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Preface

This is the first extensive textbook on conformal field theory, one of the most active
areas of research in theoretical physics over the last decade. Although a number
of review articles and lecture notes have been published on the subject, the need
for a comprehensive text featuring background material, in-depth discussion, and
exercises has not been satisfied. The authors hope that this work will efficiently
fill this gap.

Conformal field theory has found applications in string theory, statistical
physics, condensed matter physics, and has been an inspiration for developments
in pure mathematics as well. Consequently, a reasonable text on the subject must
be adapted to a wide spectrum of readers, mostly graduate students and researchers
in the above-mentioned areas. Background chapters on quantum field theory, sta-
tistical mechanics, Lie algebras and affine Lie algebras have been included to
provide help to those readers unfamiliar with some of these subjects (a knowledge
of quantum mechanics is assumed). This textbook may be used profitably in many
graduate courses dealing with special topics of quantum field theory or statistical
physics, string theory, and mathematical physics. It may also be an instrument of
choice for self-teaching. At the end of each chapter several exercises have been
added, some with hints and/or answers. The reader is encouraged to try many of
them, since passive learning can rapidly become inefficient.

It is impossible to encompass the whole of conformal field theory in a pedagog-
ical manner within a single volume. Therefore, this book is intentionally limited in
scope. It contains some necessary background material, a description of the funda-
mental formalism of conformal field theory, minimal models, modular invariance,
finite geometries, Wess-Zumino-Witten models, and the coset construction of con-
formal field theories. Chapter 1 provides a general introduction to the subject and a
more detailed description of the role played by each chapter. In building the list of
references listed at the end of this volume, the authors have tried to be as complete
as possible and hope to have given appropriate credit to all.

The authors intend to complete this work with a second volume, that would deal
with the following subjects: Superconformal field theory (N = 1, 2), parafermionic
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models, W-algebras, critical integrable lattice models, perturbed conformal field
theories, applications to condensed matter physics, and two-dimensional quantum
gravity.
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INTRODUCTION



CHAPTER 1

Introduction

A vast similitude interlocks all,
All distances of space however wide,
All distances of time. . .
— Walt Whitman

The @sthetic appeal of symmetry has been a guide—sometimes a tyrannic
one—for philosophers of nature since the dawn of science. Ancient Greeks, in
their belief that celestial bodies followed perfectly circular orbits, demonstrated
an attachment to the circle as the most symmetric curve of all. In elaborating more
complex systems involving scores of epicycles and eccentrics, they gave up the
idea that celestial orbits should be explicitly symmetric, but invented unknowingly
the concept of “hidden symmetry”, for the circle remained the building block of
their cosmology. Modern science, with Kepler, Galileo, and Newton, gave sym-
metry a deeper realm: that of the physical “laws.” Circles gave way to ellipses and
more complicated trajectories; the richness and variety of Nature became, in the
Heavens like on Earth, compatible with symmetric laws, even without the exterior
appearance of symmetry.

Twentieth-century physics has witnessed the triumph of symmetry and its pre-
cise formulation in theoretical language. The work of Lie and Cartan (among
others) paved the way for the general application of symmetries in microscopic
physics within quantum mechanics. Wigner, probably the most important figure in
the application of group theory to physics, fitted the possible elementary particles
into representations of the Lorentz and Poincaré groups. The principles of special
and general relativity—the seeds of the other great revolution of twentieth-century
physics—were also motivated by the appeal of symmetry. Modern theories of ele-
mentary particles (the so-called standard model) rest on the principle of local gauge
symmetry. Our understanding of phase transitions and critical phenomena draws
a great deal on the concept of broken symmetry. In particular, broken gauge sym-
metries are central to our understanding of weak interactions, superconductivity,
and cosmology.



4 1. Introduction

This book is about conformal symmetry in two-dimensional field theories. Con-
formal field theory plays a central role in the description of second- or higher-order
phase transitions in two-dimensional systems, and in string theory, the (so far spec-
ulative) attempt at unifying all forces of Nature. To the practical man, this may seem
a narrow field of application for a book of this size. However, two-dimensional
conformal field theories are perfect examples of systems in which the symmetries
are so powerful as to allow an exact solution of the problem. This feature, as well as
the great variety of mathematical concepts needed in their solution and definition,
have made conformal field theories one of the most active domains of research in
mathematical physics.

In the context of a physical system with local interactions such as those studied
in this work, conformal invariance is an immediate extension of scale invariance,
a symmetry under dilations of space. This important fact was first pointed out by
Polyakov [295]. Conformal transformations are nothing but dilations by a scaling
factor that is a function of position (local dilations). It is entirely natural that a
local theory (i.e., without action at a distance) that is symmetric under rigid (or
global) dilations should also be symmetric under local dilations.

Even after being augmented to conformal invariance, the symmetry remains
finite, in the sense that a finite number of parameters are needed to specify a con-
formal transformation in d spatial dimensions (specifically, %(d + 1)(d + 2)). The
consequence of this finiteness is that conformal invariance can say relatively little
about the form of correlations, in fact just slightly more than rotation or scale
invariance. The exception is in two dimensions, where the above formula gives
only the number of parameters specifying conformal transformations that are ev-
erywhere well-defined, whereas there is an infinite variety of local transformations
(the conformal mappings of the complex plane) that, although not everywhere reg-
ular, are still equivalent to local dilations. The number of parameters specifying
such local conformal transformations in two dimensions is infinite, because any
locally analytic function provides a bona fide conformal mapping. This richness of
conformal symmetry in two dimensions is the reason for the success of conformal
invariance in the study of two-dimensional critical systems.

Scale invariance is by no means an exact symmetry of Nature, since our descrip-
tion of physical phenomena involves a number of characteristic length scales that
indicate the typical distances over which the “action is taking place.” These length
scales are not invariant under dilations, and the latter result in a modification of
the physical parameters of the system. The important exception occurs, of course,
when these characteristic length scales are either zero or infinite. Let us illustrate
this with some examples.

CRITICAL PHENOMENA

Consider first an infinite lattice of atoms in interaction, such as in a solid. Among
the various forces involving ions and electrons, which are the source of so many in-
teresting collective phenomena, consider for definiteness the magnetic (exchange)
interaction that couples the spins of adjacent atoms. A very simplified version of
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this interaction is embodied in the Ising model, in which the spins o; at site i take
only two definite values (41 and —1) and the magnetic energy of the system is a
sum over pairs of adjacent atoms:

E = Z 0;0;
(if)
An obvious characteristic length scale of this system is the lattice spacing a be-
tween adjacent atoms. Another, more important length scale is the so-called corre-
lation length &, defined as the typical distance over which the spins are statistically
correlated. More precisely, we write
(0;0,) — (o) (o) ~ exp—'ig—"

where (- - -) denotes a thermal average at a temperature T and where [{ —j| > 1 is
the distance between the positions i and j. Since observable magnetic properties
are derived from such correlations, they are quite affected by the value of &, which
is a function of temperature.

For a generic value of the temperature, there is no symmetry of the model under
scale transformations, because of the two length scales a and §. However, there
are special circumstances, dictated by external parameters such as temperature,
under which & grows without bounds.! Such values of the parameters of the model
are called critical points, and the behaviors of systems at or near these critical
points constitute what is called critical phenomena. When studying correlations
over distances large compared to the lattice spacing, yet small compared to the
correlation length, these two length scales lose their relevance, and scale invariance
emerges.

The physical picture of a critical system one must keep in mind is that of an
assembly of regions of (+) spins (called droplets), within which smaller droplets
of (=) spins are included, and yet smaller droplets of (+) spins are included within
those, and so on.2 This droplet structure is self-similar—in the sense that it has
the same general appearance after zooming in or out a few times—as long as the
droplet size £ satisfiesa < £ < &.

The Ising model is just one among an infinite variety of models that can provide
an approximate description of complex systems with local interactions. One of the
key ideas in our understanding of critical phenomena is that of universality: despite
this continuous variety of models that possess critical points, their behaviors at (or
near) the critical point belong to a discrete set of universality classes, corresponding
to different realizations of scale invariance. One of the goals of conformal field

! Inreal physical systems, the correlation length typically never grows beyond ~ 10> lattice spacings,
because of the presence of impurities, defects, and inhomogeneities. But 103 is sufficiently close to
infinity for scale invariance to have striking experimental consequences.

2 This is wonderfully illustrated by a computer simulation of the two-dimensional Ising model in the
introductory paper by Zuber [370].
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theory—so far only partially achieved—is a classification of all universality classes
of two-dimensional critical systems.

CRITICAL QUANTUM SYSTEMS

For a special class of critical phenomena, the critical temperature vanishes or is
small compared to other relevant energy scales. A quantum description of the
system is then indispensable. Essentially, the statistical fluctuations giving rise to
correlations are not thermal, but mainly quantum-mechanical in origin. An example
of such a system is the so-called Heisenberg spin-% chain, which represents an
infinite chain of magnetic atoms, each carrying a spin one-half operator S; and
interacting with its immediate neighbors via the Heisenberg Hamiltonian:

H=)"S;-S;
)]

One of the main characteristics of this model (in one spatial dimension) is the
infinite correlation length, which means that the quantum correlations (SiS’.) de-
cay with distance according to a power law, not exponentially. This property is
intimately related to the existence of gapless excitations in the system, namely, a
continuum of excited states arbitrarily close in energy to the ground state. In any
field theory (or any model involving an infinite number of degrees of freedom)
the presence of gapless excitations is a signal of scale invariance, since the energy
gap A between the ground state and the first excited state—the rest mass of the
excitation—constitutes a characteristic length scale via the associated Compton
wavelength A =//(vA) (v being the characteristic velocity of the system, equal
to the speed of light in relativistic field theories).

The mathematical formalism used in the description of quantum systems,
and field theories in particular, bears a striking resemblance to the formalism
of statistical mechanics describing finite-temperature critical phenomena. This
similitude between the statistical and field-theoretical formalisms allows for a
common treatment of both classes of phenomena. However, the field theory de-
scribing a statistical system (like the Ising model) lives in one spatial dimen-
sion less than the statistical system itself, since time constitutes an extra di-
mension inherently incorporated in the quantum description of the field the-
ory. Critical quantum phenomena on which the methods of two-dimensional
conformal field theory can be applied are thus one-dimensional, like the spin
chain described above. Another example of a one-dimensional quantum sys-
tem with scale invariance is constituted by the electrons moving on the edge
of a microscopic layer of a semiconductor submitted to a large magnetic field
of the appropriate strength. This is an aspect of the so-called fractional quan-
tum Hall effect. It may also happen that a quantum system be only formally
one-dimensional, after some simplifying treatment of its mathematical descrip-
tion. This is the case of the magnetic impurity problem (or Kondo prob-
lem), which has been successfully studied with the methods of conformal field
theory.
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DEEP INELASTIC SCATTERING

Another, very different area in which scale invariance has emerged? is the scatter-
ing of high-energy electrons from protons. Put very simply, scattering experiments
failed to detect a characteristic length scale when probing the proton deeply with
inelastically scattered electrons. This supported the idea that the proton is a com-
posite object made of point-like constituents, the quarks.* This is quite reminiscent
of Rutherford’s study of the scattering of alpha particles off gold atoms, which re-
vealed the absence of a length scale in the atom over five orders of magnitude,
between the Bohr radius and the size of the nucleus.

Let us be more precise. Consider an electron (or any other lepton) of energy
E scattered inelastically from a proton at an angle 8, with an energy E’ < E. The
quantity of experimental interest is the inclusive, inelastic cross-section, which
gives the ratio of scattered flux to incident flux per unit solid angle and unit energy
of the scattered particles:

do a?

dYdE ~ 4E?sin*(6/2)
where « is the fine structure constant and W, , are structure functions encap-
sulating the dynamics of the proton’s interior. These structure functions depend
on the kinematical parameters of the collision: the four-momentum g transferred
from the lepton to the proton and the energy loss (E — E’) = vim (m is the
lepton’s mass). However, it turns out that the dimensionless quantities 2rm2W, and
vW,/m depend only on the dimensionless ratio x = 2v/(—q?), if g is negative
enough (corresponding to large transferred spatial momentum). In other words,
in this deep-inelastic range, the internal dynamics of the proton does not provide
its own length scale £ that could justify a separate dependence of the structure
functions on the dimensionless variables £2v and £2g2. In the context of quantum
chromodynamics (QCD, the modern theory of strong interactions), this reflects the
asymptotic freedom of the theory, namely, the quasi-free character of the quarks
when probed at very small length scales.

Of course, the quark-gluon system underlying the scaling phenomena of deep
inelastic scattering is thoroughly quantum-mechanical, just like systems under-
going quantum-critical phenomena. However, scale invariance manifests itself at
short distances in QCD, whereas it emerges at long distances in quantum systems
like the Heisenberg spin chain.

[2W, sin?(6/2) + W, cos?(6/2)]

STRING THEORY

Whether statistical or quantum-mechanical, the physical systems enjoying scale
invariance mentioned above were all in the same class, in the sense that they are

3 It is interesting to note that scaling emerged as an important concept in the theory of critical
phenomena and in high-energy physics at about the same time (the late 1960s) and over such widely
different length scales! It was also at this time that a very fruitful interplay between high-energy theory
and statistical mechanics started to develop, resting on the renormalization group theory.

4 Although quarks had been hypothesized earlier from flavor symmetry considerations, prudent
physicists initially called these constituents partons.
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made of an infinite number of degrees of freedom (atoms, spins, etc.) fluctuating in
space or space-time and characterized by a divergent correlation length or, equiv-
alently, by power-law correlations. However, conformal invariance has appeared
in other areas of theoretical physics. H. Weyl proposed in 1918 a generalization
of general coordinate invariance (general relativity) in which local scale transfor-
mations would also be possible, in the hope of unifying electromagnetism and
gravitation within the same formalism.> Since then, the hope of formulating a gen-
eralization of general relativity that would include the other known fundamental
interactions has motivated an immense theoretical effort. Notable attempts in this
direction come under the name of Kaluza-Klein theories and supergravity. In par-
ticular, theories of conformal supergravity are constructed to be invariant under
conformal transformations of space-time.

Efforts toward unifying all forces of Nature in a single, comprehensive theory
have culminated in what is known as string theory, in which two-dimensional
scale invariance appears naturally. String theory originates from the malaise af-
flicting relativistic field theories in the 1960s, at a time when no consistent field
theory could describe strong and weak interactions. An alternative to field theory,
consisting of a set of prescriptions for scattering amplitudes between hadrons, was
developed under the name of dual models. Curiously, the construction of dual mod-
els could follow from the assumption that mesons were in fact microscopic strings,
or extended one-dimensional objects. The discovery of deep inelastic scattering
and the subsequent development of QCD caused the demise of dual models, but
some of their interesting features, such as finiteness in perturbation theory, inspired
their transposition to the realm of quantum gravity, albeit at length scales much
smaller (the Planck scale, 10~3% m). The great wave of activity in string theory
occurred in the 1980s, after it was realized that consistent, finite first-quantized
theories unifying gravitation and other interactions could be formulated.

We do not provide, in this work, an introduction to string theory; this can be
found elsewhere (see the notes at the end of this introduction). Let us simply
mention here some basic concepts. The time evolution of a one-dimensional ex-
tended object (i.e., a string) sweeps a two-dimensional manifold within space-time,
which is called the world-sheet of the string. In a given classical configuration of
the string, each point on this world-sheet corresponds to a point in space-time. The
first-quantized formulation of string theory involves fields (representing the physi-
cal shape of the string) that reside on the world-sheet. From the point of view of field
theory, this constitutes a two-dimensional system, endowed with reparametriza-
tion invariance on the world-sheet, meaning that the precise coordinate system
used on the world-sheet has no physical consequence. This is particularly clear in
Polyakov’s formulation of string theory, and revives Weyl’s idea of invariance un-
der general coordinate transformations (this time on the world-sheet), augmented
by local dilations. This reparametrization invariance is tantamount to conformal
invariance. Conformal invariance of the world-sheet theory is essential for prevent-

5 In Weyl’s theory [353], the local dilations were called gauge transformations, a terminology that
was recycled later for describing local group transformations.
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ing the appearance of ghosts (states leading to negative probabilities in quantum
mechanics). The various string models that have been elaborated basically differ
in the specific content of this conformally invariant two-dimensional field theory
(including boundary conditions). A classification of conformally invariant theories
in two dimensions gives a perspective on the variety of consistent first-quantized
string theories that can be constructed.

MODERN BREAKTHROUGHS

The modern study of conformal invariance in two dimensions was initiated by
Belavin, Polyakov, and Zamolodchikov, in their fundamental 1984 paper [36].
These authors combined the representation theory of the Virasoro algebra—
developed shortly before by Kac and by Feigin and Fuchs—with the idea of an
algebra of local operators and showed how to construct completely solvable con-
formal theories: the so-called minimal models. An intense activity at the border of
mathematical physics and statistical mechanics followed this initial envoi and the
minimal models were identified with various two-dimensional statistical systems
at their critical point. More solvable models were found by including additional
symmetries or extensions of conformal symmetry in the construction of conformal
theories.

A striking feature of the work of Belavin, Polyakov, and Zamolodchikov—and
of previous work of Polyakov and other members of the Russian school—regarding
conformal theories is the minor role played (if at all) by the Lagrangian or Hamil-
tonian formalism. Rather, the dynamical principle invoked in these studies is the
associativity of the operator algebra, also known as the bootstrap hypothesis. This
approach originates from the difficulty of describing strong interactions with quan-
tum field theory. Instead of trying to solve the problem piecemeal with perturbative
(or even nonperturbative) methods based on a local action, some physicists pro-
posed a program designed to solve the whole problem at once—that is, to calculate
all the correlations between all the fields—based only on criteria of self-consistency
and symmetry.® The key ingredient of this approach is the assumption that the prod-
uct of local quantum operators can always be expressed as a linear combination
of well-defined local operators. Schematically,

$,(x)p,0) = Y _ Ci(x — )¢, () (1.1)
k

where CJI.‘,-(x —y) is a c-number function, not an operator. This is the operator
product expansion, initially put forward by Wilson. This expansion constitutes
an algebra—that is, a set of multiplication rules—for local fields. The dynamical
principle of the bootstrap approach is the associativity of this algebra. In practice, a

6 Put in an intuitive way, the strong interactions were thought to be mediated by a series of particles
(the mesons), whose existence could in turn be inferred from a knowledge of the strong interaction.
The term bootstrap is borrowed from the baron of Miinchausen, who made a similar-minded attempt
at flying by pulling on his boot laces. A better analogy is found in the theory of communications, with
Marshall McLuhan’s famous phrase: “the medium is the message.”
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successful application of the bootstrap approach is hopeless, unless the number of
local fields is finite. This is precisely the case in minimal conformal field theories.

By a fortunate coincidence, important progress in string theory was realized in
the same year (1984) by Green and Schwarz [186] (see also [187]). In the years
that followed, the development of conformal field theory and of string theory often
went hand-in-hand. In particular, string scattering amplitudes were expressed in
terms of correlation functions of a conformal field theory defined on the plane
(tree amplitudes), on the torus (one-loop amplitudes), or on some higher-genus
Riemann surface. Consistency requirements on the torus (modular invariance)
turned out to be as fruitful in analyzing critical statistical models (e.g., the Potts
model) as in constructing consistent string models in four space-time dimensions.
The name of Cardy is associated with the early discovery of the importance of
modular invariance in the context of critical statistical models.

Following the pioneering work of Belavin, Polyakov, and Zamolodchikov, con-
formal field theory has rapidly developed along many directions. The work of
Zamolodchikov has strongly influenced many of these developments: conformal
field theories with Lie algebra symmetry (with Knizhnik), theories with higher-
spin fields—the W-algebras—or with fractional statistics—parafermions (with
Fateev), vicinity of the critical point, etc. These developments, and their offspring,
still constitute active fields of research today and make conformal field theory one
of the most active areas of research in mathematical physics.

Contents of this Volume

This volume is divided into three parts of unequal lengths. Part A (Chapters 1 to 3)
plays an introductory or preliminary role. Part B (Chapters 4 to 12) describes the
core of conformal field theory and some of its immediate applications to classical
statistical systems. Part C (Chapters 13 to 18) deals with conformal field theories
with current algebras, essentially Wess-Zumino-Witten models.

Chapters 2 and 3 are preliminary chapters that do not deal with conformal sym-
metry, but provide a background essential to the comprehension of the remainder
of the book. Readers with experience with quantum field theory and statistical
mechanics will be able to start reading at Chapter 4. However, those readers might
want to take a close look at Sections 2.4 and 2.5, dealing with continuous symme-
tries and the energy-momentum tensor, in which some conventions are set on the
definition of symmetry operations. Chapter 3 provides a general background on
critical phenomena as a theater of application of conformal invariance. An intro-
duction to the renormalization group is provided, which helps in understanding the
context in which conformal field theory is useful. We hope that mathematicians
and entry-level physicists will find these two chapters instructive.

Part B starts with Chapter 4, which defines conformal transformations in arbi-
trary dimension and derives the basic consequences of conformal invariance on
classical and quantum field theories, including the form of correlation functions
and the Ward identities. Chapter 5 adapts these results to two dimensions and in-
troduces the technique of complex (holomorphic and antiholomorphic) variables
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and components. The notion of operator product expansion is introduced and some
free-field examples are worked out. Chapter 6 describes the “canonical” quanti-
zation of two-dimensional conformal field theories, including radial quantization,
the Virasoro algebra, mode expansions, and their application to free bosons and
fermions. The important notions of operator algebra and conformal bootstrap are
introduced at the end of this chapter. Chapters 5 and 6 thus initiate the core of the
subject.

Chapters 7 and 8 are devoted to minimal models, describing critical points of
discrete two-dimensional statistical systems. Chapter 7 presents an overview of
the subject and some examples, and Chapter 8, which is more technical, provides
constructive proofs of many of the results presented in the previous chapter. Chap-
ter 9 explains an alternate construction of minimal models, within the so-called
Coulomb gas approach. This approach offers the simplest route to the calculation
of four-point correlations.

Chapter 10 is devoted to conformal field theories defined on a torus and issues
of modular invariance. The torus geometry brings an additional input in the con-
struction of conformal field theories because it forces a consistent fusion of their
holomorphic and antiholomorphic components.

Chapter 11 is a basic introduction to conformal field theories defined on finite
geometries, in particular with boundaries. The two main issues are the influence
of the size of the system on correlation functions and the interaction of the holo-
morphic and antiholomorphic components of the theory through the boundary. An
application of these concepts to critical percolation is presented at the end of this
chapter.

Chapter 12 is devoted entirely to the two-dimensional Ising model at its critical
point. The goal is to calculate multipoint correlation functions of the various op-
erators (energy and spin) in different schemes (bosonization and fermionization).
Ample space is given to an extension of the techniques of previous chapters to the
torus geometry in the particular case of the Ising model.

Part C of the book launches the analysis of conformal field theories with addi-
tional symmetries. New symmetries imply the existence of new conserved currents,
apart from the energy-momentum tensor, the generator of the conformal algebra.
The complete set of conserved currents span an extended conformal algebra. Part C
is concerned with the most important class of extended conformal theories, those
for which the additional currents generate an affine Lie algebra, the physicist’s
“current algebras.”

Affine Lie algebras are introduced in Chapter 14. This is preceded by a detailed
introduction to the theory of simple Lie algebras in Chapter 13. These two chapters
are conceptually self-contained, and no background on the theory of Lie algebras
is required. Chapters 13 and 14 may be safely skipped by readers familiar with
these subjects. In order to facilitate this omission, we have presented our notation
in an appendix at the end of each of these chapters. The few sections that are less
standard are clearly identified in the introduction of each chapter.

The conformal-field theoretical study of models with Lie algebra invariance,
called Wess-Zumino-Witten (WZW) models, starts with Chapter 15. Unlike many
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conformal field theories, these models may be defined in terms of an action func-
tional, in addition to their algebraic formulation—heavily based on the theory of
integrable representations of affine Lie algebra. A central concept is the Sugawara
construction, which expresses the energy-momentum tensor in terms of the current
algebra generators. An important part of our analysis of WZW models is devoted
to their free-field representations.

The following two chapters are somewhat more technical. Chapter 16 is almost
completely devoted to the analysis of fusion rules, which, roughly speaking, specify
which three-point functions are nonzero. Chapter 17 explores techniques ensuring
the compatibility between the field content of a theory with Lie algebra symmetry
and modular invariance. The full classification of such Lie-symmetric modular
invariant partition functions is a key step in the classification of all conformal field
theories and, accordingly, of all string vacua. We stress that these two chapters are
not essential in understanding most of Chapter 18 which, in contradistinction, is
more fundamental.

