following
way: for a wave function with orbital angular momentum projection M combining
with spin projection s to total angular momentum projection Ω , the state produced
by time reversal has quantum numbers (−M,−s,−Ω). In the case of spherical
symmetry, this is hidden by the degeneracy of all angular momentum projections
(for other quantum numbers identical), but if the system deviates from spherical to
cylindrical geometry, Kramers degeneracy implies that there will still be degenerate
states with opposite Ω projection.

This general result also applies to many-body states. If the Hamiltonian for a
system consisting of an odd number of fermions (and thus having a fractional spin)
is invariant under time reversal, its eigenstates will always show twofold degeneracy
with the two states being time reversed with respect to each other.
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Useful Tables

B.1 Units

We list here basic physical constants and units (data are taken from [102]). Note that
the Gaussian system of units for electromagnetic properties is used throughout.

Energy scales:

10−6 eV = 0.2418 h GHz = 8.066×10−3 hc

cm

1 h GHz = 4.136×10−6 eV ; 1
hc

cm
= 0.1240×10−3 eV

Rydberg constant

Ry = 13.6 eV

Boltzmann constant:

kB = 8.6174 10−5 eV K−1

Timescales:

1 fs = 10−15 s = 1.519
�

eV
= 20.66

�

Ry
�

Ry
= 0.0484 fs

Scale factors:

�c = 1.9731×10−7 eV m = 1973.1 eVÅ = 274.12 Ry a0

�
2

me
= 2 Ry a2

0 = 7.617 eV Å
2

267
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Electron mass:

mec2 = 510.9 keV = 37.57×103 Ry

me = 0.0156 eV fs2a−2
0 = 0.5 Ry−1a−2

0

Light velocity:

c = 5670 a0 fs−1 = 274.12 Ry a0

Gravitational constant:

G = 6.67 × 10−11m3/(kg s2)

Fine-structure constant:

α = e2

�c
= 0.007297 = 1

137.03

Charge:

e2 = 2 Ry a0 = 14.40 eV Å

Dielectric constant:

ε0 = 1

4π
≡ Gaussian system of units

Bohr energy:

EB = e4me

2�2
= 1 Ry = α2mec2

2
= 13.604 eV

Bohr radius:

a0 = �
2

mec2
= 0.5291 Å = 0.05291 nm = 0.5291×10−10 m

Bohr magneton:

μB = �e

2me
= 5.788 eV T−1
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A few nuclear quantities [29]:

Proton:

m pc2 = 938.2 MeV = 1836.1 me

�
2

m p
= 41.494 MeV fm2

μp = 2.7928 μN

Nuclear magneton:

μN = e�

2m pc
= 0.3152 ∗ 10−11 eV

Gs
= 0.5446 ∗ 10−3μe

Neutron:

mnc2 = 939.5 MeV = 1838.9 me

Deuteron:

mdc2 = 1875.4 MeV = 3670.8 me

μd = 0.8574 μN

B.2 Hermite and Laguerre Polynomials

Othogonal polynomials occur in the solutions of many differential equations in
physics. Distinct polynomials arise for different boundary conditions and dimen-
sionalities. Because many useful properties can be derived for them, they are used
extensively in analytic calculations. The most important properties are the differ-
ential equations they obey, their normalization integrals, and simple recursion rela-
tions.

For more information on special functions the classic reference is [118], down-
loadable from http://www.math.sfu.ca/cbm/aands/.

B.2.1 The Hermite Polynomials

These occur most prominently in the solution of the 1D oscillator. The differential
equation

d2

dx2
f (x) − 2x

d

dx
f (x) + 2n f (x) = 0
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with n ≥ 0 an integer (for the harmonic oscillator problem corresponding to the
energy) has as solutions the Hermite polynomials Hn(x), which are normalized
according to

∫ ∞

−∞
e−x2) Hn′ (x)Hn(x) dx = 2n n!

√
πδnn′ .

The polynmials for different n are related by the recursion relation

Hn+1(x) = 2x Hn(x) − 2nHn−1(x).

Note that this allows to calculate values for all n if H0(x) is known. Explicitly the
lowest Hermite polynomials are

H0(x) = 1 H1(x) = 2x
H2(x) = 4x2 − 2 H3(x) = 8x3 − 12x
H4(x) = 16x4 − 48x2 + 12 H5(x) = 32x5 − 160x3 + 120x .

It is worth noting that the polynomials have alternating parity given by (−1)n .