Quotienting a WZW model, invariant under a Lie group G, by another WZW
model, invariant with respect to a subgroup of G, produces what is called a coset.
It is expected that any solvable conformal field theory can be described by some
coset model. This makes the coset construction one of the very fundamental tools
in conformal field theory. This is the subject of Chapter 18.

READING GUIDE

The size of this book might scare the reader willing to learn some aspects of
conformal field theory without working through the 850 or so pages that fcllow.
The figure on the next page illustrates (imperfectly) the logical flow of the book. We
hope this short reading guide will propose useful paths through the book. A solid-
line arrow indicates an essential logical dependence, meaning that the target chapter
could not be well understood without the “mother” chapter. A dashed-line arrow
indicates a weaker dependence, by which only parts of the target chapter necessitate
previous reading. Of course, this diagram does no justice to the structure of each
chapter. At the beginning of each chapter, a short introduction explains the purpose
of the chapter and describes briefly its content. The chapters belonging to the central
trunk of this diagram form the core of conformal field theory. Chapters located
at the left of the diagram play an introductory role, physical or mathematical.
Chapters located at the right of the diagram contain mostly applications of the
formalism described in the core chapters, or provide additional information that is
not essential for an understanding of the formalism of conformal field theory.

Notes

Introductory papers on conformal invariance for nonspecialists include that of
Zuber [370] and Cardy [72]. Some texts already published in totality or partly to
conformal field theory include those of Kaku [227], Christe and Henkel [76], and
Ketov [235].
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References on critical phenomena appear at the end of Chapter 3. A pedagogical
review of some applications of conformal invariance to quantum critical phenom-
ena can be found in Ref. [2]. Deep inelastic scattering is discussed in most texts on
particle physics and in many texts on quantum field theory, including Ref. [205],
in which further references can be found.

H. Wey!’s extension of general relativity to include local scale invariance ap-
peared in [353). Conformal supergravity is reviewed in Ref. [134]. String theory is
a vast subject, but the monograph of M. Green, J. Schwarz and E. Witten [187] is
fairly comprehensive. Kaku’s text on string theory [226] provides a more concise
introduction to the subject. Polyakov’s formulation of string theory appeared in
Refs.[297, 298].

The operator product expansion (or operator algebra) was put forth by K. Wil-
son [356]. The bootstrap approach, based on operator algebra, was proposed by
Polyakov [296]. The mathematical foundations of the algebraic representation of
conformal invariance in two dimensions were found by Kac [213] and Feigin
and Fuchs [127]. The work of Belavin, Polyakov, and Zamolodchikov appears in
Ref. [36].



CHAPTER 2

Quantum Field Theory

This chapter provides a quick—and therefore incomplete—introduction to quan-
tum field theory. Those among our readers who know little about it will find here the
basic material allowing them to appreciate and understand the remaining chapters
of this book. Section 2.1 explains the canonical quantization of free fields, bosons
and fermions, starting from a discrete formulation. It is appropriate for readers
without any previous knowledge of quantum field theory; some experience with
quantum mechanics remains an essential condition, however. Section 2.2 reviews
the path-integral formalism of quantum mechanics for a single degree of free-
dom, and then for quantum fields, especially fermions. Section 2.3 introduces the
central notion of a correlation function, both in the canonical and path-integral
formalisms. The Wick rotation to imaginary time is performed, with the example
of the free massive boson illustrating the exponential decay of correlations with
distance. Section 2.4 explains the meaning of a symmetry transformation and the
consequences of symmetries in classical and quantum field theories. This section
deserves special attention—even from experienced readers—because the notion of
a symmetry transformation and how it is implemented is fundamental to this work.
Section 2.5 is devoted to the energy-momentum tensor, the conserved current as-
sociated with translation invariance, which plays a central role as the generator of
conformal transformations when suitably modified.

§2.1. Quantum Fields
2.1.1. The Free Boson

The simplest system with an infinite number of degrees of freedom is a real scalar
field ¢(x, t), a function of position and time. Its dynamics is specified by an action
functional S[g], which explicitly depends on ¢ and its derivatives. For a generic
action, the system is not soluble (by this we mean that the quantum stationary
states cannot be written down). The simplest exception is the free scalar field, with
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the following action:
_ . . _ Op
S[(p] - dxdt L:((p, @, V(P) Y= '5{
11 2.1
= ¢ 2 v 2 2 2
L=5 {czﬂﬁ (Vo) —m?y }

L is the Lagrangian density (usually called Lagrangian by abuse of language) and
m is the mass of the field (this terminology will be justified below). In a relativistic
theory, the constant ¢ stands for the speed of light, but in a different context (e.g.,
condensed matter physics) it stands for some characteristic velocity of the theory.
We shall set ¢ equal to 1, thus using the same units of measure for space and
time. Our goal here is to solve this system within quantum mechanics, that is,
to find the eigenstates of the associated Hamiltonian and provide some physical
interpretation.

In order to simplify the notation we shall restrict ourselves to one spatial di-
mension. The conceptual difficulties associated with the continuum of degrees
of freedom may be lifted by replacing space with a discrete lattice of points at
positions x,, = an, where a is the lattice spacing and » is an integer. We shall
assume that this one-dimensional lattice is finite in extent (with N sites) and that
the variables defined on it obey periodic boundary conditions (g5 = ¢,). The
above Lagrangian L = [ dx L is then replaced by the following expression:

N-1
1 . 1
L=Y" 7@ [90,2, = 5P — @) — m"qoﬁ] 22
n=0

In the limita — O the action derived from (2.2) tends toward the continuum action
2.1).

The classical dynamics of such a system may be described in the canonical for-
malism, which first requires the introduction of the canonical momentum conjugate
to the variable ¢, :

n, = —— =ag, 2.3)

The Hamiltonian function, or total energy, is then

N-1
H = % > {ln?, + l(go,,+x -9,) —angof,} (2.9)
= la a

If the mass m is set to zero, the above Hamiltonian describes the collective os-

cillations of atoms having their equilibrium positions on a regular lattice, with a

potential energy varying as the square of the interatomic distance |g,, +1— Pl
The canonical quantization of such a system is done by replacing the classical

variables ¢, and their conjugate momenta 7, by operators, and by imposing the
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following commutation relations at equal times:

[(0,,, nm] = isnm

t =t 2.5
[, 7,,) = ¢, ¢,] =0 (b = t) @)

It is customary in quantum field theory to work in the Heisenberg picture, that is,
to give operators a dependence upon time, while keeping the quantum states time-
independent. Notice that we have set Planck’s constant equal to 1, which amounts
to using the same units for momentum and inverse distance, and similarly for
energy and frequency.

The Hamiltonian (2.4) does not explicitly depend upon position: it is invariant
under translations. This motivates the use of discrete Fourier transforms:

Z —2mkn/N
~/_ ;

(2.6)

Z

”k — J“ Z e-—kan/N

where the index k takes integer values from O to N — 1, since ¢, , v = @,. However,
this range is arbitrary, the important point being to restrict summations over k to
any range of N consecutive integers. Since ¢, and r, are real, the Hermitian
conjugates are

= =7 @

The Fourier modes @, and 7, obey the following commutation rules:

1 p—
[(ok,ﬂ'] N Z e—hl(km qn)/N[(p . ]

m,n=0

. N—1
_ i Ze—Zm'n(k——q)/N (2'8)
N

n=0

In terms of these modes, the Hamiltonian (2.4) becomes

1 N-1 1. _t - 2 2 27k
H = E Z aﬂkﬂk +a¢k(pk m- + (2/a ) 1 —cos W_ (2'9)
k=0

Since ¢, and 77, obey canonical commutation relations, this is exactly the Hamilto-
nian for a system of uncoupled harmonic oscillators, with frequencies w, defined

by

w? =m2+3 l—cos% (2.10)
k a? N
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The inverse lattice spacing here plays the role of the harmonic oscillator’s mass.
Following the usual methods, we define raising and lowering operators

1 - e
a = —W (awkgok + lJTk)

I (2.11)
t ~t et
a, = —=— aw §, — i
k Raw, ( k k)
obeying the commutation rules
lar,all = &, 2.12)
When expressed in terms of these operators, the Hamiltonian takes the form
H = E Z(a,tak +aka;£)a)k
k=0 @.13)
N-1 1
+
= Y (aja, + 2%
k=0
The ground state |0) of the system is defined by the condition
a;|0) =0 vk (2.149)

and the complete set of energy eigenstates is obtained by applying on |0) all
possible combinations of raising operators:

ki, ky, - k) = af al ...a} 10) (2.15)

where the k; are not necessarily different (as written, these states are not necessarily
normalized). The energy of such a state is

Ek] = E,+ ) _w, (2.16)
where E, is the ground state energy:
E, = 2 o (2.17)
k=0

When N is large and ma < 1, E; behaves like N/a.
The time evolution of the operators a, is determined by the Heisenberg relation:

a, =ilH,a,] = —iwa; (2.18)
whose solution is
a,(t) = a, (0)e ! (2.19)
From this, (2.6) and (2.11) follows the time dependence of the field itself:

N-1

2 . y

(o,,(t) — k} : Nawk [ez(ann/N-wkt)ak(O) + e—z(ann/N—wkt)aZ(O)] (2.20)
=0
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The continuum limit is obtained by sending the lattice spacing a to zero, and the
number N of sites to oo, while keeping the volume V = Na constant. The infrared
limit is taken in sending V to oo, while keeping a constant. We now translate the
relations found above in terms of continuous field operators. The continuum limits
of the field and conjugate momentum are

1 .
@, = plx) ST ™ 7(x) = ¢(x) (x = na) 2.21)
Sums over sites and Kronecker deltas become

N-1
a) - f dx 8,y — ad(x —x) (2.22)

n=
Therefore, the canonical commutation relations of the field with its conjugate
momentum become
[o(x), m(x)] = i8(x — x) (2.23)

The discrete Fourier index k is replaced by the physical momentum p = 2ak/V.
Sums over Fourier modes and Kronecker deltas in mode indices become

Il/j::(: — / ‘21—5_ S — g‘;—rs(p -p) 224)
We define the continuum annihilation operator and the associated frequency as
alp) = aVV o(p) = V/m? +p? (2.25)
whose commutation relations are therefore
la@),a'@)] = 2msp - p) (2.26)

The field ¢(x) admits the following expansion in terms of the continuum creation
and annihilation operators:

o) = [ Llaprieon 4 alpreeeon) @)

The simplest excited states, the so-called elementary excitations, are of the form

at(p)|0) with energy
o(p) = /m? + p? (2.28)

This dispersion relation (i.e., the functional relation between energy and memen-
tum) is characteristic of relativistic particles. We thus interpret these elementary
excitations as particles of mass #2 and momentum p. The states (2.15) physically
represent a collection of independent particles. The momenta of these particles
are conserved separately (they are “good quantum numbers”). Since the energy
of an assembly of particles is simply the sum of the energies of the individual
particles, we say that these particles do not interact: they are free. Furthermore,
the states (2.15) are symmetric under the interchange of momenta; .this follows
from the commutation rules (2.12). Therefore these particles are bosons, hence the
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name free boson given to the field ¢ with action (2.1). We say that these particles
are the “quanta” of the field ¢. The ground state is also called the vacuum, since it
contains no particles. The Hilbert space constructed from the action of all creation
operators receives the special name of Fock space.

The vacuum energy E,, poses a slight conceptual problem. We have seen that
E, ~ Nla = V/a®. This corresponds to a vacuum energy density of order 1/a?,
which diverges in the continuum limit. This is the first instance of a “divergence”
encountered in quantum field theory (it is, of course, due to the infinite number
of degrees of freedom present in the system). This vacuum energy problem is
circumvented by defining the energy of a state with respect to the vacuum, which is
most easily implemented by introducing a “normal ordering” of operators (denoted
by surrounding colons) which, in a given monomial, puts the operators annihilating
the vacuum to the right. For instance,

:a(p)a’(p): = a'(plalp) (2.29)

By definition the vacuum expectation value (0] : O : |0) of a normal-ordered
operator vanishes. Since the ordering of classical quantities is immaterial, the
canonical quantization procedure necessarily introduces ordering ambiguities in
the definition of operators like the Hamiltonian. Some of these ambiguities may
be lifted by requiring the vanishing of vacuum expectation values.

The expansion (2.27) splits the free Bose field ¢ into two parts: ¢* and ¢~. The
first one (the positive frequency part) contains only annihilation operators, whereas
the second one (the negative frequency part) contains only creation operators. The
positive frequency parts at different points commute, and likewise for the negative
frequency parts, since the lack of commutativity comes solely from the relation
(2.12). For instance, the normal-ordered product of ¢, = ¢(x,) with ¢, = ¢(x,)
is

010 = 010 + 010, 010 +o 0 (2.30)
Finally, we briefly comment on interacting fields. As soon as we depart from the
simple form (2.1), for instance by adding a term such as gg*, the system is no longer
exactly soluble. If the coupling constant g is small, one may find approximate
solutions using perturbation theory. By this we mean a calculation of the transition
probability amplitude (S matrix) from a given initial state of free particles (with
definite momenta) to another, final state of particles. The technique of Feynman
diagrams is especially suited to this task. However, it is not the purpose of this
introduction to explain standard perturbation theory, since it will not be used in the
remainder of this book. The interested reader may consult one of the many texts
on quantum field theory, which devote ample space to diagrammatic techniques.
Divergences encountered when calculating the vacuum energy density of the
free field, and attributed to the continuum of degrees of freedom, are still present
for interacting fields, and are the cause of more severe difficulties. These problems
have stopped the development of quantum field theory for almost twenty years,
and were formally resolved with the introduction of renormalization. The inter-
pretation given to this procedure has evolved over the decades. In recent years,
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it has become customary to regard continuum field theories as approximations to
more fundamental theories (a natural standpoint in condensed-matter applications
of quantum field theory). This justifies the use of a cutoff: a lattice spacing, or some
other kind of regularization that effectively suppresses the degrees of freedom as-
sociated with very small distances. It is thus necessary, in order to make sense of
a field theory, to know not only its action functional, but also some regularization
procedure, and an approximate estimate of the cut-off.

2.1.2. The Free Fermion

The defining property of fermions is the antisymmetry of many-particle states
under the exchange of any two particles. In the context of a free-field theory,
and in terms of mode operators a(p) and a'(p), this property follows from
anticommutation relations:

la@),a'(@)} = @m)2,5(p — q)
{a(p),a(q@)} = {a'(p),a'(g)} =0

where {a, b} = ab-+ba is the anticommutator. However, the canonical quantization
of a field taking its values in the set of real or complex numbers can lead only to
commutation relations, as opposed to anticommutation relations.!

However, a classical description of Fermi fields can be given in terms of anti-
commuting (or Grassmann) numbers. Appendix 2.B defines these entities, and the
newcomer should read it through before proceeding. This description is especially
suited for the extension to fermions of functional integrals (introduced in the next
section), but it may also be used in the context of canonical quantization.

We apply to Grassmann variables the same canonical formalism as for real or
complex variables, except that their anticommuting properties forbid the existence
in the Lagrangian of terms quadratic in derivatives. Specifically, let us consider a
discrete set {y;} of real Grassmann variables with the Lagrangian

(2.31)

L = STy - V(¥) 232)

(repeated indices are summed over). The time derivative 1/}’. is still a Grassmann
number:

1/’1"/-/,' + ‘/}i'/’i =0 (2.33)

It follows that only the symmetric part of the matrix T}; is relevant. Indeed, its
antisymmetric part couples to

ViV — Vi = Vi + ¥y (2.34)

! Viewed differently, a given fermionic mode cannot hold more than one particle and consequently
a Fermi field cannot have a macroscopic value: its classical limit does not exist in terms of real or
complex numbers.
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which is a total derivative. The kinetic term of the Lagrangian (2.32) is real, as
is easily seen by taking the complex conjugate. The Euler-Lagrange equations of
motion are

d { i i . )%
d ——'/f,-T,--} “ilra v+ o 2.35)
de| 2770) 27T gy
or, in matrix notation,
. 1%
¥ = —i T"‘W (2.36)

These equations are recovered in the quantum case from the Heisenberg time
evolution equation ¢ = i[H, ¥] provided we use the following Hamiltonian and
anticommutation rules:

H=V({y) W ¥} = (T .37

wherein ¥; is now an operator. The proof of this statement is straightforward, and
is left as an exercise.
The closest analogue of (2.2) for a system of real Grassmann variables is

1 .N—l .
L= izglawnwn + YV } (2.38)

Here a is the lattice spacing and we still assume periodic boundary conditions
(Y,+n = ¥,,)- Notice that a term such as (¢, , — 1/1,,)2 would automatically
vanish, being the square of a Grassmann number. The above Lagrangian is real,
but is not invariant under the parity transformation ¥, — v¥_,, (the potential V
changes sign). The Hamiltonian and anticommutation rules are

i &= 1
H==23 ¥u¥ui W U} = =8, (2.39)
n=0 a

Again, translation invariance motivates the use of Fourier transformed operators:

b, = \/E% v e—2m’kn/N (k e Z)
k — N n

n=0 (2.40)
1

N-1
— b eZm’kn/N

where b—k = b,‘:. The mode operators bk obey the anticommutation relation

by, bl} = 8, (2.41)
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The Hamiltonian H = V is then a sum over modes:

182 1 . 2nk

H = EZa)kbkbk (l)kZESln——N—
k=0 2.42)

(N=1D2
=E0+ Z (l)kabk
k>0
where for simplicity we have assumed N to be odd, and
] =12

Ey = -3 Y o (2.43)

k>0

The time evolution of b, follows from the Heisenberg equation:
b, = i[H,b,] = —ioyb, = b(t) =e b, (0) (2.44)

The definition of the vacuum state for fermions is not exactly the same as for
bosons. Since b] = b_,, the condition b,|0) = O for all k leads to a Fock space
made of only one state. This problem did not arise for bosons since a,t # a_,
or, more simply, because the classical Hamiltonian was a real number. This is no
longer true for fermions: H takes classically its values in a Grassmann algebra
(see App. 2.B) in which no ordering is defined a priori. The question of which
classical configuration has the lowest energy is not well defined. The definition
of the theory must be supplemented with a consistent definition of the vacuum,
which we choose to be

b, 10y =0 0<k <N/2 (2.45)

(we shall treat later the zero mode b, which does not enter the Hamiltonian). The
energy eigenstates are then

b bl ...b} 10)  (0<k; <N/I2) (2.46)

with energy E = E| + ) _; w, . These states are, of course, antisymmetric under
interchange of particles and are interpreted as free fermions, each with energy
w,, = sin(27k/N)/a. In the continuum limit, this dispersion relation becomes

Ep) =p p = 2nk/(Na) (2.47)

These fermions are therefore massless.
The continuum limit is taken by introducing the continuum field y(x) = ¥,
(x = na). The term ¥, ¥, , becomes ay(x)d, y¥(x) and

i
L= [ dx Y3, + )% 2.48)

Had we used instead the potential ), ¥, ,,¥,,, the sign in front of 8, would have
been the opposite. As noticed above, both choices lead to a violation of parity.
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That symmetry can be restored by considering two Fermi fields ¥, and v, with
opposite signs of the potential:

i
L=3 [ dx {43, + 99, + ¥,(3, — 3)¥} (2.49)
Under a parity transformation the two fields are interchanged:

¥, (x) = ¥,(—x) ¥, (x) = ¥, (—x) (2.50)

It is customary to write the above Lagrangian in terms of a two-component field

v = (t/l‘],!/IZ)I
i 0
L = E\Ilty y“au‘l/ (2.51)

where W' is the transpose of ¥ and

0 __ 01 1 __ 0 -1
y—(l 0) y—(l 0) (2.52)

Since the zero mode bo does not enter the Hamiltonian, it commutes with H and
therefore any two states | x) and by|x) are degenerate, including the vacuum |0):
The whole spectrum is two-fold degenerate. This is no longer true if we impose
antiperiodic boundary conditions on the lattice fermions:

Voin = —Vn (2.53)

The mode expansion (2.40) still applies, provided the indices k take their values
among the half-integers %, %, - - -. The remaining part of the argument is identical,
except that the zero mode b, and the corresponding degeneracy no longer exist.
The antiperiodic boundary conditions are called Neveu-Schwarz (NS) boundary

conditions, whereas the periodic ones are called Ramond (R) boundary conditions.

Another remark is in order, concerning the so-called fermion doubling problem.
The energy w, of a single fermion is minimum when k& ~ 1 or k ~ N/2. When
taking the continuum limit, the second minimum of the dispersion relation disap-
pears, and the corresponding excitations are no longer admitted in the spectrum.
Viewed the opposite way, additional low-energy excitations appear at the upper
limit of the momentum range when a continuous theory of fermions is put on a
lattice. These new excitations have the appearance of a new species of fermions,
hence the expression “fermion doubling.” In fact, there is a doubling of fermions
for each dimension of space being discretized.

We treat systems described by complex Grassmann variables y; and 1/7,- =
1,---,n) in a similar way. A generic Lagrangian is then

L = iy, T;y; — V(¥) (2.54)
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where T is Hermitian: 77 = 7. The Hamiltonian is still H = V, and the relevant
anticommutation relations are

W vt =y, ¥}=0 W, vt =@"); (2.55)

¥; and 1//17 being the quantum operators corresponding respectively to the classical
variables v; and ¥;. The vacuum state can now be defined without problem by the
condition

¥;10) = 0 Vi (2.56)
and the Hilbert space V is spanned by the following states:
ylyl--ylio)  keN (2.57)

k

(the above states are not energy eigenstates, however). The dimension of the Hilbert
space is

n n ,
Z(k) =2 (2.58)

k=0

§2.2. Path Integrals

The quantum description of a physical system may be done according to two
equivalent methods, often complementary. The first one, older and better known,
should be familiar to all our readers: canonical quantization. Classical quantities
are replaced by operators acting on a vector space in which the states of the sys-
tem reside. The second method, twenty years younger, is called path integration
or functional integration. It has the advantage of being more intuitive, and of al-
lowing formal manipulations, which, despite their lack of rigor, provide important
results with the minimum of fuss. In practice, however, these advantages become
apparent only for systems with an infinite number of degrees of freedom. In other
cases, its interest is more or less academic and pedagogical. Another advantage of
path integration resides in its formal analogy with statistical mechanics. This not
only facilitates the formulation of quantum mechanics (or quantum field theory)
at finite temperature, but also establishes a correspondence between many classi-
cal statistical systems and quantum field theories. This analogy will be exploited
throughout many of the following chapters.

2.2.1. System with One Degree of Freedom

In this section we shall “derive” the path-integral method from the canonical quan-
tization of a simple system: that of a point particle of mass 72 moving in an external
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potential V(x). The Hamiltonian of this system is time-independent:
P2

H = K+ V() , K=-— ,
2m

&.pl=i (2.59)

The hat (7) distinguishes the quantum operator from the corresponding classical
quantity. To represent the dynamics we introduce an evolution operator U(z), which
brings a state |y) at time ¢ to the time £, + ¢:

Ut) = et (2.60)
First, we calculate the matrix elements of U(8¢) in the basis {]x)} of position

eigenstates, where 8t is an infinitesimal time interval. Calculations are done to first
order in ét:

(xle—i(K+V)5t lx,> — (xle—iste—iV&eo((st)z) le)

~ f‘zi_i (xle—iK51|p)<ple—iV51le)
d . 2 —x ,
= fi% exp{—l&t[% —p(x &x) +V(x)]}
m

[ 1 (x—x)? ,
=\ it exp {181‘ [—z—mT - Vix )]} (2.61)

In the first step we have used the approximate relation

ee(A+B) — eeA eeBeO(ez)
In the second step we have neglected the terms of order (8¢)* and inserted a
completeness relation

dp _
fg )l = 1

where |p) is an eigenstate of momentum, with (x|p) = e’?*. In the last step, we
completed the square and performed a Gaussian integration, which is strictly valid
only when the time interval 8¢ has a small, negative imaginary part. This assumption
will be implicit in what follows. The quantity in brackets on the last line of (2.61)
is nothing but the infinitesimal action S(x’, x; 8t) corresponding to the passage of
the system from x’ to x in a time ¢. One may therefore write, to first order,

x| UGy = ,/Z;& expiS(¥, x; 8t) (2.62)

Second, we consider (x|U(t)|x;), which is the probability amplitude for the
system, initially at a well-defined position x;, to evolve in a finite time ¢ toward the
position x;. This amplitude is called propagator and may be obtained by dividing
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the interval of time ¢ in N subintervals #/N and inserting completeness relations:

m
2midt

Nz p NI
(xﬂU(t)le-) = { } /l—[dx, (xf[U(t/N)'xN_l)
j=1

X (Xn_1[U@IN)xp_p) - - - (%, [U@/N)Ix;)

The error made in using Eq. (2.62) for each factor is of order 1/N2, and the total
error is of order 1/N. Therefore, in the large N limit one may write

N2 pN-1
xAU@®)|x;) = lim mN dx; expiS[x]
f i 1
I=

N—oo | 27it

where S[x] is the action associated with the discrete trajectory x;, j=0,1.--N
(we take x, = x; and x5 = x;). If we define the following “functional integration

measure’”:
) N-1 mN
@x) = Jim ] {\/ it d"f] @63)

we may then write our fundamental result as follows:

(x 1)
(xflU(t)lxi) = / ' [dx] expiS[x] (2.64)

(x:,0)

where the action is, of course, given by
1
Slx] = / dt (mez - V(x)) (2.65)

The interpretation of Eq. (2.64) is the following. Each possible trajectory going
from x; to x; in a time ¢ contributes to the amplitude (x;|U (#)Ix;) with a weight
equal to the exponential of i times its action. Within the set of possible trajectories,
most are highly irregular, but they contribute little overall, since the kinetic term
%rm'c2 drives up their action, and their contributions tend to cancel each other
because of the oscillating exponential. The trajectories contributing most are those
around which the phase of the exponential varies the least, that is, those with
stationary action: the classical trajectories. In order to sharpen this remark, we
restore the factors of i, which have been suppressed so far. Planck’s constant has
the dimensions of action, and we simply have to replace every occurrence of the
action S by S#i. The classical limit is then valid when the action of the classical
trajectory is much larger than/: this is the correspondence principle. Otherwise,
fluctuations about the classical trajectory are not sufficiently suppressed and a full
quantum treatment is necessary (i.e., an exact use of Eq. (2.64)).

The propagator may also be used to express the probability amplitude for a state
|¥;) to evolve, after a time ¢, toward another state |‘|[If). Indeed,

UGy — ) = [ dedsy v W) UG — Iy (266)
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where 1//i(x) = (x|y;) is the wave function associated with |;), and similarly for
‘/’f(x) = (xh/ff)v

The amplitude (2.64) can be used as a starting point for all of quantum me-
chanics. It is fully equivalent to the Schrodinger equation (in the sense that it
incorporates the dynamics of the system) and allows for the calculation of the
same quantities, although in a different manner. We have derived it for a time-
independent Hamiltonian, but only in order to keep the notation as simple as pos-
sible. The result is identical for a time-dependent Hamiltonian, and the derivation
is almost identical, since it is.the infinitesimal propagator (2.62) that matters.

2.2.2. Path Integration for Quantum Fields

The path-integral quantization of a bosonic field is not conceptually more difficult
than that of a point particle. The integration measure may be defined by dividing
time and space into infinitesimal intervals and integrating over each field variable
@(x, 1) at every point. Contrary to canonical quantization, path-integral quanti-
zation does not pick time as a special dimension at the outset. This contributes
greatly to the apparent simplicity and beauty of the method. In particular, if a field
theory is Lorentz invariant classically, this invariance is manifestly maintained by
path-integral quantization. We may then write, without further ado, the probability
amplitude for the transition between configurations ¢;(x, t;) and <pf(x, tf) as

oy tpletx ) = [dote, 0159 2.67)

When dealing with fermions, we need to recast the demonstration of the preced-
ing subsection into the language of Grassmann variables. For the sake of argument,
let us consider the generic Lagrangian (2.54) involving complex Grassmann vari-
ables. The Hilbert space V is generated by the states (2.57) with complex coeffi-
cients. In order to formulate path integrals for fermions, we need eigenstates of the
operators V;, in analogy with the eigenstates |x) of position in ordinary quantum
mechanics. This is impossible within V since it is a vector space over C, whereas
we need Grassmann eigenvalues. We must therefore work in an extended space
VY ® A (A is the Grassmann algebra) in which the coefficients can be Grassmann
numbers.? In this extended space, we introduce an overcomplete basis of states
1) = 18, -, &,) defined by

&) = e¥'T|0) (2.68)

where &; is a complex Grassmann number. These are called coherent states and
satisfy the following three important properties:

¥;1&) = &;1) (2.69a)

2 This is not so different from ordinary quantum mechanics, since the states |x) are not bona fide
members of the physical Hilbert space, not being properly normalizable.
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1= @7y [ dide 19y exp(-£'TE)E (2.69b)
(£IE') = exp(—£'TE) (2.69¢)

Given any state |W), we define its wavefunction as W(£§) = (£|¥). The time
evolution of the wavefunction is then given by

W(E, 1) = (Ele™H' W)
— (detT)"! [ dEdE (Ele™H!|E') exp(—£TE) (| W) 2.70)

= [ dEay k(e 6,.8)9.,0)
where we have defined the propagator

K(t,£ &) = (det )" (gle~"H"|&') exp(—&TTE) (2.71)

which is the kernel of the evolution operator for wavefunctions.

In evaluating (£|e~*#|¢'), we face the following difficulty: in the Hamiltonian
H = V(y, ), the conjugate operators 1//} sit at the left of the v;. But this is not
true of the exponential e */!. Therefore we cannot use property (2.69a) to evaluate
the propagator for arbitrary . However, for ¢ infinitesimal, we may expand the
exponential to first order in 8¢ and use (2.69a):

(Ele™™|E) ~ (8] (1 —istV (YT, ¥)) I&)
= (1 —i8tV(E, &) (£IE) (2.72)
~ g iVES)p—E'TE

In so doing we commit only an error of order (8¢)2. Therefore, to first order in 8z,
the propagator may be written as

K(5t,&,8) = (det T) ' exp [-&'TE — £1T¢ — istV(E, £)]
= (detT) ' exp {(iat) I:—i(s;afl)jT&" — V&, E)] ] 2.73)
= (detT)~' expiS(§, &; 8t)

where, of course, S(£, &; 8t) is the infinitesimal action for a trajectory in the classical
(Grassmann) configuration space going from & to £’ in a time 8¢. We used the
property iy, T, ¢, = —iy, T ;.

From this expression for the infinitesimal propagator, the finite time propagator
follows exactly in the same way as for bosons. As the time slices 8¢ and the lattice
spacing go to zero, the path integration measure is written as

(detT)' [[dEde;, — [dEdE) (2.74)
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wherein the index i distinguishes between not only the different fermionic degrees
of freedom, but also the different time slices. From now on we will use the same
symbol for the Grassmann variables appearing in the functional integral and the
fermionic operators (€ — ). The transition amplitude between the classical field
configurations ¥;(x, ;) and 1/ff(x, tf) is then written as

Wy, t)ly;(x, 1)) = f [dydy] S0V (2.75)

§2.3. Correlation Functions

Quantum field theory traditionally deals with scattering amplitudes between var-
ious asymptotic states (free particles). In practice these amplitudes are given by
Green functions, or, by analogy with statistical mechanics, correlation functions.?

2.3.1. System with One Degree of Freedom
For a point particle, the »-point correlation function is defined as
(x(t)x(t,) - -x(@2,)) = (01T (2())---%(z,)) 0) (2.76)

where |0) is the ground state (or vacuum) and 7 is the time ordering operator,
which sorts the factors that follow in chronological order from right to left:

Tx@)---x@,) =x(,)---x@,) if t;>t,>--->t, .77

Correlation functions can be calculated by path integration as follows:

Sldxx(z,) - - - x(t,,) expiS,[x(2)]
[Idx1expiS,[x(1)]

(x(t)x(ty) - - - x(2,)) = lim (2.78)

where S, is the action obtained by replacing ¢ by #(1 — ie) (complex time) and
where the functional integral is taken with bounds at # — o00.
To prove this, we notice that*

£(t) = eHize ! (2.79)
(% being taken at time ¢ = 0). Therefore,

(0|zeHt2=t)2eiH(—12) . .. 3|0)
(OleiHtn—11)|Q)

(x(t)x(ty) - - - x(2,)) = (2.80)

3 To be more precise, the relationship between scattering amplitudes and Green functions is given
by the so-called reduction formulas.

4 Again we consider a time-independent Hamiltonian for simplicity, although the result is quite
general.
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The outermost exponentials have been converted into a denominator, since |0) is an
eigenstate of H (the normalization (0|0) = 1 is assumed). Now, let |¢;) and 1Y)
be two arbitrary states with a component along the vacuum |0) (i.e., {0]y; £ #0)
and let us consider a general ratio of the type

(0/0,0)

(010,|0)
where O, , are two generic operators. This ratio is equal to

(V’f le—iT}-H(l—is)OIe—iT.-H(l——ie)h/,_)
i

T, Tl’l_r_l,oo W’f |e—inH(1—ie)oze—iT;H(l—is)W,i) (2.81)
Indeed, if |#2) is the energy eigenstate with energy E, , we have
e—iT;H(l—ié‘)lw.) — e—iT,—H(l—ie)In) (nhp_)
= Y e TEI Dy nly,) (2.82)
n

N e—iT;Eo(l—ie‘)'O)(Oh[,i) if e-50,T,> 00

Of course, this strictly holds only if the vacuum is nondegenerate and if there is an
energy gap between the vacuum and the first excited state. The r.h.s. of Eq. (2.80)
may now be written as

(“/’f le_iHTf(l_is)ie_iH(t'_tZ)(l—ie) . .ie—iHT,-(l—is)l.'pi)

lim - -
T, Ty =00 (.(/,fie—tH(T,'+T,-+t|—t,.)(l—ze)h/,i)

=0

(2.83)

By inserting completeness relations at each x and replacing each evolution operator
by a path integral, we obtain

xf .
[ 0197w x(0,) - 2(0,) 5450 284

for the numerator (x; and Xs are taken att — Foo, respectively). Each occurrence
of X initially at time ¢; has been replaced by the integration variable x; corresponding
to time ¢;. Since the wavefunctions y, ; are arbitrary, one may choose ¥;(x;) =
x[ff(xf) = 1, which concludes the demonstration of Eq. (2.78).

The time-ordering prescription may appear artificial within canonical quanti-
zation, but it is necessary to ensure convergence of the vacuum expectation values,
assuming that a ground state exists with energy bounded from below. Notice, how-
ever, that this prescription is automatically satisfied (and hence completely natural)
in the path-integral formalism.

2.3.2. The Euclidian Formalism

The ¢ prescription, that is, replacing by #(1 —i¢), is crucial in the derivation of for-
mula (2.78). It is customary in quantum field theory to “saturate” this prescription,
that is, to define all correlation functions in imaginary time t = —it (r € R) and
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to integrate over time along the imaginary axis. The underlying assumption is, of
course, that correlation functions may be analytically continued from imaginary
time to real time. Since the space-time metric goes from the Minkowski to the
Euclidian form when # — —it, we call this imaginary time method the Euclidian
Jformalism. Formula (2.78) for the correlation functions then becomes (we redefine
x(—i7) as x(7))

Jdxlx(r,) - - - x(z,) exp —Sg[x(7)]

. = 2.85
(x(ry)x(zy) - - - x(3,)) [id]exp -3, 5] (2.85)
where S, is the Euclidian action:
iSg[x(7)] = S[x(t - —i7)] (2.86)

The Euclidian action is the integral over imaginary time of the Euclidian
Lagrangian Lp:

Lg(x(7)) = —L(x(t > —iT)) 2.87)

We define likewise a Euclidian Lagrangian density L. For instance, the Euclidian
action of a point particle of mass 2 is

Splx(9)] = f dr {ﬁx%v@:)} (2.88)

The Euclidian Lagrangian is then equal to the real-time Hamiltonian in this case
(this is not true for fermions), hence the perfect analogy with classical statistical
mechanics (see the next chapter). The other advantage of the Euclidian formalism
is that path integrals are then much better defined than in Minkowski space-time.
The oscillatory behavior that suppressed the contribution of large action trajectories
is replaced by a simple exponential damping. Indeed, a more rigorous approach
to path integration consists in defining path integrals and correlation functions in
Euclidian space, and obtaining physical quantities through analytic continuation.

Important note: Unless otherwise indicated, we shall from now on work within
the Euclidian formalism, and we shall drop the subscript E from the Euclidian
action and replace 7 by .

Since the passage to Euclidian time affects the space-time metric, this is a good
place to state our conventions in this respect. We denote by 7 v the diagonal metric
tensor of flat d-dimensional space-time:

. . (2.89)
diag(1,1,---,1) (Euclidian)

[diag(l,—l,---,—l) (Minkowski)
Ny =

The notation n v 18 Teserved for the metric tensor in a coordinate system that is not
necessarily Cartesian. Boldface characters will denote points in Euclidian space-
time (e.g., x, y, and so on). From here on the covariant notation will be used, with
the summation convention for repeated (contracted) indices and the usual rules for
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converting between covariant and contravariant indices. Thus,

d
1,,8"b” means Z n,,a"b’ (2.90)
n,v=1
and
au — nuuav av — r’V[l-au nuvnw — 87‘ (2.91)

2.3.3. The Generating Functional

Correlation functions may be formally generated through the so-called generating
Sfunctional:

25 = 1501 exp- {S[x(m ~ [ a i(t)x(t)} 292

where j(¢) is an auxiliary “current” coupled linearly to the dynamical variable x.
Formula (2.85) may be recast into

21j) = Z{0)exp [ dij(e)x(e)
00 1 (2.93)
=203 [ty i)

or, equivalently,

é
.. VAL 2.94
5@ 5y, @99

This definition is easily extended to a quantum field ¢(x). The current is then a
function j(x) of Euclidian space-time:

Z[jl = Z[0)(exp / dx j(x)p(x)) (2.95)

(x(t,)---x(2,)) = Z[0)"

If the field is fermionic, then the current j is a Grassmann number and care must be
given to the ordering of the functional derivatives (2.94). By analogy with statistical
mechanics, the generating functional at zero current Z[0] is called the partition
Junction.

2.3.4. Example: The Free Boson

In two dimensions, the free boson has the following Euclidian action:
1
S=¢ f d’x {au(pa“go + m2¢2} (2.96)

where g is some normalization parameter that we leave unspecified at the moment.
We first calculate the two-point function, or propagator:

K(x,y) = (p(x)e(»)) 2.97)
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If we write the action as
1
S=3 f d’xd?y p(x)A(x,y)e(y) (2.98)

where A(x,y) = g8(x —y)(—9? +m?), the propagator is then K(x,y) = A~ (x, y),
or

g(—3 + m*)K(x,y) = 8(x — y) (2.99)
This follows from a continuous generalization of the results of App. 2.A on Gaus-
sian integrals. This differential equation may also be derived from the quantum
equivalent of the equations of motion, as done in Ex. (2.2). Because of rotation and
translation invariance, the propagator K(x,y) should depend only on the distance
r = |x—y| separating the two points, and we set K(x,y) = K(r). Integrating (2.99)
over x within a disk D of radius r centered around y, we find

1=2ng / dpp (—l ;(pK’(p)) + mZK(p))

° poe (2.100)

= 2ng {—rK’(r) + mzf dp pK(p)}
0

where K'(r) = dK/dr. The massless case (112 = 0) can be solved immediately, the
solution being, up to an additive constant,

K@) = —L Inr (2.101)
2ng
or, in other words,
1
(pE)e() = = — In(x — y)? (2.102)
g

The massive case is solved by taking one more derivative with respect to 7,
which leads to the modified Bessel equation of order 0:

1
K" + ;K’ -m?’K =0 (2.103)

On physical grounds we are interested in solutions that decay at infinity, and
therefore

1
= — 104
K@) 2n'gKo(mr) (2.104)
where K|, is the modified Bessel function of order 0:
% cos(xt)
= dt 0 2.105
K= [Ca 22 @0 (2.105)

The constant factor 1/2wg may be checked by taking the limit » — 0. At large
distances (i.e., when m2r > 1) the modified Bessel function decays exponentially
and

K(r) ~ e™ (2.106)
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This is also obvious from (2.103) when the second term is neglected. It is a generic
feature of massive fields that correlation functions decay exponentially, with a
characteristic length (the correlation length) equal to the inverse mass.

From the elementary Gaussian integral (2.209), it is a simple matter to argue
that the generating functional (2.95) for the free boson is equal to

Zij) = Z[0] exp{g [ ity i(x)K(x,y)i(v)} 2.107)

2.3.5. Wick’s Theorem

We have defined two special orderings on field operators: normal ordering, which
places all annihilation operators on the right, and time ordering, which sorts op-
erators in chronological order. The first guarantees the vanishing of the vacuum
expectation value, and the second expresses correlation functions in terms of a
vacuum expectation value. Wick’s theorem relates these two orderings in the case
of free fields and will often be useful in subsequent chapters.

Before stating the theorem, we must define the contraction of two operators
within a normal order. Given the product : ¢, - - - ¢, :, the contraction of ¢, with ¢’-
is simply the omission of these two operators from the normal order and their re-
placement by the two-point function (¢, ¢,). We denote the contraction by brackets
and write

—
191$9,0:040 = (D1P3: (Pr0,) (2.108)

Now, the theorem itself: The time-ordered product is equal to the normal-
ordered product, plus all possible ways of contracting pairs of fields within it.
For instance,

T($1020350) = 010,030 + by bysby: + 6, 0,050, +
b, 0r$30s: + 016,630,401 b1y by +

— /M —F 1
(010,030, + :0,0,0;0,: + 10,0, D30,° +

M 1
1P, 0,030, (2.109)

The simplest application of Wick’s theorem is the following relation:

T(619,) = 4,0, + ($19,) (2.110)

This relation is rather obvious, since, for a Lagrangian quadratic in ¢ (a free field),
the only difference between J(¢,¢,) and : ¢,¢, : comes from a rearrangement
of the factors involving c-number commutators only. The difference can thus be
evaluated by taking a vacuum expectation value, which leads directly to (2.110).
The general form of Wick’s theorem can be proven by recursion. The proof will
not be given here, but can be found in standard texts on quantum field theory.
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Wick’s theorem also applies to free fermions, with the difference that a sign must
be included in front of each term, according to the number of anticommutations
required to bring the contracted fields next to each other. For instance, Eq. (2.109)
applied to Fermi fields v, , becomes

T(¢l¢2¢3¢4) = WYY, + 110:—'/"2‘/’3‘/’45 - 5¢r1—¢’;‘}’3¢43 +
W lstat + VYUt — Yt +

— [ B — 1
WYY i Y Y Y Y Yy, —

M 1
TSN (2.111)

§2.4. Symmetries and Conservation Laws

One cannot overemphasize the importance of symmetries in physics. Indeed, this
whole book is nothing but an analysis of the consequences of scale invariance for
two-dimensional systems. In this section we give the precise meaning of symme-
tries in the context of a generic field theory and derive Noether’s theorem, which
states that to every continuous symmetry of a field theory corresponds a conserved
current, and hence a conserved “charge.”

2.4.1. Continuous Symmetry Transformations

Consider a collection of fields, which we collectively denote by ®. The action
functional will depend in general on @ and its first derivatives:

S= f dix L(®,d,®) (2.112)

In this section we study the effect, on the action functional, of a transformation
affecting in general both the position and the fields:

x—>x

o) > '(x') (2.113)

In these transformations the new position x” is a function of x and the new field ¢’
atx’ is expressed as a function of the old field ® at x:

'(x") = F(o(x)) (2.1149)

This is an important point: the field ®, considered as a mapping from space-time
to some target space M (® : RY — M), is affected by the transformation (2.113)
in two ways: first by the functional change ®' = F(®), and second by the change
of argument x — x’. This way of looking at symmetry transformations is often
called “active”, in opposition to a “passive” point of view, in which the mapping
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Figure 2.1. Pictorial representation of an active transformation, here a rotation. The arrows
stand for a vector field that undergoes an internal rotation identical to that of the coordinate.
Notice that this particular transformation is simpler to understand from a passive point of
view, in which the observer rotates in the opposite direction.

x — x’ is viewed simply as a coordinate transformation. The active point of view
is illustrated in Fig. 2.1.

The change of the action functional under the transformation (2.113) is obtained
by substituting the new function ®’(x) for the function ®(x) (we note that the
argument x is the same in both cases). In other words, the new action is

§'= [ d'x £@@),5,0'0)

= / dix L(@'(x),8,d'(x))
(2.115)
- / A% LF(DR)), 3, F(D)))

=fddx

In the second line, we have performed a change of integration variables x — x’
according to the transformation (2.113), which allows us to express ®’(x’) in terms
of ®(x) in the third line. In the last line, we express x’ in terms of x.

We now consider some examples, starting with a rather trivial one: a translation,
defined as

ox’
ox

L(F((x)), (3x*/3x™)3, F (P (x)))

X=x+a

e +6) = 6) (2.116)

Here ax'/ox™* = 8,‘1 and F is trivial. It follows that S’ = S. The action is invariant
under translations, unless it depends explicitly on position.

Next, we consider a Lorentz transformation. In general it takes the following
form:

xlu —_ Au"xv

®'(Ax) = L, d(x) @117
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where A is a matrix satisfying
N AY A =1, (2.118)

and where L, is another matrix, depending on A and acting on ® if the latter has
more than one component. The set of matrices A obeying the constraint (2.118)
forms a group: the Lorentz group. The matrices L, form a representation of the
Lorentz group. In Euclidian space-time, Lorentz transformations are simply ro-
tations. The difference between Minkowski and Euclidian space-time lies in the
metric 7,,,, and does not affect the rest of the present discussion. In d-dimensional
Minkowski space-time, the Lorentz group is isomorphic to SO(d — 1, 1), the group
of pseudo-orthogonal rotations. In two-dimensional Euclidian space-time, in which
will be set the action of the near totality of this book, the rotation group is SO(2),
which is Abelian (commutative) and therefore admits only one-dimensional irre-
ducible representations. The fields are then characterized by a (real) value of the
planar spin.

Because of the condition (2.118), the Jacobian |dx’/dx| is unity and the
transformed action is

S = / dx L(L,®, A" - (L, D)) (2.119)

For a scalar field ¢ the representation is trivial (L, = 1) and the action is invariant
under Lorentz transformations (S’ = S) if the derivatives d, appear in a Lorentz-
invariant way. The most general Lorentz-invariant Lagrangian containing at most
two derivatives is then

L, 3,0) = flp) +8(¢)3, 903" ¢ (2.120)
where f and g are arbitrary functions (these functions are not arbitrary if further
conditions, like renormalizability, are imposed).

Scale transformations will play a central part in this work. They are defined as
x =i
P'(Ax) =272 d(x)
where A is the dilation factor and where A is the scaling dimension of the field &.

Since the Jacobian of this transformation is |ax’/ax| = A4, the transformed action
is

(2.121)

S =2 / dix L(A2 D, A717%3, @) 2.122)

We consider in particular the action of a massless scalar field ¢ in space-time
dimension d:

Slgl = / d?x 3,99 (2.123)
We check that this action is scale invariant provided we make the choice

A= %d —1 @2.124)
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A power ¢ may be added to the Lagrangian while preserving the scale invariance
of the action provided An = d, or n = 2d/(d — 2). The only possibilities for n
even (ensuring stability) are a ¢® termind = 3 and a ¢* term ind = 4.

Finally, various transformations may be defined that affect only the field ®
and not the coordinates. The simplest example is that of a complex field with
an action invariant under global phase transformations ®’(x) = e**®(x). A more
complicated example is that of a multi-component field ® transforming as ®’(x) =
R, ®(x) where R, belongs to some representation of a Lie group parametrized by
the group coordinate w.