B.2.2 The Laguerre Polynomials

These occur in the solution of the Schrödinger equations for cylindric geometry
and therefore contain two quantum numbers: n is again related to the energy in
the radial and angular coordinates, and α related to the projection of orbital angular
momentum, although α need not be integer. The polynomials with α = 0 are simply
called Laguerre polynomials, while for the case of α �= 0 the name generalized
Laguerre polynomials is used.

The differential equation for f (x) = L (α)
n (x) is

x
d2

dx2
f (x) + (α + 1 − x)

d

dx
f (x) + n f (x) = 0

and the orthogonality relation

∫ ∞

0
e−x xα L (α)

n′ (x)L (α)
n (x) dx = Γ(α + n + 1)

n!
δnn′ .

The recursion relation is

(n + 1)L (α)
n+1(x) = (2n + α + 1 − x)L (α)

n (x) − (n + α)L (α)
n−1(x).

Note that all of these relations only refer to polynomials with the same α in each
case. There are also some working in α:
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L (α+1)
n (x) = 1

x

[
(x − n)L (α)

n (x) + (α + n)L (α)
n−1(x)

]
,

L (α−1)
n (x) = L (α)

n (x) − L (α)
n−1(x).

Special cases are

L (α)
0 (x) = 1,

L (α)
1 (x) = −x + α + 1,

L (α)
2 (x) = 1/2 a2 + 3/2 a + 1 − xa − 2 x + 1/2 x2.

Clearly these become quite complicated quickly but can readily be generated using
the recursion relations.
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25. P.M. Dinh, J. Navarro, E. Suraud, Océans et gouttelettes quantiques (CNRS Editions, Paris,

2007)
26. J.F. Dobson, Phys. Rev. Lett. 73, 2244 (1994)
27. R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum

Many-Body Problem (Springer-Verlag, Berlin, 1990)
28. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-
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61. S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008)
62. L.D. Landau, E.M. Lifshitz, J. Menzies, Quantum Mechanics: Non-Relativistic Theory

(Butterworth-Heinemann, Oxford, 1991)
63. J.M. Lattimer, M. Prakash, Science 304, 536 (2004)
64. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)
65. B.D. Marco, S.B. Papp, D.S. Jin, Phys. Rev. Lett. 86, 5409 (2001)
66. E.S.P. Marmier, Physics of Nuclei and Particles, Vol I (Academic, New York, 1969)
67. J. Maruhn, W. Greiner, Z. Physik 251, 431 (1972)
68. J. Maruhn, P.G. Reinhard, P. Stevenson, I. Stone, M. Strayer, Phys. Rev. C 71, 064328 (2005)
69. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1997)
70. A. Messiah, Quantum Mechanics (Dover, New York, 2000)
71. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908)
72. A. Mourachkine, High-Temperature Superconductivity in Cuprates (Springer, Heidelberg,

2007)
73. J. Navarro, P.G. Reinhard, E. Suraud, Euro. Phys. J. A 30, 333 (2006)
74. J.W. Negele, Rev. Mod. Phys. 54, 913 (1982)



References 275

75. S.G. Nilsson, Mat.-Fys. Medd. Dan. Vid. Selsk. 29, 16 (1955)
76. D.P. O’Neill, P.M.W. Gill, Phys. Rev. A 68, 022505 (2003)
77. T. Padmanabhan, Theoretical Astrophysics Volume II: Stars and Stellar Systems (Cambridge

University Press, Cambridge, 2001)
78. V.R. Pandharipande, I. Sick, P.K.A. deWitt Huberts, Rev. Mod. Phys. 69, 981 (1997)
79. R.D. Parks. (ed.), Superconductivity (Dekker, New York, 1969)
80. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University

Press, Oxford, 1989)
81. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
82. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)
83. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)
84. D. Pettifor, Bonding and Structure of Molecules and Solids (Clarendon, Oxford, 1995)
85. D. Pines, P. Nozières, The Theory of Quantum Liquids (Benjamin, New York, 1966)
86. S. Raman, C. Nestor, P. Tikkanen, At. Data Nucl. Data Tab. 78, 1 (2001)
87. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74 1283 (2002)
88. P.G. Reinhard, E.W. Otten, Nucl. Phys. A 420, 173 (1984)
89. P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley, New York, 2003)
90. P.G. Reinhard, C. Toepffer, Int. J. Mod. Phys. E 3, 435 (1994)
91. G. Rickayzen, Theory of Superconductivity (Interscience, New York, 1965)
92. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, Heidel-

berg, Berlin, 1980)
93. D.J. Rowe, Nuclear Collective Motion (Methuen, London, 1970)
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102. G. Süssmann, Einführung in die Quantenmechanik I (Bibliographisches Institut, Mannheim,

1963)
103. B. Talukdar, A. Sarkar, S. Roy, P. Sarkar, Chem. Phys. Lett. 381, 67 (2003)
104. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Haage, L. Kouwenhoven, Phys. Rev. Lett.