2.4.2. Infinitesimal Transformations and Noether’s Theorem

We now study the effect of infinitesimal transformations on the action. Such
transformations may in general be written as

Sxt
xlll. —_ xllv + wa X
dw,
SF (2.125)
P'(x) = d(x) +w, (x)
dw,

Here {w,} is a set of infinitesimal parameters, which we shall keep to first order
only. It is customary to define the generator G, of a symmetry transformation by
the following expression for the infinitesimal transformation at a same point:

3,0(x) = ¢'(x) — d(x) = —iw,G,P(x) (2.126)

We may relate this definition to Eq. (2.125) by noting that, to first order in w,,

P() = D) + @, 2 (x)

8wa
2.127
o) — 0,5 &)+ w, 2 () N
= -w,— w,—
4w, " “dw,

The explicit expression for the generator is therefore

. Sx* 8F
lGa<D = ﬁa,;b - — (2.128)

, dw,

We consider here some examples. For an infinitesimal translation by a vector

w* (the index a becomes here a space-time index) one has 8x"/éw’ = &4 and
8F/éw” = 0. Therefore the generator of translations is simply

P, = —id, (2.129)

An infinitesimal Lorentz transformation has the form

at =k + o 2 (2.130)
=x* + o, n*x" )



40 2. Quantum Field Theory

Substitution into the condition (2.118) yields the antisymmetry property w w =

—,,. A general transformation has thus 3d(d — 1) parameters. Using this an-
tisymmetry, one may write the variation of the coordinate under an infinitesimal
Lorentz transformation as

ox# 1

= —(n"x" — n"x” 2.131
o, 2(nx n"*x*) ( )

Its effect on the generic field & is
1 . v
F(®)=L,® L,~1- Ezwpvsp (2.132)

where S*¥ is some Hermitian matrix obeying the Lorentz algebra. From (2.128),
one therefore writes

1 1 1

Eiwva”"CD = Ewpv(x"a" —x°3")P + Eiwva""d> (2.133)
where L*” is the generator. The factor of % preceding w,,, in the definitions of L*"
and S*¥ compensates for the double counting of transformation parameters caused

by the full contraction of indices. The generators of Lorentz transformations are
thus

L* = i(xP" — x"98°) + S** (2.134)

We now demonstrate Noether’s theorem, which states that to every continuous
symmetry of the action one may associate a current that is classically conserved.
Given such a symmetry, the action is invariant under the transformation (2.125)
only if the transformation is rigid, that is, if the parameters w, are independent
of position. However, an especially elegant way to derive Noether’s theorem is to
suppose, as we will, that the infinitesimal transformation (2.125) is not rigid, with
w, depending on the position.

From the last of Egs. (2.115), we may write the effect on the action of the
infinitesimal transformation (2.125). To first order, the Jacobian matrix is

axlv v axv

w— = Su + 8" ((l)agaTa) (2.135)
The determinant of this matrix may be calculated to first order from the formula

det(1+E) = 1+ TrE (E small) (2.136)

We obtain

ax’ ax#

—| = 140 — 2.137

ax + 0, (“’“ &oa) 2137

The inverse Jacobian matrix may be obtained to first order simply by reversing the
sign of the transformation parameter:

ax’ v 8x”
Pl 8, —9, (wa Swa) (2.138)
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With the help of these preliminary steps, the transformed action S’ may be written

as
= / dix (1 +9, (a)a%)) (2.139)
x L (<I> + o, 57 [av — 9, (w, (6x" /8w, ))] (8, + 0, [w,(8F /b, )]))
8 I’ y7s a a v v a a

The variation S = §' — S of the action contains terms with no derivatives of w,.
These sum up to zero if the action is symmetric under rigid transformations. Then
S involves only the first derivatives of w,, obtained by expanding the Lagrangian.
We write

/ dxj* 3,0, (2.140)
where

T
a

{ L o %}ax aL oF 2.141)

33,®) " dw, 33,®)dw,

The quantity j“ is called the current associated with the infinitesimal transformation
(2.125). Integration by parts yields

8S = / d'x 3,j* w, (2.142)

Now comes Noether’s theorem: if the field configuration obeys the classical equa-
tions of motion, the action is stationary against any variation of the fields. In
other words, &S should vanish for any position-dependent parameters w, (x). This
implies the conservation law

3,4 =0 (2.143)

In words, every continuous symmetry implies the existence of a current given by
(2.141), which is classically conserved.
The conserved charge associated with j% is

= / d¥ k0 (2.144)

where 70 is the time component of j*, and d?'x stands for the purely spatial
integration measure.’ Its time derivative indeed vanishes:

/ d*'x 8 (2.145)

5 In Euclidian space-time, the distinction between “time” and “space” is somewhat arbitrary.
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where do' is a surface element at spatial infinity (Latin indices are summed over
the “spatial” dimensions only). Therefore Qa = 0, provided the current ' vanishes
sufficiently rapidly asx — oo .

The expression (2.141) for the conserved current is termed “canonical”, imply-
ing that there are other admissible expressions. In fact we may freely add to it the
divergence of an antisymmetric tensor without affecting its conservation:

ju—>jh+8B» , B}Y=-B (2.146)

Indeed, 3, 3,B;* = 0 by antisymmetry. The definition of j/; is therefore ambiguous
to some extent.

We stress here that Noether’s theorem is a classical result that says little about
the quantum realization of the symmetries. We shall see that classical symmetries
imply constraints on correlation functions (the Ward identities). However, it may
happen that the path integration measure does not possess the symmetry of the

action, in which case that symmetry is said to be anomalous.

2.4.3. Transformation of the Correlation Functions

Classically, the invariance of the action under a continuous symmetry implies the
existence of a conserved current. At the quantum level, correlation functions are
the main object of study, and a continuous symmetry leads to constraints relating
different correlation functions.

Consider again a theory involving a collection of fields ® with an action S[®]
invariant under a transformation of the type (2.113). Consider then the general
correlation function

1
(@) Bx,) = / [d®10(x,) - - D(x,) exp—S[P] 2.147)

where Z is the vacuum functional. The consequence of the symmetry of the action
and of the invariance of the functional integration measure under the transformation
(2.113) is the following identity:

(P(x) - D(xy)) = (F(P(x))--- F(P(x))) (2.148)

where the mapping F describes the functional change of the field under
the transformation, as in Eq. (2.114). The demonstration of this identity is
straightforward:

1
(@0) -+ 00)) = 7 [[d0] 0(x))- - O] exp (o]

1 ’ 1(! (X’ !
_ 2/[d<1>]<I>(xl)---<l>(3'r..)¢"l>‘s["’] (2.149)

= [ [d®] F(®(x,)) - - - F((x,)) exp—S[®]
= (FO(,) - - F((x, )
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An explanation is in order. In going from the first to the second line of Eq. (2.149)
we have justrenamed the dummy integration variable & — &’, without performing
a real change of integration variables. In going from the second to the third line
we have performed a change of functional integration variables, in which ®’(x’)
is expressed in terms of ®(x). We know by hypothesis that the action is invariant
under such a change, which should be carried through as in Eq. (2.115). We need
the further hypothesis that the Jacobian of this change of variable is trivial (i.e.,
does not depend on the field ®). This is in fact the main obstacle to conformal
invariance in a quantum symmetry: the action may well be scale invariant, but the
measure is not because of the regularization procedure needed to define it properly.

For instance, invariance under translation X’ = x + a has the following
consequence on the correlation functions:
(®(x, +a)--- P(x, +a)) = (P(x)) - D(x,)) (2.150)

In words, only the relative positions of the fields are important in a correlator.
Likewise, Lorentz invariance has the following effect on correlators of scalar fields:

(DAH2}) - DAR x2)) = (D(x}) - - D(x)) (2.151)

Finally, scale invariance implies the following relation for correlators of a
collection of fields ¢; with scaling dimensions A; (cf. Eq. (2.121)):

($,0x)) - 8,(0x,)) = A7 - AT (P (x)) - - 9, (x,)) (2.152)

We shall come back to these relations in Chap. 4.

2.4.4. Ward Identities

The consequence of a symmetry of the action and the measure on correlation
functions may also be expressed via the so-called Ward identities, which we shall
now demonstrate. An infinitesimal transformation may be written in terms of the
generators as

P'(x) = D(x) — iw,G, d(x) (2.153)

where w, is a collection of infinitesimal, constant parameters. Note that the posi-
tions are the same on both sides of this expression. We make a change of functional
integration variables in the correlation function (2.147), in the form of the above
infinitesimal transformation with @, now a function of x. The action is not invariant
under such a local transformation, its variation being given by (2.142). Denoting
by X the collection ®(x,) - - - ®(x,) of fields in the comrelation function and by
8,X its variation under the transformation, we can write

X) = % f [d'] (X +8X) exp — {S[<I>] + [ dx 8uj,’,‘wa(x)} 2.154)

We again assume that the functional integration measure is invariant under the
local transformation (i.e., [d®'] = [d®]). When expanded to first order in w,(x),
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the above yields
@) = [ dxa, N0, @.155)
The variation 8X is explicitly given by
X =—i zn: (P(x)--- G, 9(x) - - @(x,) w, (x,)
i=1

i (2.156)
- —i/dx 0,0 3 {O(x)) - G, 0(x,) - B(x,)} 8x — x,)
i=1

Since (2.155) holds for any infinitesimal function w,(x), we may write the
following local relation:

J .
pom (5 ) D(x,) - - - D(x,))
n (2.157)
=—i) 8x —x)(®(x)) -G, B(x) - (x,))
i=1

This is the Ward identity for the current j% . Note that the form of the current may be
modified from the canonical definition (2.141) without affecting the Ward identity,
if one adds to j% a quantity that is divergenceless identically (i.e., without using
the equations of motion), such as in Eq. (2.146).

We integrate the Ward identity (2.157) over a region of space-time that includes
all the points x;. On the left-hand side (1.h.s.), we obtain a surface integral

[ ds. o0 o) @.158)

which vanishes, since the hypersurface X may be sent to infinity without affecting
the integral: indeed, the divergence 9, {(/#X) vanishes away from the points x; and
the correlator (j*(x)X) goes to zero sufficiently fast as x — oo, by hypothesis.
For the right-hand side (r.h.s.) of Eq. (2.157), this implies

5,(B(x,) - B,)) = —iw, I ()G, P(x)--- D) =0  (2.159
i=1

In other words, the variation of the correlator under an infinitesimal transformation
vanishes. This is simply the infinitesimal version of Eq. (2.149) (see also the
definition (2.126)).

The Ward identity allows us to identify the conserved charge

Q,= f d¥ % 2(x) (2.160)

as the generator of the symmetry transformation in the Hilbert space of quantum
states. LetY = ®(x,) - - - ®(x,,) and suppose that the time ¢ = xJ is different from
all the times in Y. We integrate the Ward identity (2.157) in a very thin “pill box”
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bounded by t_ < t,byt + > and by spatial infinity, which excludes all the other
points x,, - - -, x,,. The integral of the Lh.s. of (2.157) is converted into a surface
integral and yields

(Q,(2,)®(x))Y) — (Q,(t_)(x))Y) = —i(G,®(x,)Y) (2.161)

Remembering that a correlation function is the vacuum expectation value of a
time-ordered product in the operator formalism, and assuming, for the sake of
argument, that all other times x? are greater than ¢z, we write, in the limitz_ — ¢ T

(0/[Q,, ®(x))1Y'|0) = —i(0|G,P(x,)Y|0) (2.162)
This being true for an arbitrary set of fields Y, we conclude that
[Q,, ] =—-iG,® (2.163)

In other words, the conserved charge Q,, is the generator of the infinitesimal sym-
metry transformations in the operator formalism. Of course, these identities are
obtained in the Euclidian formalism. An easy way to go back to Minkowski space-
time is to replace the charge Q by —iQ, since it is the outcome of an integration
of the time-like component of a vector.

§2.5. The Energy-Momentum Tensor

Here we apply the general results of the previous section to the invariance of a
theory with respect to translations and rotations (or Lorentz transformations). The
conserved current associated with translation invariance is the energy-momentum
tensor, whose components are the density and flux density of energy and mo-
mentum. In Chapters 4 and 5, the consequences of conformal symmetry will be
expressed in terms of the Ward identities associated with the energy-momentum
tensor; this section more or less paves the way for later discussions.

The infinitesimal translation x’* — x* + e* induces the following variations
in the coordinates and the fields (see Eq. (2.125)):

SxH ]
=8 , — = 2.164
Sev v de¥ ( )
Consequently the corresponding canonical conserved current is
oLc
T = —*'L 3'd 2.165
¢ T 56, (2.165)
and the conservation law is 9,7/ = 0. The conserved charge is the
four-momentum
P = / dlx T (2.166)
In particular, the energy is

P’ = /dd"‘x {ggcbﬂz:} (2.167)
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which is the usual definition of the Hamiltonian. As an operator, the conserved
charge P, has therefore the following effect in Euclidian time, according to

Eq. (2.163):
[P, ®] = -3, (2.168)

In real time, this relation becomes [Pu, d] = —iaud>, which is the well-known
commutator of an x-dependent operator with momentum in ordinary quantum
mechanics.

2.5.1. The Belinfante Tensor

In general, the canonical energy-momentum tensor 7#" is not symmetric. However,
we have the freedom to modify this tensor by adding the divergence of a tensor
BrrY antisymmetric in the first two indices:

Tg' = T*" +9,BM ,  B™ =-B" (2.169)

This addition does not affect the classical conservation law nor the Ward identity.
Indeed, the variation of the action under a nonuniform translation with position-
dependent parameter €*(x) is still given by

88 =~ f dix 3,T4 €, (2.170)

since ,Tp" = 8, T*" identically. If we succeed in finding B**” such that the new
tensor T'" is symmetric, then the latter is called the Belinfante energy-momentum
tensor. In order to accomplish this, we consider the conserved currents associated
with Lorentz transformations.
From (2.131) and (2.132), the variations of the coordinates and fields under an
infinitesimal Lorentz transformation are
8F

8x* | PP v 1
3 =§(n x'—n7x") 3 =-—z§S ) (2.171)
Dy Dy

and the associated canonical conserved current is

i;wp — Téwxp __Té;pxu + 1 oL

¥ v 2172
2'a(au<b)s ® (2.172)

We look for B”*¥ such that this current may be expressed as
M = Tg'x" — Th'x" (2.173)

This relation ensures that Tp” = T;*, as is easily seen by applying the conservation
laws ,j**? = 0and 8, T3" = 0. However, this implies only that T" is symmetric
classically (i.e., for field configurations obeying the equations of motions).

An explicit expression for B#*¥ can be found by inspection:

v _ 1 { L L L

N S*o
33,8)° T 8@,8) T %3,®)

4

Swe d>] (2.174)
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We check that this expression is indeed antisymmetric in the first two indices, since
S#Y = —§8"*_ In order to show that the above has the right form, we calculate its
antisymmetric part in (ov):

1. aC

BMPY — BHYP —
2" %3, )

S¥e (2.175)

On the other hand, the antisymmetric part of T?" in a classical configuration is
obtained by applying the conservation laws to Eq. (2.172):
1 ac
T — T = —=id, { —<S"® 2.176
c c 210, {a(a# ) } ( )
We see that the antisymmetric part of 7/ + 8, B*” vanishes, that is, T,” is indeed
symmetric in a classical configuration. Note that the form given in Eq. (2.174)
for B*#” is not unique; further modifications of the energy-momentum tensor are
possible.

We can illustrate this with an example. Consider the following Lagrangian for
a massive vector field A, (in Euclidian space-time):

L= %F"ﬂFaﬂ + %mzA“Aa (2.177)
wherein F,; = 3,A5 — 9gA,,. The canonical energy-momentum tensor is
T =F*9"A, — "L (2.178)
and it is not symmetric. We now calculate 75" as defined in Eq. (2.169), with
B = F**A” (2.179)
We end up with
Tg" =T +F*3,A" + 3, F* A" (2.180)

This tensor is classically symmetric, as may be seen from the following: we define
the identically symmetric tensor

- 1 1
T4 = FHF", — —p"F*F ; + m? [A“A" — S AA ]
? = 4" “ 2" (2.181)
=T — (3, F** — m?A*)AY
The two tensors Tg" and Tg" coincide for classical configurations, since the
equations of motion are

3, F* —m?A* =0 (2.182)

It is 7" which is written down in standard texts, whereas it is 74" which a priori
appears in the Ward identity:

(THX) = — ) 8(x —x)(®(x,)--- 3 D(x) - - - D(x,)) (2.183)
i
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If we wish to use a symmetric tensor in the Ward identity, we must replace Tg L’ by
T 4" therein, but this modifies the Ward identity. However, as we shall see presently,
the modification to the Ward identity coming from this substitution has no effect
and may be ignored in general. _

Indeed, the Ward identity in terms of 7" is

3,(THX) == 8x —x){P(x,))--- 3 D(x) - - D(x,,))
i (2.184)

— 3, ([3,F**(x) — m*A* (x)]A" (x)X)
We wish to show that the last term is of no consequence. For this we need to use

the following relation, written here in Euclidian time, which is a consequence of
the equations of motion on correlation functions (see Ex. 2.2):

(s0) = (¥ 500 (2.185)

Here, Y is a product of local fields. We apply this relation to our system, with
Y = A, (»)X (X is again a product of local fields) and ®(x) - A u (x). We find

8S
A, (x)

= —3,F (x) + m?A*(x) (2.186)

Therefore,

< & Av(y)>+a(x — 8,0

8A ( ) (2.187)

= (=3, F*(x) + m*A* (x))A*()X)

We take the limitx — y and ignore the delta function 8(x —y), which is automat-
ically subtracted if normal order is used for the product [3,F** — m?A*]A”. We
find

_ 0 2 v _ 8X

This last expression will vanish for all x except at the isolated points x;, the positions
of the fields appearing in the product X For instance, if X = A,(x,)A,(x,), then

A.,(v)> = 808(x —x)(A,(x))A (%))

x—=>y

<8A (x) (2.189)
+ 858(x — x,)(A,(x))A, (x))

In general, the additional contribution to the Ward identity will have the following
form:

9, ([8,F™ (x) — m*A*(x)IA*(X)X) = 3, ) 8(x —x)f(x},---,x,) (2.190)
i
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The reason such an addition is of no consequence is that the Ward identity, like
any other expression involving delta functions, has a precise meaning only after
integration through some arbitrary volume. The added term is a total divergence
containing delta functions and can thus be converted into a surface integral, which
receives no contribution from the delta functions.

In summary, provided the theory has rotation symmetry, we may define a new
energy-momentum tensor T, which is conserved, classically symmetric, and
plays the same role in Ward identities as 7*". In fact, one may use the equations of
motion to bring 7" into another form (noted 7" above) which is now identically
symmetric, still conserved, and still plays the same role as T#” in the Ward identity,
except for terms that may be ignored. Consequently, we shall no longer distinguish
between T4 and T%" (as far as Ward identities are concemed) in the remainder of
this work.

2.5.2. Alternate Definition of the Energy-Momentum Tensor

We now consider a general infinitesimal transformation of the coordinates x* —
x™" = x* + €*(x). This can be considered as a translation with an x-dependent
parameter €”(x). According to (2.142) the induced change in the action is

38 = /ddx T 9,€,
. (2.191)

_ d v

= E/d xT"" (d,€,+d,€,)

where we have assumed that T is identically symmetric.% If the diffeomor-
phism x' = x + € is considered as an infinitesimal change of coordinates, the
corresponding change in the metric tensor g,,, is (to first order in €)

, ax® axP

w = Gxm Wg"ﬂ
= (8% —0,€")(8 — 3,P)g, 5
=8, — (aue,, + ave#)

(2.192)

This prompts for an alternate definition of the energy-momentum tensor, as the
functional derivative of the action with respect to the metric, evaluated in flat space:

1
8 = — [ dix T*8g,, (2.193)

6 As explained in the previous section, extra terms may appear in the above equations, but these terms
vanish for classical configurations and are of no consequence on the Ward identities. We consequently
ignore them.
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For instance, on a general manifold, the action for a free scalar field ¢ is

S= [ddx JgL
(2.194)

1
=3 f d’x /8 {g‘”a,ﬂ)am + m2¢2}

whereg = detg,,, and the factor /g is required for the invariance of the space-time
integration measure. Using the identities

detA=e™"™ and & =—g*g"sg,, (2.195)

we find

1
/8 = —iJgg”"Sguv (2.196)
and the definition (2.193) yields
TW = —g'"L + 3*pd'yp (2.197)

which coincides with the canonical definition (2.165). The advantage of the new
definition (2.193) is that the energy-momentum tensor is identically symmetric.
However, obtaining an explicit expression for 7%V from (2.193) requires more
involved calculations than going through the canonical definition, or its Belinfante
generalization.

If a tetrad e}, is used instead of a metric (see App. 2.C) then the energy-
momentum tensor is endowed with a Lorentz index and an Einstein index: Since
8, = €,¢€,, we easily find that

88 = — / dix e TV (2.198)

where e = dete,.

In the quantum theory, the alternate definition (2.193) of the energy-momentum
tensor takes the following meaning. Let ® represent the set of dynamical fields of
the theory, and g the metric. On a general manifold the action is a functional S[®, g]
of both quantities. The vacuum functional Z[g] and the functional integration
measure [dd)]g both depend on the metric:

Zig) = [1do), exp-Sioel

= exp—WI[gl

(2.199)
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where we have defined the connected functional Wig]. Under an infinitesimal
variation 8g of the metric, the vacuum functional is modified:

Zlg+é6g] = f[d@]g+8g exp —S[®,g + 3¢l
= f[d¢]g {1 + % /ddx ﬁ&gan“v} exp —S[®,g]  (2.200)

=Z[g]+ %Z[g] / d?x /gog,,(T"")

In the second equation, we have assumed that the energy-momentum tensor takes
care of the variation of the action and of the integration measure, if any. This
is the essential difference between the classical and quantum definitions of the
energy-momentum tensor. The variation of the connected functional Wg] is then

_ g 1 v
sWigl = Zig = 2 f d’x /g8g,,(T"") (2.201)
or, in functional notation,
2 Wigl
™ = —— 2.202
(T*"(x)) N ( )

Again, if a tetrad is used instead of a metric, the above quantum definition becomes

sWiel = —% / d’x ede? (T¥) (2.203)

Appendix 2.A. Gaussian Integrals
In this appendix we consider integrals of the type

I(A,b) = / d"x exp {—%x‘Ax +b’x} (2.204)

where A is an n x n symmetric matrix whose eigenvalues have positive real parts,
and where x and b are n-dimensional column vectors (the transpose of an object
x is written x). We first evaluate the integral when b = 0. Since A is symmetric,
it can be diagonalized by an orthogonal matrix: A = O'DO where D is diagonal
with entries D; and where O'O = 1. By the change of variables y = Ox, for which
the Jacobian is unity, the integral becomes

I(A,0) = /d"y exp{—%ZDiyf}

_ e
| detA

(2.205)

detA =detD = ”D,.
j



52 2. Quantum Field Theory

If b # 0, one simply has to complete the square of the exponent:
1 1 1
—5FAx+b'x = Eb’A“b -5 —A7'bYA(x — A7'D) (2.206)

and the change of variables x — x — A~!b brings this case back to the above form,
except for a prefactor:
1
2n)*): 1
IA,b) = {—~ =b'A'b 2.207
(4.) { detA xp 2 ( )
We turn now to the evaluation of moments of order m:

_ [d"xx; x; ---x; exp(—3x'Ax)

X ) Jdrx exp(— %x’Ax)

These are the discrete analog of the correlation functions. To this end we introduce
the generating function

Z(b) = f d"x exp (—%x’Ax +b‘x)

(x: x

(2.208)

i)

1 (2.209)
= Z(0)exp (Eb’A—‘b)
It then immediately follows that
1 9 d
(X %) e Z(0) (2.210)

S OF 2N
For instance, the second-order moment (or “propagator”) is
(x) = (A7), (2.211)
It is straightforward to verify that the three-point moment (x;x;x,) vanishes.
This follows from the reflection symmetry x; — —x; of the exponential atb = 0.

The four-point moment, along with all moments with an even number of points,
can be expressed in terms of the two-point moment. Specifically,

b=0

(x1X5%3% ) = (X,2,)(X3%,4) + (X,%3) (x,%,) + (x,X,){x,%3) (2.212)

This follows directly from (2.210). In general, the 2n-point function is given
by a sum over all ways of pairing the points, each pair being then replaced by
the corresponding two-point moment. This constitutes a weak version of Wick’s
theorem (2.109).

Appendix 2.B. Grassmann Variables

We recall that an algebra is a vector space endowed with a product. A Grassmann
algebra is a vector space constructed from a set of n generators 6; on which an
antisymmetric product is defined:
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A generic element of a Grassmann algebra is therefore a first-degree polynomial
in the generators 6;, namely

f6) = Z Z c® .66, -6, (2.214)

k=0 1,,

where the complex coefficients C(:‘) i, are defined only if all their indices are
different, and where a standard ordermg is defined on these indices. The dimension
of the Grassmann algebra is then the number of distinct monomials that can be
constructed from the 6;, namely 2". For instance, generic elements of a Grassmann
algebra with n = 1 and n = 2 are respectively

n=1) f6) =cy +c,0
(n=2) f(6,,6,) =cy+c,0, +c,0,+c,0,0,

Any other term that we might add to these expressions is either redundant or zero
because of the anticommutation properties.

The generators of a Grassmann algebra are often called Grassmann vari-
ables. Correspondingly, elements of the algebra, since they are polynomials in
the generators, are called “functions” of Grassmann variables.

We define a differentiation on the Grassmann algebra in the obvious way, that
is, by treating the generators 6; like normal variables, except for their anticom-
muting properties. Consequently we must adopt a convention: The variable of
differentiation must be brought to the left of every expression before taking the
derivative:

(2.215)

of
df = do.— 2.216
=3 do g 2216)
For the function f(6,, 6,) defined above, we have
of
26, =) (2.217)

Since functions of Grassmann variables are at most linear in each variable, the
differential operator 9/06; is nilpotent, that is, o/ 99, )? = 0. In fact, these operators,
together with the variables 6, themselves, form a Clifford algebra:

6,0, + 6,6, =0
d 0 d 0
——t———=0
00; 36,  96; 96 (2.218)
ad a

Integration over Grassmann variables is defined to be identical to differentiation:

fdeif(f’p---ﬁn) = if(6',,---,9,,) (2.219)

i
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This definition may seem strange, but it should be kept in mind that we are defining
definite integrals. Therefore the result of the integration does not depend on the
integration variable any more, and its derivative vanishes. Conversely, the definite
integral of a derivative vanishes if there are no boundary terms. Consequently, a
natural definition of definite integration should have the properties

] ]
— [ d6,f(6) = [ do. — f(6) = O 2.220
. [ @01 = [ do 2 fo (2220
which are satisfied by the definition (2.219) by virtue of the nilpotency of the
derivative. The integral over several Grassmann variables of a generic function
always yields the highest term of the expansion:

[ ds,---de, fe) = C¥_ .. (2.221)

Under a change of integration variables §; — 6, the integration measure
db, - - - db, changes according to

wl
de, ---df, = |¥

de, - --de, (2.222)

This is the opposite of ordinary integration, wherein the Jacobian occurs with
the opposite power, and follows directly from the identification of integrals with
derivatives.

Finally, we evaluate Gaussian integrals of Grassmann variables. We first
consider the integral

I= / do,---de, exp—%e’AG (2.223)

where @ is the column vector of the 6;, ¢ is its transpose and A is an antisymmetric
matrix (otherwise only its antisymmetric part contributes) of even dimension n.
The series expansion of the exponential contains a finite number of terms (no
summation over repeated indices here):

I= f d6,---do, [|exp—6,4,6,

i<j

= / do,---do, [] (1 - oiAiigi)

i<j

(2.224)

Each factor commutes with the other, and thus we are free to order them according
to increasing i. If we expand the product, the terms that survive the integration are
those that contain each variable exactly once, and consequently contain #2/2 matrix
elements A;;. Therefore, the result of the integration is

I=7 " e®Ayp0Anepuw  Apn-pm (2.225)
PESH
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(e(p) is the signature of the permutation p) with the constraints
p(D) <p(2), p(3) <p(4), p(5) <p(®), ---
p() <pB3) <p(5) <p(N <---

The expression (2.225) is known as the Pfaffian of the matrix A and denoted Pf(A).
The Pfaffian is defined for antisymmetric matrices of even dimension. It can be
shown without difficulty (see Ex. 12.12) that

Pf(A)?> = detA 2.227)

(2.226)

The integral with a source
1
Ib) = fd()l ---d6, exp {—EG’AO + b'O} (2.228)

is done the same way as for the ordinary Gaussian integral. We proceed to a shift
of integration variables: 8 = 8 — A~'b, and, the Jacobian being unity, the result is

I(b) = I(0) exp %b‘A“b (2.229)

The details of the calculation are slightly different from the ordinary Gaussian
integral since b; anticommutes with 6;, but this is compensated by the antisymmetry
of A. The moment (9,-9,-) is given by (notice the order of the derivatives)

a 9

6:6) = 1(0)™! == ——I1(b)|,_

t ab; ob; " P=0 (2.230)
= (A—l),','

Wick’s theorem is also valid here, except that the two-point moments occur with

the appropriate sign obtained by bringing together the members of the pair [cf.

Eq. (2.111)).
We now turn to the integral

I, = / dodo exp —OMo (2.231)
where M is an # x »n matrix and where d6d#@ stands for

dodo = |]dode, (2.232)
i=1

The variables 6; and é,- may be thought of as conjugate to each other, although this
is not necessary. Again, by expanding the exponential,

I,= f dods T (1 -6.M;6,)
ij

=D @) MyyyMapy - My (2233)
pesn

= detM
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Overall, we obtain results that are similar to those obtained for ordinary
Gaussian integrals, except that the determinant occurs with the opposite power.

Appendix 2.C. Tetrads

This appendix offers a quick introduction to the concept of a tetrad, which is
necessary in order to define spinor fields on a general curved manifold. In the
usual formalism of Christoffel symbols, only the action for integer-spin fields can
be written down in a covariant manner.

At each point of a manifold, coordinate differentials dx* span a local vector
space (the cotangent space). Under a change of coordinate system x — x’, the
differentials transform as follows:

ax'®

mo_

de¥ = axV
The only requirement imposed on the Jacobian matrix dx’#/dx” is invertibility: It
should be an element of the group GL(d) of invertible d-dimensional matrices.
We therefore say that an action with general covariance is endowed with a local
GL(d) symmetry. However, local fields have been defined according to their trans-
formation properties in Euclidian (or Minkowski) space, where the corresponding
symmetry group is SO(d) (resp. SO(d — 1, 1)). In order to carry over the Lorentz
group formalism to a general manifold in a general coordinate system, we in-
troduce at each point a local orthogonal frame of basis vectors for the cotangent
space:

dx’ (2.234)

et =eﬁdx" a=1,---,d (2.235)

where the frame vectors e? form a tetrad, or vierbein. These names are four-
dimension specific, but will be used here in a general setting, rather than the
imaginative “zweibein” and “vielbein” (Cartan’s terminology of “‘reperes mobiles”
may also be used). A natural choice for the tetrad is determined by the conditions
e‘;e’:g“" = n? 8= nabe‘;eﬁ (2.236)
which express the orthogonality of the tetrad. The lower (Greek) index of e}, is
called an Einstein index, while the upper (Latin) index is called a Lorentz index.
In order to compare vectors belonging to different (but nearby) cotangent spaces,
we need to introduce a prescription for parallel transport, specified by the so-called
spin connection wﬁb :

Ve > V¢ — oPdxt VP (2.237)
where dx* is the amount of transport. The covariant derivative is defined as
(D, V) =23,V + oV? (2.238)

and results from the comparison of a vector at x with a vector parallel-transported
from x +-dx. Since parallel transport changes only the direction of a vector and not

its length, the spin-connection is antisymmetric in its Lorentz indices: wff’ = —wﬁ“ .



§2.C. Tetrads 57

The tetrad e, may be used to convert between Lorentz and Einstein indices:
V4 = ¢}, V*. The Christoffel symbols I, are used to specify the parallel transport
in a tetrad-free language:

V¥ - VF —Thdx*VY (2:239)

Since by definition the tetrad €], is invariant under parallel transport, we have the
relation

rhel = 9.ef + wibed (2.240)

v

The curvature of a manifold manifests itself when a vector is parallel-transported
around a closed path. Around an infinitesimal “square” loop of sides dx and dy,
the difference between the initial vector V¢ and the transported vector V'* is

Ve -V = —[D,,D " Vbdx*dy*

(2.241)
= R VPdx*dy
More explicitly, the curvature tensor R‘,‘ﬁ, is
R =9,0% — 3,0 + 00 — 0P (2.242)

This tensor is related to the usual Riemann tensor R” , by contraction with e‘;ef;.

The connection is determined by the metric g,,,, together with the torsion-free
condition I}, = I'},. The latter condition is natural if we define the manifold as
embedded in a higher-dimensional Euclidian space, as a hypersurface X(x). Then,
the metric is given by

g =9,X-3X (2.243)
and the Christoffel symbols are easily derived to be

r* = #X-3,3,X
1 (2.244)
= 5 up(abgpl + akgpv - apgvl)

On a two-dimensional manifold, the spin-connection can be expressed in terms
of a single-covariant vector w,;:

0 =?w (2.245)
while the curvature tensor is
R® = (3,0, — 8,0,)
K’ K ® (2.246)
= VB¢, R

where R is the scalar curvature.
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Exercises

2.1 Expansion in eigenfunctions
Consider a generalization of the Lagrangian (2.1):

1 .
L= §(¢2+¢D¢)

in which D is some Hermitian linear differential operator. For instance, D = 8 — m? for
the free scalar field. A possible generalization could be D = V2 — V(x) (in d dimensions),
in which case there is no translation invariance. In general, the above Lagrangian is not
Lorentz invariant. The eigenfunctions of D are denoted u,,(x), and form by assumption a
discrete spectrum, with eigenvalues —w2. We have the relations

[ d?x Unthyy = Sun

Show that the quantum field may be expanded as

o)=Y ,—2-;— (anttn(x) + alu}(x))

where the a,, are annihilation operators, obeying the standard commutation relations. Show
also that the Hamiltonian may be written as

1
H =3 odala. +3)

2.2 Equations of motion for correlation functions
Consider a generic action S[¢] involving some quantum field ¢, and the correlation function

=y f [de] X &9

where X stands for an expression involving ¢. By performing an infinitesimal change of
functional integration variables ¢ — ¢ + 8¢, demonstrate the following relation:

(s0) = s

Then take X = ¢(y) and the Lagrangian (2.1), and show that the two-point function
{@(y)9(x)) satisfies the equation

i (axi axi + mz) ()P = 5Cx —y)

2.3 Demonstrate Eq. (2.37), i.e., that the equations of motion following from (2.32)
are recovered in the Heisenberg equations of motion, provided the Hamiltonian and the
commutation rules be as in (2.37). One may start with a simple quartic potential.

2.4 Prove the properties (2.69) of fermionic coherent states. For the second one (2.69b), it
is useful to diagonalize the matrix T (T = UDU!) and to work with the rotated variables
and operators Uz and Uvy.
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2.5 From the expression (2.229) for the Gaussian Grassmann integral with a source, show
how to recover the following special case of Wick’s theorem:

(6:6;61:61) = (6:6;)(6k6r) — (6:61)(6;61) + (6:61)(6;6k)

2.6 Demonstrate explicitly the relation (2.233).

Notes

There are many good texts on quantum field theory. However, most of this chapter does
not follow any particular text. Some sections, in particular the treatment of the dynamics of
Grassmann variables, are inspired by a graduate course given in 1986 at Cornell University
by H. Kawai [233]. Among modern texts emphasizing the functional formulation of quantum
field theory are those of Brown [60], Collins [79], Ramond [303], Weinberg [351] and
Zinn-Justin [369]. More classic texts, such as Bjorken and Drell [48] and Itzykson and
Zuber [205], are still very useful.

The method of path integrals was invented by R. Feynman [130]. Grassmann variables
were applied to the functional description of fermions by F.A. Berezin [40]. The Belin-
fante energy-momentum tensor is discussed by Callan, Coleman, and Jackiw [62] and
Jackiw [208].



CHAPTER 3

Statistical Mechanics

Most applications of conformal invariance pertain to statistical systems at criti-
cality. A brief introduction to statistical mechanics is therefore required for those
readers unfamiliar with the subject. The emphasis is put on the concepts under-
lying the hypothesis of conformal invariance in critical systems. Some parallels
are to be drawn with the previous chapter, since quantum field theory and statis-
tical mechanics walk hand in hand in the modern theory of critical phenomena.
Section 3.1 reviews the notion of statistical ensemble of states and describes some
basic models defined on the lattice or in the continuum. Section 3.2 explains the
basic features of critical phenomena and how the scaling hypothesis provides a
unified understanding of phenomena at or near the critical point. Section 3.3 justi-
fies the scaling hypothesis with the idea of real-space renormalization. Section 3.4
applies the concepts of the renormalization group to continuum models and gives
deeper meaning to the notion of scale invariance for Euclidian field theories. Fi-
nally, Sect. 3.5 briefly explains the transfer matrix method, a discrete analogue in
statistical mechanics of the operator formalism of quantum theory.

§3.1. The Boltzmann Distribution

Statistical mechanics describes complex physical systems (i.e., systems made of
a large number of atoms in interaction) whose exact states cannot be specified
because of this complexity. Instead, macroscopic properties alone may be speci-
fied, and the role of the theory is to infer these properties from the microscopic
Hamiltonian. Thus, statistical mechanics distinguishes microscopic states (or mi-
crostates) from macroscopic states (or macrostates). A microstate is specified by
the quantum numbers of all the particles in the system or, classically, by the ex-
act configuration (positions and momenta) of all the particles. It characterizes the
system from a dynamical point of view in the sense that its future state is fixed by
its present state through deterministic laws. A macrostate is specified by a finite
number of macroscopic parameters, which characterize the system from the point
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of view of observation, such as pressure, temperature, magnetization, and so on.
To a given macrostate corresponds a large number of microstates, each leading to
the same macroscopic properties. Having no more information about an isolated
system than that given by the macroscopic parameters, we assume that all the mi-
crostates associated with the observed macrostate have equal probabilities to be
the actual state of the system.

The basic idea behind the statistical study of a complex system is that any
physical property—Ilike the energy, the magnetization, and so on—may be regarded
as a statistical average, calculated over a suitable ensemble of microstates. Of
course, at any instant, the system is in a specific (but unknown) microstate. The
replacement of this microstate by a statistical ensemble needs some justification.
It has long been customary to justify this replacement by invoking the so-called
ergodic hypothesis, which states that the time average of a quantity over the time
evolution of a specific microstate is equal to the average of the same quantity,
at fixed time, over some statistical ensemble of microstates. If one accepts this
hypothesis, then the use of a statistical ensemble is justified provided the time
necessary for an efficient sweep of the ensemble by any of its microstates is short
enough compared with the time of measurement of the physical quantity of interest.
This is far from obvious. A better justification for the use of statistical ensembles
follows from dividing the system into a very large number of mesoscopic parts,
each of them large enough to display the complex properties of the whole system.
At any instant, each of these mesoscopic subsystems is characterized by its own
microstate, but the properties of the whole system are obtained by averaging over
all subsystems. Thus, the ensemble averaging amounts more to a spatial averaging
than to a time averaging.

Which ensemble of states is most appropriate for averaging depends on how
isolated the system is. If it is completely isolated, with no exchange of energy or
particles with its surroundings, the relevant ensemble of microstates is made of all
states on a given energy “‘shell”, occurring with equal probabilities. It is called the
microcanonical ensemble.

If, on the other hand, a system S is in thermal contact with its surroundings
and hence is free to exchange energy with it, then all microstates of S do not
have equal probabilities. However, all microstates of the “universe” (S plus its
surroundings) have equal probabilities. This, in turn, provides us with adistribution
of probabilities for the microstates of S: The probability that a specific microstate
of S be the actual state of the system depends only on its energy and is given by
the Boltzmann distribution:

P, = ! E .
i—zexP_ﬂ i ﬂ—-f 3.1
where T is the absolute temperature! and Z is the normalization of the distribution,
called the partition function:

! This definition of temperature includes the unit-dependent Boltzmann constant k. Thus T has the
dimension of energy.
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Z=Y exp—pE, (32

The ensemble of microstates defined by the Boltzmann distribution is the canonical
ensemble.

The partition function (3.2) is of central importance in statistical mechanics
since macroscopic quantities are generically related to derivatives of Z. For in-
stance, the average energy within the canonical ensemble is obtained by lowering
a factor of E; in the sum of Boltzmann weights through differentiation with respect

to B:

1
U= 7 z,-:Ei exp —BE;

__la (3.3)
Z ap
= —Tzi(F/T)
oT
where we have introduced the free energy:
F=-ThnZ (349
Similarly, the heat capacity C at constant volume is
oU 9’F
={—=) =-T— S
¢ ( aT )v aT? 3.5

The specific heat is defined as the heat capacity per unit volume. Thus, the partition
function is the generating function of all the thermodynamic functions of interest.

In practice, statistical mechanics studies systems composed of a large quantity
of N identical components (atoms, molecules). The properties of each individual
atom (e.g., energy, spin, etc.) fluctuate according to the Boltzmann distribution,
but the physical quantities of interest are summed over all N components of the
system. Because of the law of large numbers, their fluctuations vary as 1/+/N
and are completely negligible when N is large. The limit N — oo is called the
thermodynamic limit since then the variance of the macroscopic properties vanishes
and their values cease to be random variables, becoming instead exact variables to
be treated in the formalism of thermodynamics.

3.1.1. Classical Statistical Models

In practice the number of systems for which the partition function can be calculated,
even in an approximate way, is very small. Confronted with the extreme complexity
of most realistic systems one relies on simplified models to investigate finite-
temperature properties. Some of these models are defined in terms of discrete,
classical variables, which live on a lattice of sites. The best-known and simplest of
these discrete models is the Ising model. It consists of a discrete lattice of spins o;,
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each taking the value —1 or 1. Unless otherwise indicated, a square lattice is used
and ¢ stands for a lattice site. For a lattice with N sites the number of different spin
configurations [o] is 2V, and the energy of a given configuration is

Elol = -J) o0, —h) o (3.6)
(i) i
where the notation (ij) indicates that the summation is taken over pairs of nearest-
neighbor lattice sites. The first term in the energy represents the interaction of
neighboring spins through a ferromagnetic (J > 0) or antiferromagnetic (J < 0)
coupling. The second term represents the interaction with an external magnetic
field /2. We shall not try to explain how such a simple model can arise from the
microscopic quantum theory of magnetism but will be content in considering it
for its own sake. We will assume that J > 0, although the case J < 0 is strictly
equivalent at zero field (2 = 0). In zero field, the lowest energy configuration is
doubly degenerate: The spins can be either all up (+1) or all down (—1). If the
field /4 is nonzero, the lowest energy configuration will have all spins aligned with
h (i.e., of the same sign as k).
The first thermodynamic quantity of interest is the magnetization M, the mean
value of a single spin. By translation invariance, this is the same for all spins, and
we can write:

M=(o) (anyj)

= A_;Z > {Za,-] exp —BE[o] 3.7

[o] i
_ 109F
" Naoh
where the notation (...) denotes an ensemble average. Also of interest is the
magnetic susceptibility, which indicates how the magnetization responds to a very
small external field:
_ oM
=" ‘h:o

19 1]1
=S {z )3 (Z "i) exp —ﬂElal} G-8)

[o] i
1
= FT— {(atzm.) - (atot.)z}

where 0,,, = ), 0;. The susceptibility is therefore proportional to the variance of
the total spin, and measures its fluctuations.
The susceptibility is also related to the pair correlation function I'(i):

I —j) = (0;0) (3.9)

Because of translation invariance, the correlator I' can depend only on the differ-
ence of lattice sites. Moreover, for large distances |i — j|, the lattice structure is
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less relevant, some rotation symmetry is restored and the correlators depend only
on the distance |i — j|. The connected correlation function

Fc(i - = (0}'0}')0 = (al-ai) — (o;) (0,') (3.10)

is a measure of the mutual statistical dependence of the spins o; and o}, in terms
of which the susceptibility may be rewritten as

x=B8Y_ TG (3.11)
i=0

We therefore expect the susceptibility to be a measure of the statistical coherence
of the system, increasing with the statistical dependence of all the spins.

The Boltzmann distribution is ,of course, invariant under a constant shift of the
energy. This allows us to write the Hamiltonian of the Ising model in a slightly
different way. Indeed, since 0;0; = 25, o~ 1, the configuration energy is, up to a
constant,

Elol=-21) 8,,—h) o (3.12)
)] i

This form lends itself to an immediate generalization of the Ising model, the so-
called g-state Potts model, in which the spin o; takes g different integer values:
o; = 1,2,---,q9. To each possible value of o we associate a unit vector d(o) in
q— 1 dimensional space such that } "7 d(c) = 0.d(o) plays the role of the magnetic
dipole moment associated with the spin value o. The configuration energy in an
external field is

Elcl=—a) 5,,—h-) d() (3.13)
(if) i

Other generalizations of the Ising model are possible, wherein for instance the

spins are regarded as “flavors” of atoms interacting with their nearest neighbors

with coupling constants depending on which flavors are paired (Ashkin-Teller

models) and so on.

In Ising-type models, the variables (spins) reside on the sites of the lattice
whereas the interaction energy resides on the links between nearest-neighbor pairs.
In systems such as the eight-vertex model the opposite is true: The variables are
arrows living on the links, each taking one of two possible directions along the
link. The interaction energy resides on the sites and its value depends on how the
four arrows come together at that point, with the constraint that the number of
arrows coming into (and out of) a site must be even.

Other statistical models involve continuous degrees of freedom rather than
discrete ones. For instance, a more realistic treatment of classical ferromagnetism
is obtained by assuming the local spin to be a unit vector n, with the configuration
energy

Elnl=J) n;-n;—) h-m, (3.14)

(if) i
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where h is some external magnetic field. This is the classical Heisenberg model,
or the classical O(r2) model if the vector n is taken to have 2 components.

When discussing critical properties (in the next section) it is often more con-
venient to replace the lattice by a continuum, in which case the use of continuous
degrees of freedom is mandatory. The above Hamiltonian is then equivalent to

Eln] = / d’x {Jon - n —h - n} (3.15)

whereinn; and h; are replaced by n(x) and A(x). The gradient term is the equivalent
of the nearest-neighbor interaction of the discrete case.

Because the constraint n%(x) = 1 at every position is difficult to implement
in practical calculations, we may consider the simpler alternative in which it is
replaced by the single constraint

%/ddxnz =1 (3.16)

where V is the volume of the system. One then obtains the spherical model,
which differs from the O(1) model by the constraint imposed. Another way to
approximate the constraint n%(x) = 1 is to make it energetically unfavorable for
n?(x) to be different from 1. This may be done with the help of a quartic potential
V(|n|) having a minimum at |»| = 1. After rescaling the field n, the energy
functional may be taken as

E[n] = f d?x {%akn - On — %uznz + iu(nz)z} (3.17)

The position of the minimum of energy as a function of |n| depends on the relative
values of i and u. If n has a single component g, this is termed the ¢* model. The
sign of the ¢? term (positive or negative) determines whether the ground state value
of ¢ vanishes or not. The case u = 0 is exactly solvable, and is called the Gaussian
model since the partition function reduces to a product of Gaussian integrals. The
associated configuration energy is

1 1
Elp] = f d’x (z(ch)2 + Eu2<p2) (3.18)

All of these models were extensively studied and are discussed in great detail in
most texts devoted to critical phenomena.

For models defined on the continuum, the analogy between statistical mechanics
and quantum field theory is manifest. The partition function of the ¢* model is a
sum over the possible configurations of the field ¢ (i.e., a functional integral):

zZ-= f [dy] exp —BEIp]

1 1 1
= [[d(p] exp —/ddx — (Vo) + ~r¢* + ~up*
2 2 4
Here we have rescaled the field ¢ by /B and the ¢* coupling u by 1/8, so that
the inverse temperature does not explicitly appear. The partition function of a

(3.19)
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d-dimensional statistical model is thus entirely analogous to the generating func-
tional of a quantum field in d space-time dimensions in the Euclidian formalism.
Changing the temperature then amounts to scaling the field ¢ and modifying the
¢* coupling.

3.1.2. Quantum Statistics

The statistical models described in the preceding subsection are all classical: All
physical quantities have a definite value within each microstate of the statistical
ensemble. In quantum statistical mechanics, we must deal with quantum indeter-
minacy as well as with thermal fluctuations. In that context, we define the density
operator

p =exp—pH (3.20)

where H is the Hamiltonian of the system. The partition function may be expressed
as a sum over the eigenstates of H:

Z=Y ePB="Trp (3.21)
n

The statistical average of an operator A is then

(A) = Z(me-ﬁ”mn) = Tr(pA) (3.22)

The resemblance between the density operator e ?¥ and the evolution operator
e~*H! allows for the representation of the density operator as a functional integral.
This introduces the Lagrangian formalism into statistical mechanics. Explicitly,
consider the kernel of the density operator for a single degree of freedom:

plx,x;) = (xcle P |x;) (3.23)

The path integral is adapted to this kernel by substituting ¢t — —it (the Wick
rotation), where 7 is a real variable going from O to 8. The action S[x(z)] then
becomes the Euclidian action iSg[x(7)]. The kemel of the density operator p
becomes then

(x7,B)
p(xf,x,-) = /(‘ ) [dx] exp —Sglx] (3.29)
xi,0
The partition function may be expressed as
Z = j dx p(x,x) = f [dx] exp —Sg[x] (3.25)

This time, the integration limits are no longer specified: all “trajectories” such
that x(0) = x(B) contribute. Here the “time” t is merely an auxiliary variable
introduced to take advantage of the analogy with path integrals. The expectation
value of an operator A is

1 ,
A) = Zfdx (xlpA|x)
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1

= 5 [y wowr i)
1 .8

= zfdxdy/ [dx] (y|Alx) exp —Sgl[x]

(x,0)

1 .8

=3 / dxdy [ o [dx] A(x)8(x — y) exp —Sg[x]

1
- f [dx] A(x(0)) exp —Sglx] (3.26)

where we have supposed that A is a function of x only, so that
WlAlx) = A(x)é(x — y) 3.27

Hence, the expectation value of A is calculated as in the path-integral method.
Note, however, that the operator A is evaluated at T = 0.