77, 3613 (1996)
105. L. Thomas, Proc. Camb. Phil. Soc. 23, 195 (1926)
106. T. Tietz, Ann. Physik 15, 6, 186 (1955)
107. D. Varsano, R. di Felice, M. Marques, A. Rubio, Science 110, 7129 (2006)
108. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momen-

tum (World Scientific Pub. Co., Singapore, 1988)
109. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)
110. G. Vignale, Phys. Rev. Lett. 74, 3233 (1995)
111. G.E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003)
112. E. Wahlström, E.K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I.

Stensgaard, F. Besenbacher, Science 303, 511 (2004)
113. S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge University Press, Cam-

bridge, 1996)
114. M. Weissbluth, Atoms and Molecules (Academic Press, San Diego, 1978)
115. B. Yoon, J.W. Negele, Phys. Rev. A 16, 1451 (1977)
116. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Science Publishers,

Oxford, 2002)
117. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)
118. J. von Neumann, E. Wigner, Z. Phys. 30, 467 (1929)



Index

A
a0, see Bohr radius
Alkalies, 11–13, 17, 39, 105
Atom traps, 190
Atomic clusters, 118
Atomic compounds, see molecules
Atomic traps, 76, 118, 224
Atoms, 1, 2, 4, 8–11, 17–21, 24, 27, 28, 30, 31,

39, 43, 73, 118, 155–159
Average potential, 125

B
BCS model, 159, 165, 231–238
Benzene, 169
Bohr radius, 268
Born-Oppenheimer approximation, 181
Bose-Einstein condensate, 159, 238
Box potential, see square-well potential

C
Chandrasekhar mass, 63, 65
Chiral symmetry breaking, 180
Clemenger-Nilsson model, 76, 77, 79, 80, 82
Clusters, 73
Compact stars, see white dwarfs, neutron stars
Configuration interaction, 93, 115
l2-correction, 78, 80, 85, 87, 88
Coulomb blockade, 84
Coulomb energy, direct part, 66
Coulomb energy, exchange part, 67
Covalent bond, 13, 14, 220

D
Density

one-body, 260
two-body, 56–57, 263

Density functional theory, 72, see DFT
Density matrix, 40–41

one-body, 40, 53–55, 129–130, 223, 260,
261

two-body, 40, 263
DFT, 28, 37, 55, 143–155, 189, 200–202, 221
Direct term, 125
Dissociation energy, 103
Droplets, see helium droplets, 73

E
Effective interaction, 143, 152
Effective mass, 83
Electron gas, metal, 66
Entanglement, 223
Exchange energy, 69
Exchange term, 125
Excitations 1ph, 187

F
Fermi distribution, 60
Fermi energy, 45, 51–53
Fermi gas, 226

charged, 66–69
finite temperature, 59–63
kinetic energy, 57–58
level density, 59
one-dimensional, 47–50
relativistic, 64–65
two-dimensional, 50–51

Fermi liquid, 46
Fermi momentum, 45, 51–53
Fermi pressure, 69
Fermi sphere, 50
Fermion traps, 1, 2, 22–25, 27, 42, 45, 46,

159–160, 211, 237
Fock space, 254
fs, 268

G
Gap equation, 234–236
GDR, see giant dipole resonance, 206

277
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Generalized gradient approximation, 147
Giant dipole resonance, 187
Giant resonances, 187
Goldstone modes, 215
Guanine, 33

H
Hückel model, 94, 105–110, 115
Halogens, 11–13, 105
Harmonic oscillator, 74–81

axially symmetric, 75, 76, 81
circular, 75
potential, 72
spherical, 75, 87
triaxial, 75
two-center, 89–91

Harmonic-potential theorem, 212
Hartree approximation, 125, 137, 140, 143
Hartree-Fock, 117–135, 165, 188

approximation, 137–140
energy, 126
equations, 121–126
Hamiltonian, 124
multi-configuration, 93

Helium atom, 135–140, 149–151, 223
Helium clusters, 164
Helium droplets, 2, 12, 21–22, 26–29, 45, 118,