The generalization to a system with a continuum of degrees of freedom and to
multipoint correlation functions is straightforward. The key point here is that the
partition function of a quantum system in the path integral formalism is obtained
from the ordinary path integral by a Wick rotation and by restricting the Euclidian
time to a finite domain of extent 8. At zero temperature this domain is infinite in
extent and we recover the usual generating functional in Euclidian time. At finite
temperatures, the quantum partition function of a d-dimensional system resembles
that of a (d + 1)-dimensional classical system defined on a strip of width 8.

§3.2. Critical Phenomena

3.2.1. Generalities

Phase transitions are arguably the most interesting feature of statistical systems.
They are characterized by a sudden and qualitative change in the macroscopic prop-
erties of the system as the temperature (or some other control parameter) is varied.
We distinguish first-order transitions from continuous transitions. First-order tran-
sitions are characterized by a finite jump in the energy U (the latent heat) at the
transition temperature. This means that the system must absorb or deliver a finite
amount of energy before leaving the transition temperature. Liquid-gas transitions
and other structural transitions are generally of this type. On the other hand, con-
tinuous phase transitions do not involve any latent heat, nor any abrupt change in
the average value of microscopic variables, such as the magnetization. However,
the derivatives of such quantities, such as the specific heat or the susceptibility, are
discontinuous or display some singular behavior at continuous phase transitions.
Strictly speaking, phase transitions exist only in the thermodynamic limit. The
reason is clear: In systems such as the Ising model in zero field, where the energy
of any configuration is an integer multiple of a fundamental energy scale ¢, the
partition function for a finite number of lattice sites is a polynomial inz = exp —Be.
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For instance, in the Ising model, one can choose ¢ = —J, and the configuration
of highest energy has E = 2Ne¢. Each configuration contributes a power of z to
the partition function, with unit coefficient. Therefore Z is a polynomial of degree
2N in z, whose roots lie away from the positive real axis, and occur as complex
conjugated pairs. Singularities of the free energy or of its derivatives can occur
only at those roots, which all lie outside of the physical domain of interest as long
as N is finite. As N — oo, the number of these roots becomes infinite, and they
tend to form various arcs, some of them touching the real positive axis. It is at these
locations on the positive real axis that the behavior of thermodynamic quantities
becomes singular in the thermodynamic limit.

Continuous phase transitions will be of central interest to us because of their
relation to conformal invariance. The two-dimensional Ising model, of which the
exact solution is known, exhibits such a transition. Let us describe this transition
before commenting on the general case: The critical temperature T, is related to
the coupling J by

sinh(2J/T,) = 1 (3.28)

Above T, the magnetization at zero field (or spontaneous magnetization) vanishes,
whereas below T, it takes a nonzero value, tending toward 1 at 7 = 0 and toward
0as T — T, according to the power law

M~ (T,—-T)"® (3:29)

The system is then in its ferromagnetic phase. The two directions of spontaneous
magnetization (up and down) are energetically equivalent, and which one is actu-
ally realized depends on how the external field # was brought to zero. Although
the magnetization is continuous at T, its derivative with respect to the magnetic
field—the susceptibility x—diverges as T — T, according to

X = % ~(T-T,)" (3.30)

Away from T, the correlations I',(i) decay exponentially with distance, with
a temperature-dependent characteristic length £ called the correlation length,
expressed here in units of the lattice spacing:

(55, ~ exp—Ii — jVET) li—jl > 1 (3.31)

As T approaches its critical value, the correlation length increases toward infinity,
like the inverse power of T — T :

ET) ~

T —T,|

As we shall see, this divergence of the correlation length is the most fundamental
characteristic of continuous phase transitions. Such transitions are termed critical
phenomena and occur at so-called critical points of the phase diagram.

The importance of the correlation length in the behavior of thermodynamic
quantities near the critical point is intuitively clear. Near a critical point, a spin

(3.32)
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system such as the Ising model is an aggregate of domains (or droplets) of different
magnetizations. At first thought, the typical size of such droplets should be &,
roughly the maximum scale over which the spins should be correlated. But in fact,
droplets of all sizes up to the correlation length must be present, and droplets within
droplets, etc. Otherwise the connected correlation functions I' (1) would have a
peak near n ~ & but would be small below that scale, which is not true: This can
be seen from the observed divergence of the susceptibility x as T — T and the
expression (3.11) for x. In other words, the spins fluctuate over all length scales
between the lattice spacing and &. The free energy F will receive contributions from
the domain walls separating spin droplets, integrated from the lattice spacing up
to £, and it is plausible that its singular behavior (or, rather, that of its derivatives)
be governed by the “upper integration bound”, which is §.

At T, or sufficiently close to it, the correlation length exceeds the physical
dimension L of the system (we suppose, for the sake of argument, that the system
lives in a square box of side L). At this point the free energy no longer depends
on the correlation length but is limited by the box volume.? The pair correlation
function does not have enough room to decay exponentially within the box, and
its spatial dependence is algebraic (d is the dimension of space):

1

L) ~

(3.33)
The behavior of thermodynamic functions near or at the critical point is charac-
terized by critical exponents defining power laws as T — T . The most common
exponents are defined in Table 3.1.

Table 3.1. Definitions of the most common
critical exponents and their exact value within
the two-dimensional Ising model. Here d is the
dimension of space.

Exponent Definition Ising Value
o C «(T-T.)* 0
B M o« (T,-T)*° 1/8
y x o«(T-T) 7/4
b M o h'? 15
v & o«(T-T1) 1
n r(n)x |n|?-4-n 1/4

2 In real systems, the correlation length is limited not by the physical size of the sample, but by the
presence of sample inhomogeneities. It rarely goes beyond a thousand lattice sites, even in very pure
samples.
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We conclude this section by a remark on the relevance of classical statistical
mechanics in a quantum world. Classical statistical mechanics is an approximation
to quantum statistical mechanics, valid in the context of critical phenomena when
the statistical coherence length £ exceeds the characteristic de Broglie wavelength
of the system. For a system with a characteristic velocity v (e.g., the speed of
light, the Fermi velocity or the speed of some other excitation), the de Broglie
wavelength at temperature T is A = Vii/kgT o< B. Classical statistics takes over
at large enough temperatures, or close to a finite-temperature critical point, where
the classical correlation length £ exceeds A,. This justifies the extensive use of
classical models in a realistic study of critical phenomena. The exception to this
rule occurs when T, = 0, which happens in a large class of low-dimensional
systems.

3.2.2. Scaling

The critical exponents of Table 3.1 can be related to each other by use of the scaling
hypothesis, which stipulates that the free energy density (or the free energy per
site, in the discrete case) near the critical point is a homogeneous function of its
parameters, the external field /, and the reduced temperature t = T/T, — 1. In
other words, there should be exponents a and b such that

f(A%t, A%h) = (e, h) (3.34)

This hypothesis will be justified below, but for now let us derive its consequences
on critical exponents.

First, the homogeneity relation (3.34) implies that the function ~/4f is invariant
under the scalings ¢ — A%t and & — APh. Therefore it must depend only on the
scale-invariant variable y = //t*, and the free energy density may be expressed
as

fe.h) = t'"g(y) y = hit" (335)
where g is some function. The spontaneous magnetization near criticality is then
3f (1-b)la +
=—— = 0 .
il = 1€ © (336)
One more derivative yields the magnetic susceptibility:
aZf (1-2b)/a
=27 = 1= " 33
x=zz|. = %" (0) 337
Similarly, the specific heat (heat capacity per unit volume) is
*f 1
=-T_—| = —=t"2g"0 3.38
¢=—Tsmly,= ~71" €O (3.38)

Finally, in the limit # — 0, the behavior of M as a function of k2 is M ~ h!%,
which implies the asymptotic behavior g(y) ~ ¥4 as y — o0, and imposes the
constraint 1 — b — b/§ = 0, if the limit ¢ — O is to be finite and nonzero. We
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have therefore obtained a set of four constraints on some of the critical exponents
introduced in Table 3.1:

a=2-1/a

B=0->b)a

Y= —(1 — 2bYa (3.39)
8§=Db/(1 -Db)

We now justify the scaling hypothesis, and at the same time express a and b in
terms of the remaining exponents v and », both pertaining to the pair correlation
function. Following Kadanoff, we focus our attention on the Ising model on a
hypercubic lattice, with the Hamiltonian

H=-J) o0—h) o (3.40)

(i) i

‘We now reduce the number of degrees of freedom of the system by grouping spins
into blocks of side r (in units of lattice spacings), as indicated in Fig. 3.1. If d is
the dimension of space there are 74 elementary spins within a block and the sum
of spins therein can take values ranging from —r4 to 4. Accordingly, we define a
block spin variable X, as

z = Il{ > o (3.41)

iel

where the sum is taken over the sites ¢ within the block / and where R is some
normalization factor introduced so that X; can effectively take the values *1. For
instance, R would be equal to ¢ if the spins within the block were always perfectly
aligned (since this is not true, R will be lower than that).

Figure 3.1. Block spins: an illustration of how four spins may be combined into a single
site variable.

We will assume that the cooperative phenomena observed near the critical point
can be accounted for equally well by a description in terms of block spins with a
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nearest-block Hamiltonian of the same form as the original Ising Hamiltonian,
H=-I'Y5,5-K) % (3.42)
(1) i

but with different parameters J' and /. This is plausible since near criticality the
correlation length & is much larger than the block side r. The correlation length of
the blocks (the number of blocks over which the block spins are correlated) is, of
course, &/r, which means that the effective reduced temperature ¢’ is different from
the original reduced temperature by a factor rV/":

Y =r't (3.43)

The two Hamiltonians H and H’ should involve the same interaction energy with
an external field, and therefore

B = YT,
i 1
=HWR™! Zoi

which implies ' = Rh. Since our grouping procedure should in no way affect
the total free energy of the system, the free energy per block should be ¢ times
the original free energy per site, and should moreover have the same functional
dependence because H and H’ have the same form:

fie, W) =r*ft,h) or
fiz, k) = r%f(r'"t, Rh)

It remains to find R as a function of 7 in order to recover the scaling hypothesis
(3.34). This is done by looking at the pair correlation function at criticality: The
block-spin correlation function is then

I'(n) = (%, %)) — (ENZ))
=R Ltoio) — (@ iop}
iel jel
=R 24 I'(rn)
R-2 4
= |m|d—2+'7
R™2 ,d+2—r;
= lnld-2+n

(3.44)

(3.45)

(3.46)

which implies
R =r+2-02 g that H = r@+2-02p (3.47)

Looking back at the scaling hypothesis (3.34) and letting r = A", we conclude
that

a=1(0d) and b= (d+2-—nl(2d) (3.48)
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The critical exponents « through § can thus be expressed in terms of n and v:
a=2-—wd
p= %"(d —2+) (3.49)
y=v(2-n)
§=d+2-n/d-2+n)
We have succeeded in expressing all six critical exponents in terms of two of them
(n and v) pertaining more directly to the correlation functions. Of course, these

relations can be written with a different set of “independent exponents.” Table 3.2
gives the four scaling relations in their original form, with their accepted names.

Table 3.2. Summary of the scaling laws.

Rushbrooke’s law a+28+y=2

Widom’s law y=p6-1)
Fisher’s law y=v(2—n)
Josephson’s law w=2—-«

3.2.3. Broken Symmetry

Phase transitions are generally associated with broken symmetries. By broken
symmetry, we mean a symmetry of the configuration energy (or the action, in the
quantum case) that is no longer reflected in the macrostate of the statistical system
(or the ground state of the quantum system). For instance, the configuration energy
of the two-dimensional Ising model at zero field is invariant with respect to the
reversal of spins o; — —o;. We say that this symmetry is broken if quantities that
are not invariant under this symmetry operation have a nonvanishing expectation
value. The magnetization (o;) is nonzero in the low temperature phase of the Ising
model in the limit of zero external field, and the spin reversal symmetry is then
broken. The simplest quantity that is not invariant under the symmetry considered
and has a nonzero expectation value, such as the magnetization here, is called an
order parameter. The phase with broken symmetry is often called the ordered
phase. On the other hand, the high-temperature phase, in which the symmetry in
unbroken, is often called the symmetric phase. We notice that in field theories,
the analogue of temperature, after a rescaling of the fields, is some nonlinear
coupling constant. Phase transitions in this case occur as a function of coupling;
the interpretation is different, but the underlying physics is identical.

The spin-reversal symmetry of the Ising model has a discrete character. On
the other hand, the O(7) model (3.15) is endowed with a continuous symme-
try: Its configuration energy is invariant under a rotation of its order parameter
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n by a uniform O(#n) matrix. The average (n) would be nonzero in the ordered
phase, except that a slow, continuous change of (r) throughout the system would
cost very little energy. The consequence of this is the impossibility to break a
continuous symmetry in a classical statistical system in one or two dimensions:
this is the Mermin-Wagner-Coleman theorem. Simply put, long-wavelength ther-
mal fluctuations of the order parameter take too much place in the phase space
of low-dimensional systems (infrared divergence), and these fluctuations always
succeed in destroying the order. The implications of this theorem to quantum sta-
tistical systems follow from the analogy between a quantum system in d spatial
dimensions and a classical system in d + 1 dimensions, where the extra (imag-
inary time) dimension is limited in extent by the inverse temperature 8. At any
nonzero temperature, a certain class of fluctuations of the continuous order pa-
rameter occurs on a length scale greater than v8 (v is the characteristic velocity),
and these long-wavelength fluctuations are thus governed by classical statisti-
cal mechanics. The Mermin-Wagner-Coleman theorem then implies that no con-
tinuous symmetry can be broken in two dimensions except at zero temperature.
In a one-dimensional quantum system, such breaking is impossible even at zero
temperature.

We point out that the Mermin-Wagner-Coleman theorem does not forbid all
transitions implying a continuous order parameter. Such transitions are possible,
provided they do not imply an expectation value of the order parameter. The best-
known example is the Kosterlitz-Thouless transition in the O(2) model defined
on a plane (the two-dimensional XY model). In this model, the local order pa-
rameter is a planar, fixed-length vector n, and topological defects (vortices) play
an important role. These vortices are bound in pairs below some critical temper-
ature and are deconfined above that temperature. In both phases the average (n)
vanishes.

§3.3. The Renormalization Group: Lattice Models

The scaling hypothesis of Sect. 3.2.2 has been motivated by the introduction of
block spins with an effective Hamiltonian having the same form as the original
Hamiltonian, albeit with different values of the couplings (this last step has not
been demonstrated, but seems plausible; in fact it is only approximately valid).
This procedure is called block-spin renormalization or real-space renormalization
and defines a map between an original Hamiltonian H and a new scaled Hamilto-
nian H’. This map and its iterations form what we call the renormalization group,
the most powerful tool at our disposal in the analysis of critical phenomena. In
this section we present a survey of the basic concepts, along with a more detailed
calculation within the Ising model on a triangular lattice. An exhaustive presenta-
tion of the renormalization group lies outside the scope of this review chapter and
may be. found in many good texts.
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3.3.1. Generalities

We consider a general d-dimensional lattice model with N spins o; and Hamiltonian

1) (2)
HQ,sLN) =Ty +1,) 0, +1,) o0 +J3 Y 0,0+ (3.50)
i (i) (i)
J represents the collection of couplings J,,J,, - - - and the symbol Zg; means a

summation over nearest neighbors, while ZE?I)) means a summation over next-to-

nearest neighbors, etc. Other couplings can possibly be included, with three-spin
couplings and so on. We then define block spins X,, along with a set of indepen-
dent variables collectively denoted by &; and describing the remaining degrees of
freedom within each block. The Hamiltonian can in principle be rewritten in terms
of these variables, and the partition function is

Z(J,N) = ) exp—H(J, [Z), [61,N) 3.51)
[Z]1€)
The inverse temperature 8 has been absorbed in the couplings J;. Each block is of
size r in units of the lattice spacing, and the number of blocks is therefore Nr—4,
The block Hamiltonian H'(J’, [£], Nr~9) is obtained by tracing over the internal
variables &:

exp—H'(J, [Z),Nr™®) =) " exp—H(J, [Z], [, N) (3.52)
3]

We have assumed that H’ has the same functional form as H, and this fixes the
value of the effective coupling J'. This assumption is only approximately valid, but
the closer we are to the critical point, the better this approximation is. Its validity
can also be improved with the inclusion of a more complete set of couplings in the
theory. The partition function is then

Z@Q,N) = Y_exp—H'(J,[£],Nr™9)

[£] (3.53)
=2, Nr™)
The free energy per site is therefore mapped as
) =r ) (3.54)

The map J — J’ from the original set of couplings to the set of effective block
couplings generates the renormalization group.> We write

J =TQ) (3.55)

Iterations of this map generate a sequence of points in the space of couplings, which
we call a renormalization group (RG) trajectory. Since the correlation length is

3 In fact, some information is lost during the process of tracing over the internal variables . Thus
the map J — J' is not reversible and the renormalization group is only a semi-group.
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reduced by a factor r at each step, a typical renormalization-group trajectory tends
to take the system away from criticality. Because the correlation length is infinite
at the critical point, it takes an infinite number of iterations to leave that point.
In general, a system is critical not only at a given point in coupling space but
on a whole “hypersurface”, which we call the critical surface, or sometimes the
critical line. Under renormalization-group flow, a point on the critical surface
stays on the critical surface. A point J. on the critical surface that is stationary
under renormalization-group flow is called a fixed point of the renormalization

group:
), =TQ,) (3.56)

In general, the map (3.55) is nonlinear and its exact analysis is difficult. What is
most important, however, is its behavior near a fixed point, which can be obtained
by linearizing the renormalization-group map around J... This is done by defining
the difference 8J = J — J and expanding T to first order in a multivariable Taylor
series. The resulting truncation is a linear map of the differences 8J:

oT;
8y = As) A; = ﬁl 3.57

]

The matrix A may be diagonalized, with eigenvalues A; and eigenvectors u,. These
eigenvectors form a basis of coupling space, that is,

J=1J + D 1y (3.58)

with the ¢;’s playing the role of “proper couplings.” In terms of these, the
renormalization-group linearized action is diagonal:

t; = A
) (3.59)
= rylti

The exponents y; are precisely the scaling exponents* a and b (times d) of
Eq. (3.34), since the singular part of the free energy density transforms like

fit,.t,,---) = r‘df(ry'tl, rt,,---) (3.60)

Therefore all critical exponents can be obtained from the eigenvalues of the lin-
earized renormalization-group transformation at the fixed point. To find these
eigenvalues is the prime objective of renormalization-group calculations.

The character of a fixed point is determined by whether the eigenvalues A; are
greater or smaller than 1, or equivalently whether the exponents y; are positive or
negative. A fixed point with positive and negative exponents is called hyperbolic be-
cause of the shape of renormalization-group trajectories near J.. A two-parameter
example is illustrated in Fig. 3.2. The critical surface (which is a line on the figure)

4 The reduced temperature may undergo a sign change, since J; o« 1/T, but this does not affect the
critical exponents.
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is the setof points in coupling space whose renormalization-group trajectories end
up at the fixed point:

lim T"(J) =], (3.61)
n—o00
The critical surface near J, is a vector space spanned by the eigenvectors u; such

that A; < 1. Off the critical surface, the system is taken away from it by the
renormalization-group flow.

Ja

J1

Figure 3.2. Schematic renormalization-group flow around a generic hyperbolic fixed point.

A parameter #; associated with a positive scaling exponent (A; > 1) is called
relevant, since it grows under renormalization-group flow (i.e., when the system
is scaled away from criticality). If, on the contrary, y; < 0 (&; < 1), ¢; is said to be
irrelevant, whereas if y; = 0 (A; = 1) it is marginal. Marginal operators do not
scale with a power law behavior near a critical point, but rather logarithmically;
the linear approximation around the fixed point J,. is then invalid.

The existence of critical surfaces and fixed points is thought to explain the uni-
versality of critical exponents (i.e., that many different systems are characterized
by the same critical exponents). In other words, statistical systems seem to fit into
universality classes whose members share the same critical behavior. This can be
understood if different systems live on submanifolds of one large coupling space,
and if these submanifolds intersect the same critical surface. At criticality, all of
these systems will be (presumably) driven toward the same fixed point, with the
same scaling exponents.

3.3.2. The Ising Model on a Triangular Lattice

In order to illustrate some of the previous statements we will perform an ex-
plicit real-space renormalization-group calculation for the Ising model living on a
triangular lattice.
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The block structure is indicated on Fig. 3.3. The Ising Hamiltonian is written
as

(1)
H(k,h) = -k o0, —hZa (3.62)
@

Each lattice site has 6 nearest neighbors. A block I is made of three spins, which
we call o, o and o . We define the block spin Z; as

T, = sgn(o] + 03 + 03) (3.63)

In other words, X, adopts the sign of the majority. The three spins within a block
lead to 23 = 8 different states, which makes four different states for the internal
variable &; and two for the block spin X,. The four states are chosen to be

S] : (+t +u _) » (+: > +) » (_: +r +) » (+r +, +) (3'64)
and the actual state of the spins o; is obtained by multiplying by X; = +1.

./_\A/_\A/_\A/_\.
A
A

AT AT AT
NSV
ACACADA

Figure 3.3. Block spins on the triangular lattice.

We decompose the Hamiltonian into the sum of a “free” part H, containing
only the interaction within blocks, plus an “interaction” part V containing the
interaction between blocks and with the external field:

H, =—kZZaa

@)
(ijel)

=—kZZaa hZZa

) . (!ﬂ iel

(3.65)

We also define the following expectation values in which only the variables internal
to a block are summed:

(FIS]) = Z7' Y FIE, £lexp —H,([5], [£]) (3.66)
(€]

Z; =) exp—Hy([Z1, [£) (.67
3]
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According to (3.53), the block Hamiltonian H(k’, &’) is defined by
exp—H(K',h') = Zs(e") (3.68)
The “free” partition function Z is easily calculated, since different blocks do not
interact within H ;:
Zf — Z([;l/3
where Z; is the sum over states within a given block:
Z, =Y exp{k(Z]x} + Biz} + ={x))}
o1 (3.69)
=3e* +e*

This last step follows from Eq. (3.64), wherein three states have energy k and one

state has energy —3k.
The expectation value (e) can be expressed as a cumulant expansion:

€’y = exp{(V) + %((w) - <V>2)+--~] (3.70)

At this point we will make the approximation of keeping only the first term of
this expansion. This amounts to neglecting the fluctuations of the interaction term
within each block. The expectation value (V) is relatively easy to calculate. We
start with the block-block interaction V. There are two elementary links between
a pair of nearest-neighbor blocks and, as shown in Fig. 3.4, the interaction V; is

Vv, = —kZi(z! + =) (3.71)
Since the expectation value within different blocks factorizes, we have
(V) = —2k(Z}) (=) (3.72)

where ()3’ ) is the same for all i = 1, 2, 3. The expectation value (Z ) is readily
calculated:

(Zh) =Z5' Y Bl exp—k(Z] T} + Ty T4 + T E))
& (3.73)
= Z;l(e:;k + e—k)zl
where we have used the definition (3.63) for the block spin X,. Consequently, the
mean interaction term between blocks is

e* +et )
(V”) = —2]( W 212] (374)

Since the average interaction with the external field involves only the expectation
value (X%), we find

ek +ek ek ek
(V)=—2k( 3k+3e_k) Y53 - (3k = hZz, (3.75)

()
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To first order in the cumulant expansion, the block-spin Hamiltonian is therefore
HK ,K)=3InZ,+ (V) (3.76)

The first term is independent of X, and may be ignored (except if one is interested
in the value of the free energy F). We therefore end up with the following map
between the block-spin couplings and the original ones:

2
ek 4 3e—k

3k -k
-~ (fﬁ_i)
ek + 3ek

2 2
3
1 1
Figure 3.4. Interaction between block spins in the nearest-neighbor Ising model on the
triangular lattice.

3.77)

The renormalization-group (RG) flow associated with the above map is illus-
trated schematically in Fig. 3.5. There are 9 fixed points on this diagram, corre-
sponding to the possible combinations of 74 = 0, —oo, oo and k = 0, k_, co, where
k. is determined by the equation

1 e ek 1
5= (W) = k.= 2 InC1 +2+/2) ~ 0.336 (3.78)

The fixed point (k, /) = (k,, 0) is unstable in both directions and corresponds to
a continuous phase transition. Near this point, the RG flow admits the following

linearization:
kY _ (162 O 8k
(sh') = ( 0 2.12) (8h) 3.79)

with the eigenvalues A, = 1.62 and A, = 2.12. Since the scale factor for the
triangular matrix is r = /3, the free energy density scales as

fik, ) = raf(r*%k, r-"h) (3.80)

The critical exponents can be calculated from (3.39) and from the scaling laws of
Table 3.2. We list them here, together with the exponents obtained in the exact
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solution of the same model:
L B 14 ) v n

RG: —0.27 0.72 0.84 217 1.13 1.26
exact: 0 % % 15 1 %

Notice that the simplest RG calculation described here is not very successful at
predicting the exponent 7. The difference between its predictions and the exact
exponents is attributed to the approximation made in neglecting higher-order terms
in the cumulant expansion. If these terms were considered, more couplings would
have to be included in order for the effective block Hamiltonian to have the same
form as the original Hamiltonian, but a better agreement with the exact result would
be found.

(0,00) - » (oo,oo)

h A

A A

(0,0) < > (00,0)
0 k

\ 4 (kc ) Y

\ 4
(0,~00) - >

Figure 3.5. Schematic renormalization-group flow for the Ising model on a triangular lattice.
The k and 4 axes have been contracted to display the points at infinity. The completely
unstable fixed point (k.,0) corresponds to the continuous phase transition, whereas the
other fixed points are associated with phases (with or without an external field).

The other fixed points in Fig. 3.5 do not have the interpretation of phase tran-
sitions governed by temperature. Recall that the physical inverse temperature
B = 1T is included in the definitions of the coupling k and of the field /2. The
“physical” field is rather 2» = Th. Thus, the fixed point (k, #) = (0, 0) corresponds
to infinite temperature and small field /2 and describes a disordered phase. This
point is unstable when an “infinite” field 4 is turned on and a nonzero magnetiza-
tion then appears, in one direction or the other. These ordered states are described
by the points (0, 00). At the other extreme, the fixed point (k,k) = (o0, 0)
corresponds to zero temperature and describes an ordered phase in the absence
of a field. It is unstable against an infinitesimal field %, which drives the system
into a state of nonzero magnetization, described by the points (co, 1=00). In gen-
eral, stable fixed points describe stable phases of the system. This interpretation
is natural since the correlation length decreases along the RG trajectory and the
statistical mechanics of the system becomes simpler, since more and more degrees
of freedom have been eliminated. The unstable fixed points located between the
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basins of attraction of stable fixed points are, on the contrary, associated with phase
transitions governed by temperature (e.g., (k, #) = (k_, 0)) or by other parameters
(e.g., (k,h) =(0,0)).

§3.4. The Renormalization Group: Continuum
Models

Block-spin—or real-space—renormalization is an intuitive procedure designed for
lattice models. If we want to apply renormalization ideas to continuum models, be
it in the context of statistical mechanics or that of quantum field theory, a different
procedure is needed, namely momentum-space renormalization. In what follows,
the term action functional is used instead of energy functional, as it should be in
statistical mechanics, since we have quantum field theory in mind and will refer
to scale transformations as defined in Chap. 2.

3.4.1. Introduction

For the sake of introduction, we consider a statistical model defined in terms of a
single scalar field p(x) in d-dimensional space (boldface letters denote vectors).
The field ¢(x) may be Fourier decomposed as follows:

d?k
(2ny
The action functional S[¢] may be expressed in terms of the Fourier components
@(k). For instance, the action for the ¢* theory in Eq. (3.19) becomes

Stwir,ul = [ (@) SH-RPENE +1)

o(x) = j (k) p(k) &= (dk) = (3.81)

+ g [ @A) (K, e, — )il ) o)
(3.82)
In general, we write the action as S[g; u;], where u; stands for the collection of
parameters multiplying the various terms of the Lagrangian density.

Naturally, the continuum theory is defined only through some regularization
procedure, which we take here as a cutoff A, meaning that the integration is
restricted to the region of momentum space such that all arguments k of $(k)
lie within the cutoff: |[k| < A. The Fourier decomposition (3.81) amounts to a
unitary transformation of the degrees of freedom, as could easily be seen in a
discrete version of the Fourier transform for a finite lattice of points. Therefore,
the functional integration measure may be formally written as

[del, = [Jdet) = [] dot) (3:83)

lkl<A

since no Jacobian arises from the change of integration variables ¢(x) — @(k).
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The first step of the renormalization procedure> consists in integrating out the
Fourier components (k) such that A/s < |k| < A (the so-called fast modes),
where s is some dilation factor (s > 1). The number of degrees of freedom is
then effectively reduced, with a new cutoff equal to A/s. The remaining degrees
of freedom (the slow modes) are governed by a modified action S'[¢; u;]:

exp—S'lp; u;] = f [T dew) exp—Sig;u) (3.84)
Als<|kl<A
As long as we are interested in correlation functions of slow modes only, the
effective action S’ is entirely equivalent to the original action S which includes
fast modes.
The second step of the renormalization procedure is a scale transformation on
the slow-mode action, as defined in Eq. (2.121):

k—>k'=sk or x—>x =x/s (3.85)

Here the scaling factor A is 1/s. In general such a transformation also affects the
field:

@(x) - ¢'(xls) =s®p(x) or §(sk)=s>"4G(k) (3.86)

The exponent A is the scaling dimension of the field ¢ and is related to the exponent
n: A = n/2. Such a transformation of the field affects the functional integration
measure only through a multiplication factor. After this rescaling, the modified
action S’ can be rightfully compared with the initial action S, because they now
have the same cutoff A, that is, the same set of degrees of freedom (this was not
true before rescaling). As said above, the two actions S and S’ are equivalent as far
as the slow modes are concerned: they describe the same long-distance properties.
However, the parameters u; defining these two action functionals are different in
general: S’'[¢] = S[g; u{-].6 We thus generate a curve u;(s) in parameter space (s is
the rescaling factor), and each point on this curve defines an action functional with
the same long-distance properties. The outcome of the renormalization procedure
can be expressed in a set of coupled flow equations in parameter space:
du;
dins ﬂ,’(u,') (3.87)

where B, is commonly referred to as the beta function associated with the parameter
u;. Like before, a fixed point u; of the renormalization group is a point in parameter
space that is unaffected by the renormalization procedure. In other words, it is
characterized by a vanishing beta function:

Biu}) =0 (3.88)

5 This procedure is known as the Wilson-Kadanoff renormalization scheme.

6 This equation supposes that the scaling dimension A has been chosen appropriately; otherwise,
the two actions are not equal, but differ by a multiplicative constant. Also, the number of parameters
needed for the new action to be of the same form as the old action is in principle infinite. In practice,
however, one keeps only a finite subset of parameters: relevant and marginal ones. Irrelevant parameters
(in the RG sense) rapidly decrease under RG flow.
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To summarize, arenormalization-group transformation amounts to a scale trans-
formation applied both to the action and to the integration measure (i.¢., the Fourier
modes that would be scaled beyond the cutoff A are integrated out). A fixed point
of the renormalization-group transformation thus defines a theory that has scale
invariance at the quantum level.

THE GAUSSIAN MODEL

The simplest example of a continnum model for which the renormalization pro-
cedure can be carried out exactly is the free boson, or Gaussian model, obtained
from Eq. (3.82) by setting «# = 0:

Slp; 1] = / (@) 35" RFRE +7) (3.89)

In this model the fast and slow modes are decoupled, since different values of the
wavevector do not mix in the action. Therefore, integrating the fast modes produces
only an irrelevant multiplicative constant in front of the partition function. The
effective slow-mode action is then

Stol= [ @) Jo(-R0p0E" +7)
Als

=s f (dx’) %é(—k'/s)é:(k’/s)(k’zlsz +7) (3.90)
A

— Sd—2A—2 f (dk/) 1@’(—k’)¢’(k’)(k,2 +52r)
Rl

We immediately see that S, in terms of ¢’, has the same form as S[¢], provided
r=0and A = %d — 1. This we knew already from Eq. (2.124). In this particular
case, the scale transformation on the path-integral measure brings nothing new and
the scaling properties all follow from the action alone. Thus, the massless (r = 0)
Gaussian model is a fixed point of the renormalization group—in fact, the simplest
of all fixed points from the present point of view.

3.4.2. Dimensional Analysis

We consider a field ¢ (not necessarily a scalar field) governed by an action func-
tional S[¢] and let us assume that there exists a fixed-point action S;[¢] (not
necessarily Gaussian) at some point in parameter space, which we take, for con-
venience, as the origin. In the vicinity of this fixed point, the generic action S[¢]
may be expressed as

Sl = Sylp) + Y _u; f dx O,(x) (3.91)

where the O;(x)’s are some local operators, expressible in terms of the field
¢. The couplings u; must be small if we are close to the fixed point. Un-
der a renormalization-group (scale) transformation, the field ¢ transforms like
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¢'(x) = s®¢(sx) and only S;[¢] is invariant. The other terms are modified through
their couplings:

S181 = S,l91+ Y ui(s) / dx O.(x) (3.92)

In principle, the series on the r.h.s. may be infinite, and the transformed couplings
u; may depend on s in a complicated way, because of the functional integration of
the fast modes. We assume, however, that the couplings u; are so small that they
have a negligible effect on the fast mode integration. In this approximation, the
new couplings u; may be obtained simply from the behavior of the operators O;
under a scale transformation, which follows from the expression of O; in terms of

¢:
Ol(x) = s%0,(sx)

3.93
u, / dx O/(x) = u,s54 / dx O,(x) @93

Therefore
’r__ d—A;
u; =u,;s (3.949

In other words, in this zeroth-order approximation, the dimensions of couplings
are obtained from the scaling dimension A of ¢ by applying dimensional analysis.

Adopting the terminology of the previous section, a coupling is said to be
relevant if A; < d: It will grow as the fast modes are integrated. An irrelevant
coupling is such that A; > d, and will shrink as the fast modes are integrated. At
last, a marginal coupling will stay the same, or rather vary logarithmically near
the fixed point.”

For instance, we now look at some operators within the Gaussian model. The
first operator that comes to mind is the mass term O, = %gpz, with coupling . With
Gaussian scaling (i.e., A = 3d —1) we find that A, —d = —2, and hence 7’ = s7r.
This, of course, was already known from Eq. (3.90). Thus, the mass term is relevant
at the Gaussian fixed point, in all dimensions. This is a trivial statement since we
know from Chap. 2 that the mass is the inverse correlation length (1 ~ £7!) and
that £ decreases under scaling (£ = &/s). The quartic coupling of the ¢* theory
is associated with the operator O, = ¢*, with A, —d = d — 4. Thus the quartic
coupling u is relevant in dimensions smaller than four, irrelevant in d > 4, and
marginal in d = 4 (still at zeroth order). At this order, it looks as if any (positive)
value of u yields a fixed point ind = 4.

7 1t is important to keep in mind that the scaling dimensions of operators, or the relevance or irrele-
vance of couplings, depends not only on the form of these operators in terms of ¢, but also on the fixed
point considered.
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3.4.3. Beyond Dimensional Analysis: The ¢* Theory

To go beyond dimensional analysis, we generally use perturbation theory: We
expands the exponential exp —S in powers of the perturbing coupling. The problem
is then reduced to the calculation of Gaussian correlators, which can be done using
Wick’s theorem. Since we will make little use of perturbation theory in this work,
this method is not reviewed in these introductory chapters; again we refer the reader
to the standard texts on quantum field theory. Here we simply cite known results.

To first order in u and r, perturbation theory leads to the following
renormalization-group transformation of the couplings:

Y = s¥r + ub(l — s*9))

u = S4—du

(3.95)
with
b=K,A"%2d—-4) , K;'=(@m)¥rdr)2 (3.96)

In matrix form this becomes

’ 2 2 _ 4-d
(-G E)@) e

We recall that the proper couplings ¢; of Eq. (3.58) are obtained by diagonalizing
this matrix. The eigenvalues and eigenvectors are

2

=S u, =(1,0
L 1= (1.0 (3.98)
a=std  w=(=b,1)
Since by definition (, u) = t,u, + t,u,, we have the proper couplings
t,=r+bu LL=u (3.99)

At this order, there is a critical line in d > 4 specified by the equation #, = 0, or
r = —bu.Ind = 4, it still looks as if any value of £, = u constitutes a fixed point.

However, this picture breaks down once we take into account higher orders of
u in the perturbation expansion. At second order, we find that

2 u 1 201 _ <=2y _
r=s [r+_16712 (2A (1-s5s9) rlns)]

3u?
r__ 4—d
u=s [u—16n21ns}

The quartic coupling then receives logarithmic corrections in d = 4. This RG
mapping is better expressed by the corresponding beta functions:

(3.100)

dr oy YT + uA?
dlns ~ 1672 1672 (3.101)
du 3, '
L d—du—
dins ~ 4~ D= e
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This shows the emergence of a new (non-Gaussian) fixed point at 7, u # 0, whose
location is readily found from the above beta functions:
1672 d—4
= " (4—d) r= 2 TA2 (3.102)
3 6
It is a straightforward exercise to linearize the flow (3.101) around this new fixed
point and to find the critical exponents. For reasons that will not be explained
here, the critical exponents of the ¢* theory (and of other Gaussian-like models)
are calculated in the form of a series in powers of ¢ = 4 — d (the so-called
e-expansion). Each additional order in perturbation theory leads to the correct
evaluation of a new term of this expansion. To order €2, the exponents of the (p“
theory are calculated to be
1 1 2 2

v=§+ﬁs+0(s) n=0+0(%) (3.103)
The ¢* model in d = 4 clearly illustrates that scale invariance of the action (here
on the line » = 0) does not guarantee scale invariance at the quantum level (i.e.,
a renormalization-group fixed point). This breakdown of dimensional analysis is
due to interactions.

u*

§3.5. The Transfer Matrix

A powerful way to solve the Ising model and other related statistical models is
the transfer matrix method, which is the analogue in statistical mechanics of the
operator formalism in quantum field theory. In this section we will describe this
formalism and indicate how it can lead to an analogy between quantum field
theories and statistical systems near criticality.

Again, we turn to the Ising model on a square lattice with#z rows and n columns.
A spin is here indexed by two integers® for the row number and column number,
respectively, and we will impose periodic boundary conditions

Oij+n = Ojj Oitm,j = Oij (3.104)

thereby defining the lattice on a torus. Let us denote by u; the configuration of
spins on the i-th row:

K = {Gili Giz’ ot 'ain} (3.105)

There are 2" such configurations. The row configuration u; has an energy of its
own:

n
Elw] = ) 0p0iprs (3.106)
k=1

8 The two indices will be separated by a comma only when necessary to avoid confusion.
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as well as an interaction energy with the neighboring rows:
n
Elp, pnl =) oy (3.107)
k=1

We next define a formal vector space V' of row configurations spanned by the |u;),
for which we introduce a “bra-ket” notation in analogy with quantum mechanics.
On this space, we define the action of the transfer matrix T by its matrix elements:

, 1 |
(ITIw) = exp—B(Elp, w1+ SElul + S ElW]) (3.108)
In terms of the operator 7, the partition function has the following simple form:

Z= Y (uy|TIp) ey Tlts) - - a1ty
Hathm (3.109)
=T T"

The transfer matrix defined in (3.108) is manifestly symmetric, and therefore diag-
onalizable. The partition function may be expressed in terms of the 2" eigenvalues
Ay of T:

2"—-1

Z= Z AR (3.110)
k=0

The thermodynamic limit is obtained when m2,7 — oo. In this limit, the free
energy can be extracted by keeping only the largest eigenvalue of T, assuming, for
the sake of argument, that it is nondegenerate. Indeed, the free energy per site f is
given by

1
—IT = lim —In(Ag + A7 +--2)
»N—>00 Mn
1
= lim —{miA,+ In(1+ (A /A)" +--2)} (3.111)

m,n—00 Mmmn

InA
= lim 0
n—oo n

since A,/A, < 1. The calculation of more complicated thermodynamic quantities
requires the knowledge of more eigenvalues.

In order to express correlation functions in terms of the transfer matrix, we
introduce a spin operator 6; acting on V' and giving the value of the spin on the
i-th column when acting on basis vector |u):

&f“l«) = o;|u) (3.112)
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Then

1
<Uiioi+r,k) = 7 Z (g1 Tpy) - - - (M;|6}T|Mi+1) s

Hi,im
Tt (I"’i+rl6kT|Mi+r+1) M (MmlTlu/}) (3.113)
Tr (T 6, T &)
- TrT™

This should be reminiscent of the passage from the operator formalism to the path
integral formalism in Euclidian quantum field theory. The transfer matrix here
plays the role of the evolution operator U(a) over a “distance of time” equal to the
lattice spacing a. In other words, one can define a Hamiltonian operator H as

T = exp—aH (3.114)

The eigenstates of T are the analogue of the energy eigenstates of quantum
mechanics, the eigenvalues E, of H (the energy levels) being expressed as

E

r

1
— __lnAr (3.115)
a

in terms of the eigenvalues of T'. Therefore, the free energy density f/a? is propor-
tional to the vacuum energy per site, or the vacuum energy density in field theoretic
language:
E
fla* = lim =2 (3.116)
n—o00 na

The magnetization (o;;) in the thermodynamic limit is
{(oy,) = lim (Tr ™) 1Tr (6T™)
m-—>o0

= lim e E-ED %" (0)5, |I) (3.117)
1

= (016,10)

where we have inserted a complete set of T eigenstates, which reduces to [0) (0] in
the limit 2 — oo because of the exponential factor. The statistical average of the
spin is therefore given by the “vacuum expectation value” of the corresponding
operator S. This applies to any local quantity and its operator.
Likewise, the pair correlation function can be expressed in the thermodynamic
limit:
(51151471) = lim (Tr ™'t (T™"S, T'S,)

= lim &™) (0], |1 (lle~FS, 0) (3.118)
1

m—»00

= (s,,)% + 1(0IS,|1)|>exp —ra(E, — E,) + - - -
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The connected correlation function in the long distance limit (r >> 1) is therefore
($11514r,1) ~ KOIS;11) I? exp —ra(E, — E,) 3.119)

The energy gap E, — E, is the mass m of the field quantum: It is the energy of
a particle at rest. The relation between the correlation length and the mass of the
associated Euclidian quantum field theory is therefore

E= 1 (3.120)

ma

Near a critical point the correlation length grows without bounds and correspond-
ingly the mass goes to zero (for fixed a). In other words, the largest eigenvalues
of the transfer matrix coalesce at the critical point.

To summarize, we have shown how a lattice model can be described in an
operator formalism, which makes clear the very close analogy with Euclidian
quantum field theories. The free energy density is then the vacuum energy density,
the pair correlation function is the field’s propagator, and the correlation length
is proportional to the inverse mass. A system at the critical point is therefore
equivalent to a massless field theory, provided the lattice spacing a is not exactly
zero.

Exercises

3.1 The binomial distribution

Consider a set of N particles moving almost freely in a box of volume V, with occasional
collisions among themselves. The probability that a given particle be within the left half of
the box at any moment is % . If we neglect the volume of the particles, i.e., if the density of the
gas is not too large, then the fact that a particle is in the left half of the box is independent
of the situation of other particles, and the number 7 of particles in the left half obeys a
binomial probability distribution:

N! 2N
n!(N —n)!
a) Compute the expectation value of the binomial distribution, namely the quantity (rn) =
ZL(, nP(n), which represents the average number of particles in the left half of the box.

P(n) =

12
b) Compute the standard deviation An = ((n - (n))z) .

¢) By expanding the probability P(r2) around the mean value (), find the thermodynamic
limit of the distribution P(n).
Result: Writingn = % + &, and using Stirling’s formula

1 1
Inx! = (x + E)lnx —-x+ 3 In 27 + O(1/x)

N ’ 2 2\2
P ' ~ —2(2N—-1)e*/N-
( 2 2 aN €

for large x, we find that
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Hence, in terms of the scaling variable x = 2¢/+/N, the thermodynamic distribution
becomes the Gaussian distribution

—x?

P(x) = —%e

3.2 The one-dimensional Ising model
We consider the one-dimensional Ising model, with energy (3.6). We introduce the scaled
variables K = —J/kgT and H = h/kpT.

a) Show that the partition function on a chain of N sitesi = 1, .., N, with periodic boundary
conditions N + 1 = 1, can be expressed as the trace

ZvK.H) = ) exp{KZsis,-+HZs,-]

si=%1 (i) i
SN41=9)

- Tr(T(K, H)N)

where T(K, H) is the 2 x 2 transfer matrix of the model. Show that T(K, H) is
eK+H oK
6= (5% )
in the basis (+1, —1) for s.

b) Compute the thermodynamic free energy

f(K,H) = A}T:o —(1/N)InZy(K, H)

Hint: (Zy)"V is dominated by the largest eigenvalue of the transfer matrix T, namely

Amax = €X cosh(H) + e~ + e2K sinh(H)
¢) Compute the magnetization M = —3f/3K. Show in particular that the magnetization
is linear for 2 small (M ~ he®). Deduce that the magnetic susceptibility diverges at
zero temperature. Show that there is no phase transition at finite temperature for the one-
dimensional Ising model.

d) Compute the spin-spin correlation in the thermodynamic limit.

3.3 Free energy of the one-dimensional Potts model
In the g-state Potts model, the spin variable s; takes g possible values, in the set {0, 1, ...,g —
1}. The energy of a configuration reads

E(S] ’ "‘}SN) = -J Z 85,',5,'
(if)
and we use the scaled variable K = J/kgT.

a) Write the transfer matrix T of the one-dimensional model with periodic boundary
conditions in terms of the g x g matrix J, with all entries equal to 1.
Result: T = (eX — DI+ J.

b) Compute the thermodynamic free energy of the one-dimensional g-state Potts model.
Hint: Note that J> = gJ, and use this fact to compute Tr(TV).
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3.4 Transfer matrix for the two-dimensional Ising model
The two-dimensional Ising model with spins s;; sitting at the vertices (i, ) of a square lattice
of size N x L in zero magnetic field has the energy

El[s] = —J z SiiSki
(@ )KkD)
where the sum extends over all the bonds of the lattice. We use the scaled variable K =
JikgT.
Write the row-to-row transfer matrix for this model, namely the 2% x 2L matrix T (K), such
that the partition function Zy ; with periodic boundary conditions reads

Zvo(K) = Tr(TL(KY")

3.5 Numerical diagonalization of transfer matrices

a) Given a symmetric indecomposable 7 x r matrix T, show that it has a unique maximal
eigenvalue A . Let vy, denote the corresponding (normalized) eigenvector.

b) We define the sequence of vectors vg,v;,V,, - - - where v, is arbitrary and the other
members of the sequence are defined by recursion: v,.; = Tv,/|Tv,| (|x| denotes the
Euclidian norm of x). Show that if the scalar product v - Ymax does not vanish, then the
sequence v,, converges exponentially fast to Vpax.

Hint: Decompose vy in the orthonormal diagonalization basis of T'.

c) Using the above, write a computer program to extract the largest eigenvalue of a symmetric

matrix 7.

d) Application: Evaluate numerically the thermodynamic free energy of the two-

dimensional Ising model on an infinite strip of width L, at the known critical value of

the coupling K = K, = —(1/2)In(+/2 — 1). (Use Ex. 3.4 above for the definition of the

relevant transfer matrix.) Plot the results for various widths L. Fit the results with the ansatz
/4

fo =L g5

and evaluate the constants f and c. The quantity ¢ is the central charge of the corresponding
conformal field theory. Its exact value for the two-dimensional Ising model is ¢ = 1/2.

1
C+O(ﬁ)

Notes

There are many excellent texts on statistical mechanics; we cannot list them all here. The
very thorough and pedagogical text by Diu and collaborators [106] deserves special men-
tion. Texts by Ma [261], Huang [194] and Pathria [292] are widely used. Among texts
emphasizing critical phenomena are those of Amit [13], Binney et al. [47], Le Bellac [253],
Ma [260] and Parisi [287].