224
HF, see Hartree-Fock
Higgs mechanism, 180
HO, see harmonic oscillator
Hohenberg-Kohn theorem, 144–145, 154
HOMO, 33, 39
HOMO-LUMO gap, 39, 108, 215
Hooke’s atom, 220–224
Hubbard model, 163, 166
Hulthén potential, 73
Hund’s rules, 215
Hybridization, 98, 99
Hylleraas ansatz, 223

I
Incompressibility, 153
Independent-particle model, 119, 252
Ionic binding, 103, 104, 220
Ionization potential, 10, 12, 17, 18, 30, 31, 128
IP, see ionization potential
Ising model, 166
Isomer, 177

J
Jahn-Teller effect, 147, 180–182, 188, 215

dynamical, 181

Jellium approximation, 16, 55, 66, 72, 182,
189, 212

K
Kohn theorem, 211–212
Kohn-Sham approach, 147–149, 151, 154, 189,

202
Koopman’s theorem, 127, 151, 153
Kramers degeneracy, 225, 231, 266
KS, see Kohn-Sham

L
Lattice gas models, 166
LCAO, 94, 99–105, 110–115, 119, 139
LDA, 46, 55, 145–155, 182
Lennard-Jones potential, 219
Level crossings, 88
Level density, 34–35
Linear combination of atomic orbitals, see

LCAO
Lipkin-Meshkov-Glick modes, see LMG

model
LMG model, 164, 165, 169, 177, 178, 197,

202–205
Local-density approximation, see LDA
LUMO, 33, 39

M
Magic numbers, 7, 17, 30, 34, 41, 73, 77,

79–81, 83–89, 91, 164, 180, 181
Mean field, 2, 4, 5, 7, 9, 11, 22, 28, 29, 31, 35,

125
Mean free path, 5, 17, 18, 28
Metal clusters, 1, 2, 14–19, 22, 26–31, 33, 45,

55, 76, 77, 80–83, 164, 180, 187, 188,
206, 209–212

Metal drop, 212–213
Metallic bond, 13, 14, 18, 220
Mie plasmon, 187, 190, 208–213
Mie plasmon resonance, 8, 18, 19, 33, 82
Molecules, 1, 2, 12–14, 18, 26, 31, 33, 73,
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N
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187, 190, 206, 224, 230, 236, 237

O
Oblate deformation, 8, 17
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One-particle one-hole excitation, see 1ph

excitation
Operator
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field, 259
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Pairing correlations, 76, 224–238
Pairing gap, 181, 224, 229, 230
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Promotion mechanism, 98
Pseudo-potentials, 73–74
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Random-phase approximation, see RPA
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216, 220
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Ritz variational principle, 119, 137
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Ry, 267

S
Saturating systems, 5–8, 22, 27, 45, 49, 71–73,

211
Second quantization, 255

Self-consistency, 126
Self-interaction correction, 151, 158
Seniority model, 226–229

quantum number, 229
Separation energy, 128
SIC, see self-interaction correction
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Slater approximation, 143, 146
Slater determinant, 36–38, 40, 47, 93, 115,

118, 119, 130, 178, 193, 253
Slater state, see Slater determinant
Spin-orbit coupling, 78, 85–88, 153, 154
Spontaneous symmetry breaking, 177–185
Square-well potential, 48, 72, 79, 246, 247
Strength distributions, 199
Sum rules, 206–213
Superconductivity, 224, 229
Superfluidity, 224, 229
Symmetry breaking, 134–135, 165

spontaneous, 215
Symmetry restoration, 178, 183–185

T
TDHF, 190–192
TF, see Thomas-Fermi approximation
Thomas-Fermi approximation, 143, 146, 147,

154, 202
Tietz approximation, 158
Tight-binding model, 73, 105–110, 169
Time-dependent Hartree-Fock, see TDHF
Time reversal, 263
Transition moments, 199
Translational Invariance, 134
Traps, see fermion traps, 73
Two-center shell model, 89

V
Valence-bond theory, 94–99, 110, 115
Van der Waals force, 104
Van der Waals interaction, 216–220
VAP, see variation after projection
Variation after projection, 184
Variational principle, time-dependent, 190, 191
VB, see valence-bond theory
Vlasov equation, 192
Volume conservation, 73, 74, 77, 80

W
White dwarfs, 22–25, 45
Wigner-Seitz radius, 77
Woods-Saxon potential, 72, 88

Z
zero-force theorem, 212
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