Some discrete statistical models are described and solved using transfer matrix tech-
niques in Baxter’s text [31]. The scaling hypothesis for the free energy was introduced
by Widom [355]. The idea of introducing block spins to calculate critical exponents is
due to Kadanoff [222]. Applications of the renormalization group to critical phenomena
were initiated by Wilson and are described in Ref. [357]. The real-space renormalization
group treatment of the Ising model on a triangular lattice was done by Niemeijer and van
Leeuwen [282]. The emergence of conformal invariance at critical points was shown by
Polyakov [295].
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CHAPTER 4

Global Conformal
Invariance

This relatively short chapter provides a general introduction to conformal symme-
try in arbitrary dimension. Conformal transformations are introduced-in Sect. 4.1,
with their generators and commutation relations. The conformal group in dimen-
sion d is identified with the noncompact group SO(d + 1, 1). In Sect. 4.2 we study
the action of a conformal transformation on fields, at the classical level. The notion
of a quasi-primary field is defined. We relate scale invariance, conformal invari-
ance, and the tracelessness of the energy momentum tensor. In Sect. 4.3 we look at
the consequences of conformal invariance at the quantum level on the structure of
correlation functions. The form of the two- and three-point functions is given, and
the Ward identities implied by conformal invariance are derived. Aspects of con-
formal invariance that are specific to two dimensions, including local (not globally
defined) conformal transformations, are studied in the next chapter. However, the
proof that the trace T, vanishes for a two-dimensional theory with translation,
rotation, and dilation invariance is given at the end of the present chapter.

§4.1. The Conformal Group

We denote by g,,, the metric tensor in a space-time of dimension d. By definition,
a conformal transformation of the coordinates is an invertible mapping x — x’,
which leaves the metric tensor invariant up to a scale:

g,&) = Alx)g, k) (4.1)

In other words, a conformal transformation is locally equivalent to a (pseudo)
rotation and a dilation. The set of conformal transformations manifestly forms
a group, and it obviously has the Poincaré group as a subgroup, since the latter
corresponds to the special case A (x) = 1. The epithet conformal derives from the
property that the transformation does not affect the angle between two arbitrary
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curves crossing each other at some point, despite a local dilation: the conformal
group preserves angles. (This is of some importance in cartography applied to
navigation, since the relative size of nations is then less important than aiming in
the right direction!)

We investigate the consequences of the definition (4.1) on an infinitesimal trans-
formationx* — x™* = x*+€e*(x). The metric, at first order in €, changes as follows

(cf. Eq. 2.192)):

guv g guv - (auev + aveu) (4'2)

The requirement that the transformation be conformal implies that!
d,€,+ 0,6, =flx)g,, 4.3)

The factor f(x) is determined by taking the trace on both sides:
2

flx) = Eape" 4.9
For simplicity, we assume that the conformal transformation is an infinitesi-
mal deformation of the standard Cartesian metric g,, = 7,,, where n,, =

diag(1, 1, ..., 1). (If the reader insists on living in Minkowski space, the treatment
is identical, except for the explicit form of 7,,,.) By applying an extra derivative
d, on Eq. (4.3), permuting the indices and taking a linear combination, we arrive
at

20,0,¢, = n,,9.f + nvpa‘f - nwa,f 4.5)
Upon contracting with 7", this becomes
28%, = 2 —-d)o,f (4.6)
Applying 3, on this expression and 3? on Eq. (4.3), we find
_ 2
2- d)au af = 7,,0 f 4.7
Finally, contracting with n*", we end up with
d-13*f =0 (4.8)

From Egs. (4.3)-(4.8), we can derive the explicit form of conformal transforma-
tions in d dimensions.

First, ifd = 1, the above equations do not impose any constraint on the function
f, and therefore any smooth transformation is conformal in one dimension. This
is a trivial statement, since the notion of angle then does not exist. The case d = 2
will be studied in detail later. For the moment, we concentrate on the case d > 3.
Equations (4.8) and (4.7) imply that 3,,3,f = O (i.e., that the function f is at most
linear in the coordinates):

fx)=A+B e (A, B, constant) 4.9)

! The summation convention on repeated indices is used unless explicitly stated.
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If we substitute this expression into Eq. (4.5), we see that 3,0,€, is constant, which
means that €, is at most quadratic in the coordinates. We therefore write the general
expression

€,=a,+b,x"+c, x"x° €y =C (4.10)

Since the constraints (4.3)—(4.5) hold for all x, we may treat each power of the
coordinate separately. It follows that the constant term a,, is free of constraints.
This term amounts to an infinitesimal translation. Substitution of the linear term
into (4.3) yields

2
buu+by = G 0% My 4.11)
which implies that b v 18 the sum of an antisymmetric part and a pure trace:
b, =an,, +m, m,, =-m,, (4.12)

The pure trace represents an infinitesimal scale transformation, whereas the anti-
symmetric part is an infinitesimal rigid rotation. Substitution of the quadratic term
of (4.10) into Eq. (4.5) yields

1

b,+n,b,-n,b, where b,=-c’ (4.13)

c 7 on

uvp = Mup
and the corresponding infinitesimal transformation is
X =x* +2(x - b)x* — bHx? 4.19)

which bears the name of special conformal transformation (SCT).
The finite transformations corresponding to the above are the following:

(translation) x* = x* +a*
(dilation) x* =axt
(rigid rotation) =M~ x” 4.15)
x* — bix?
S "
SCD * 1—2b.-x+ b%x2

The first three of the above “exponentiations” are fairly familiar, whereas the last
one is not. We shall not demonstrate its validity here, but it is trivial to verify that its
infinitesimal version is indeed (4.14), and straightforward to show that it is indeed
conformal, with a scale factor A(x) given by

Ax)=(1-2b-x+b%x?) (4.16)
The SCT can also be expressed as
x'l"— xl‘

Manifestly, the SCT is nothing but a translation, preceded and followed by an
inversion x* — x*/x2.
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We recall the definition (2.126) of the generator of an infinitesimal transforma-
tion. If we suppose for the moment that the fields are unaffected by the transfor-
mation (i.e., F(P) = ), the generators of the conformal group are easily seen to
be

(translation) P, =—id

n fn
(dilation) D = —ix“au

. . (4.18)
(rotation) L, =ilx,3,—x,3,)

(SCT)

g

= —i(2x,x"3, — x%9,,)

These generators obey the following commutation rules, which in fact define the
conformal algebra:
[D,P,]=iP,

[D,K,1=—iK,

K,.P)=2i(n,D-L,)
K,,L,1=i,K,—n,K,)
(P,,L,,1=i(n,,P,—n,P,)

[LuV'Lpa] = i("\wl’ua + nuoLvo - nuvao - ”wLup)

(4.19)

In order to put the above commutation rules into a simpler form, we define the
following generators:

1
J, = L, Iy = E(Pu - Ku)

4.20
Jio=D (4.20)

1
Jo.u = E(Pu +Ku)

where J,, = —J,, anda,b € {—1,0,1,...,d}. These new generators obey the
SO(d + 1, 1) commutation relations:

VaprIoal = iMaTpe + Mo ag — Nacdba — Mpaac) (4.21)

where the diagonal metric 7, is diag(—1,1,1,...,1) if space-time is Euclidian
(otherwise an additional component, say 7, is negative). This shows the isomor-
phism between the conformal group in d dimensions and the group SO(d + 1, 1),
with 3(d + 2)(d + 1) parameters. Notice that the Poincaré group together with
dilations forms a subgroup of the full conformal group. This means that a theory
invariant under translations, rotations, and dilations is not necessarily invariant
under special conformal transformations. Conditions under which it should be
invariant are studied in the next section.

We end this section by constructing conformal invariants, that s, functions I'(x;)
of N.points x; that are left unchanged under all types of conformal transformations.
Translation and rotation invariance imply that I" can depend only on the distances
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Ix; — x;| between pairs of distinct points. Scale invariance implies that only ratios
of such distances, such as

|x; — x,"

lx K~ xll
will appear in I. Finally, under a special conformal transformation, the distance
separating two points x; and x; becomes

lx; —x;

(1 —2b-x; + b2x})V2(1 — 2b - x; + b%x])'2

b —x)| = (4.22)

It is therefore impossible to construct an invariant I with only 2 or 3 points. The

simplest possibilities are the following functions of four points:
e, —x,1lx3 — x| x, —x501x; — x4l
ey —x301x, — x4l e, — x50l — x4l

Such expressions are called anharmonic ratios or cross-ratios. With N distinct
points, N(N — 3)/2 independent anharmonic ratios may be constructed.

(4.23)

§4.2. Conformal Invariance in Classical Field
Theory

A field theory has conformal symmetry at the classical level if its action is invariant
under conformal transformations. As a first step in the description of such theo-
ries we define the effect of conformal transformations on classical fields. We then
show how, in certain theories, conformal invariance is a consequence of scale and
Poincaré invariance. Again, it is important to realize that conformal invariance at
the quantum level generally does not follow from conformal invariance at the clas-
sical level. A quantum field theory does not make sense without a regularization
prescription that introduces a scale in the theory. This scale breaks the confor-
mal symmetry, except at particular values of the parameters, which constitute a
renormalization-group fixed point.

4.2.1. Representations of the Conformal Group in d
Dimensions

We first show how classical fields are affected by conformal transformations. Given
an infinitesimal conformal transformation parametrized by w,, we seek a matrix
representation T, such that a multicomponent field ®(x) transforms as

¥'@) = (1 — i, T,)d(x) (4.29)

The generator T, ¢ must be added to the space-time part given in (4.18) to obtain the
full generator of the symmetry, as in Eq. (2.128). In order to find out the allowed
form of these generators, we shall use the same trick, which may be used for
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the smaller Poincaré algebra: We start by studying the subgroup of the Poincaré
group that leaves the point x = 0 invariant, that is, the Lorentz group. We then
introduce a matrix representation S ,, to define the action of infinitesimal Lorentz
transformations on the field ¢(0):

L, ®0)=S,,®(0) (4.25)

S v 18 the spin operator associated with the field ®. Next, by use of the commutation
relations of the Poincaré group, we translate the generator L, to a nonzero value

of x:
e¥PL, e P =8, —x,P,+x,P, (4.26)

The above translation is explicitly calculated by use of the Hausdorff formula (A
and B are two operators):

e Be” = B+ [B,A]l + %[[B,A],A] + %[[[B,A],A],A] +--- (4.27)

This allows us to write the action of the generators:
P,o(x) = —id, (x)

, (4.28)
L’wd)(x) = z(xuav — xvau)<b(x) + Slwcb(x)

We proceed in the same way for the full conformal group. The subgroup that
leaves the origin x = 0 invariant is generated by rotations, dilations, and special
conformal transformations. If we remove the translation generators from the alge-
bra (4.19), we obtain something identical to the Poincaré algebra augmented by
dilations, because of the similar roles played by P, and K ,. We then denote by

S, A, and k,, the respective values of the generators L, ,, D, and K, atx = 0.
These must form a matrix representation of the reduced algebra

[A,S,,]1=0
[A, K,]= —ixu
[k, k,]1=0 (4.29)

[k, Sl =in .k, —n,x,)
[S,0:Spod = {(1ypS 0 + Mu6Sup = MpS16 — M0S)p)

The commutations (4.19) then allow us to translate the generators, using the
Hausdorff formula (4.27):

ixP —ixP
e*"PeDe=*"Po = D + x"P,

» . 4.30
e*PK e P =K, +2x,D - 2x"L,, + 2x,(x"P,) —x*P, *30
from which we arrive finally at the following extra transformation rules:
Dd(x) = (—ix"d, + A)P(x)
: (4.31)

K, () = [k, + 21,4 - 2°S,,, — 2ix,x3, +ix%3, | &)



§4.2. Conformal Invariance in Classical Field Theory 101

If we demand that the field ®(x) belong to an irreducible representation of
the Lorentz group, then, by Schur’s lemma, any matrix that commutes with all
the generators S, must be a multiple of the identity. Consequently, the matrix

Aisa multiple of the identity and the algebra (4.29) forces all the matrices «, to

vanish. A is then simply a number, manifestly equal to —i A, where A is the scaling
dimension of the field @, as defined in Eq. (2.121). That the eigenvalue of A is not
real simply reflects the non-Hermiticity of the generator A (i.e., representations of
the dilation group on classical fields are not unitary).

In principle, we can derive from the above the change in ¢ under a finite
conformal transformation. However, we shall give the result only for spinless
fields (S v = 0). Under a conformal transformation x — X', a spinless field ¢(x)
transforms as
~ad

00 > 90 = || o0 432)

where |0x’/3x| is the Jacobian of the conformal transformation of the coordinates,
related to the scale factor A(x) of Eq. (4.1) by

ax’

ax
A field transforming like the above is called “quasi-primary.”

= A(x) 42 (4.33)

4.2.2. The Energy-Momentum Tensor

Under an arbitrary transformation of the coordinates x* — x* 4 €, the action
changes as follows:

ss= [,
. (4.34)
=3 /ddx T‘“’(auev + aveu)

where T#' is the energy-momentum tensor, assumed to be symmetric.? This
is valid even if the equations of motion are not satisfied (cf. Eq. (2.191)).The
definition (4.3) of an infinitesimal conformal transformation implies that the
corresponding variation of the action is

8S = }1 / d?x T 9 ¢ (4.35)

The tracelessness of the energy-momentum tensor then implies the invariance of
the action under conformal transformations. The converse is not true, since 9,€”
is not an arbitrary function.

2 We have seen that in theories with rotation (or Lorentz) invariance, the energy-momentum tensor
can be made symmetric, i.e., can be put in the Belinfante form.
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Under certain conditions, the energy-momentum tensor of a theory with scale
invariance can be made traceless, much in the same way as it can be made sym-
metric in a theory with rotation invariance. If this is possible, then it follows from
the above that full conformal invariance is a consequence of scale invariance and
Poincar€ invariance.

We first consider a generic field theory with scale invariance in dimensiond > 2.
The conserved current associated with the infinitesimal dilation

=1+ a)x* F(®) = (1 —aA)d (4.36)
is, according to (2.141),
aL aL
i = —Lx" + £ &+ ——— AD
To 3,0 " " %3,)
(4.37)
=T x"+ —— oL AD
o~ %, o2

where T*" is the canonical energy-momentum tensor (2.165). Since by hypothesis
this current is conserved, we have

oL
9,jp=T¢ Ad, ]
Wb = T2\ + (6(3 ) ) (4.38)
=0
We now define the virial of the field &:
8L
(T 7 i QUP .
) (n** A +iS**) @ (4.39)

where S## is the spin operator of the field ®. We also assume that the virial is the
divergence of another tensor o*#:

V# =3 0% (4.40)

This last condition is obeyed in a large class of physical theories. Then we define
e o
oo = 2L ppoght ot — o el (4a1)
+ Zifl(n“’n’“ - n""n”")aia}
and we consider the following modified energy-momentum tensor:
™ =T +3,B* + %aka P Glia (4.42)

The first two terms of the above expression constitute the Belinfante tensor (see
Eq. (2.174)). The last term is an addition that will make T+’ traceless. Because
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of the symmetry properties of X*?*", this additional term does not spoil the
conservation law:

3,0,0, X =0 (4.43)
Indeed, the addition would not be conserved if X*#*¥ had a part completely sym-
metric in the first three indices, but this is not the case. This new term does not spoil
the symmetry of the Belinfante tensor either, since the part of X*#*¥ antisymmetric

in u,vis

2
Apuv _ yApvu —
X=X = @@ -

of (0™ — ™)
and it vanishes upon contraction with 3, 9. Finally, the trace of the new term is

1 A
580, X%, = 8,8,0)

(4.49
=9,V¥

Since

1 8L

o “P P
9,B%*, zzap (B(Bﬂd))s )

it follows from (4.38) and (4.39) that

T‘L = a”j,‘; (4.45)

and therefore scale invariance implies that the modified energy-momentum ten-
sor (4.42) is traceless, provided, of course, that the virial satisfies condition (4.40).
This relation also means that the dilation current may be generally written as

ip=T'x" (4.46)

This argument holds only in dimensions greater than two, since X** is defined
only for d > 2. However, the result still holds in dimension two. This is easily
seen in particular cases. For instance, we know from Eq. (2.124) that the scaling
dimension of the free scalar field vanishes if d = 2. Therefore, it follows from
Eq. (4.38) that the canonical (or Belinfante) energy-momentum tensor is already
traceless, and no modification thereof is necessary. The same is true of the free
fermion action. We know of no general proof that the energy-momentum tensor
of a two-dimensional field theory with scale invariance can be made traceless.
However, we shall hold it to be true. To corroborate this hypothesis, we shall show
in the next section, in a quantum context, that the vacuum expectation value of
(TH u)z vanishes in dimension two if conformal invariance is present.
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§4.3. Conformal Invariance in Quantum Field
Theory

4.3.1. Correlation Functions

In this section we examine the consequences of conformal invariance on two- and
three-point correlation functions of quasi-primary fields. Consider the two-point
function

1
B0 = 5 [1@010,6)8,x) exp-S[e]  (447)

where ¢, and ¢, are quasi-primary fields (not necessarily distinct). ¢ denotes the
set of all functionally independent fields in the theory (to which ¢, and ¢, may
belong), and S[®] is the action, which we assume to be conformally invariant.

‘We should remark here on an important detail that sometimes leaves newcomers
puzzled. When one speaks of a field in conformal field theory, it does not necessarily
mean that this field figures independently in the functional integral measure. For
instance, a single boson ¢, its derivative 9,¢, and a composite quantity such as
the energy-momentum tensor are all called fields, since they are local quantities,
with a coordinate dependence. However, only some fields (such as the boson ¢
in this example) are integrated over in the functional integral. The richness of
conformal invariance in two dimensions allows us to define theories based solely
on the symmetry properties of the correlation functions, without reference (except
in a few cases) to an action or a functional integral. The question “How many
continuous, independent degrees of freedom are there?” is often an obscure one in
this context, whereas the question “How many basic local operators are there that
transform among themselves under conformal transformations?” is more relevant.

The assumed conformal invariance of the action and of the functional inte-
gration measure leads to the following transformation of the correlation function,
according to Eq. (2.148) (we consider spinless fields for simplicity):

ax/ Axd

™ (¢1(x1)0,(x2)) (4.48)

ayd
X=X)

(¢1 (x1)¢2(x2)) = ,%

X=X2

If we specialize to a scale transformation x — Ax we obtain

(o, (xl )¢2(x2)) = Afithe (¢1()‘x1 )¢2(Ax2)) (4.49)
Rotation and translation invariance require that
(9, (xl )¢2(x2)) = f(lxl — Xy )] (4.50)
where f(x) = A21+42f()\x) by virtue of (4.49). In other words,
C
() (x))py(x,)) = 2 (4.51)

|xl _x2|A|+Az
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where C,, is a constant coefficient. It remains to use the invariance under special
conformal transformations. We recall that, for such a transformation,

x| 1
ax| (1 —2b-x+bxx2)y

Given the transformation (4.22) for the distance |x, — x,|, the covariance of the
correlation function (4.51) implies

Ar+A)2
Ch _ _Cp )™ 2)
- A A
le __xz'A|+Az y1 Iy2 2 le _x2|A|+A2

(4.52)

(4.53)

with
v, = (1 —2b-x; + b*x?) (4.54)

This constraint is identically satisfied only if A; = A,. In other words, two
quasi-primary fields are correlated only if they have the same scaling dimension:

—i”—z— if A =4,
(0,0, (x)) = § by —x 2 (4.55)
0 if A #A,

Comparison with Table 3.1 shows that the exponent 7 is
n=2A+2-d (4.56)

A similar analysis may be performed on three-point functions. Covariance under
rotations, translations, and dilations forces a generic three-point function to have
the following form:

C(abc)
(1 (x1)py ()5 (x3)) = ——122— (4.57)
R X, x5 %53
where x; = |x; — x;| and with a, b, ¢ such that
a+b+c=A+47,+A, (4.58)

Actually, a sum (over a, b, ¢) of such terms is also acceptable, as long as the above
equality is satisfied. Under special conformal transformations Eq. (4.57) becomes

b
1‘123c) ()’1 Y2 )a/z(}’z V3 )blz()’l Y3 )C/2
Ay A A
Nnvavs x‘flez’3x§3

For this expression to be of the same form as Eq. (4.57), all the factors involving
the transformation parameter b* must disappear, which leads to the following set
of constraints:

a+c=2A, a+b=2A, b+c=2A, (4.59)
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The solution to these constraints is unique:
a=A+A,— A,
b=A,+A;— A, (4.60)
c=A;+A,— A,

Therefore, the correlator of three quasi-primary fields is made of a single term of
the form (4.57), namely

C
(9, (x)),(x,)p5(x5)) = AFA—A; Aﬁ?f—Al
X912 X3

xlA33+A‘"A2 (4.61)

At this point the reader might feel encouraged by our success at calculating
correlation functions (up to multiplicative constants, which only reflects a freedom
in normalization for our fields). However, this impressive performance stops at
three-point functions. Indeed, with four points (or more), it is possible to construct
conformal invariants, the anharmonic ratios (4.23). The n-point function may have
an arbitrary dependence (i.e., not fixed by conformal invariance) on these ratios.
For instance, the four-point function may take the following form:

4
X1,X X19X 13—Ai—A;
(B () ... By(x,)) = f(—‘z—éﬁ—ﬁ—%) [z 75" (4.62)
X13%24 X23%14/ i
j

where we have defined A = Y7, A,.

4.3.2. Ward Identities

We shall now write the Ward identities implied by conformal invariance, accord-
ing to the general identity (2.157). The Ward identity associated with translation
invariance appears in Eq. (2.183) and we reproduce it here:

]
3,(T* X)=—) 8(x—x,) 3 X0 (4.63)

This identity holds even after a modification of the energy-momentum tensor, as
in Eq. (4.42). Recall that X stands for a product of 7 local fields, at coordinates x;,
i=1,...,n.

We consider now the Ward identity associated with Lorentz (or rotation) in-
variance. Once the energy-momentum has been made symmetric, the associated
current j#*# has the form given in Eq. (2.172):

j*¥ = TP — T#Px® (4.64)
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The generator of Lorentz transformations is given by Eq. (2.134). Consequently,
the Ward identity is

B,((T™x — THx")X) = Y 8(x — x)[(x13f —xfa)X) —iSP°(X0)] (465)

where S;” is the spin generator appropriate for the i-th field of the set X . The deriva-
tive on the Lh.s. of the above equation may act either on the energy-momentum
tensor or on the coordinates. Using the first Ward identity (4.63), we reduce the
above to

(T = T*)X) = —i ) | 8(x —x)S” (X) (4.66)

which is the Ward identity associated with Lorentz (rotation) invariance. It states
that the energy-momentum tensor is symmetric within correlation functions, except
at the position of the other fields of the correlator.

Finally, we consider the Ward identity associated with scale invariance. We
shall assume that the dilation current j5, may be written as in Eq. (4.46), which
supposes that the energy-momentum tensor has been suitably modified (if needed)
to be traceless. So far we have not shown how this can be done generally in
two dimensions, although we hold that it can be done. In the next chapter we
shall provide an alternate derivation of the Ward identity, which circumvents this

problem. Since the generator of dilations is D = —ix"3, —iA for a field of scaling
dimension A, the Ward identity is
J7RNR Y v 2
9,(T" x*X) = — Za(x —x;) {x! 5x—3’(X> + A(X) (4.67)
i i

Here again the derivative 3, may acton T# , and on the coordinate. Using Eq. (4.63),
this identity reduces to

(T*, X) = — Z 8(x — x,)A,(X) (4.68)

Eqgs. (4.63), (4.66), and (4.68) are the three Ward identities associated with
conformal invariance.

4.3.3. Tracelessness of T, in Two Dimensions

In this section we show that the vacuum expectation value of the trace of the energy-
momentum tensor (or of its square) vanishes in two-dimensions if the theory has
scale, rotation, and translation invariance. This implies that this trace is identically
zero in the quantum theory and that conformal invariance follows from scale,
rotation, and translation invariance in dimension two.

We consider the two-point function of the energy-momentum tensor (called the
Schwinger function):

S,vpe®) = (T, (x)T,,(0)) (4.69)
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Since by assumption the theory is translation and rotation invariant, T,, is con-
served and symmetric (or can be made symmetric). The symmetry of T, , implies
that

Spvpe =Suupe =S =S (4.70)

nvop — Svuop
Translation invariance implies that

suvpo(x) = (Tpv(O)Tpa(—x»

= (T ,,(—2)T,,(0)) (4.71)
= S/xwv(—x)
If the theory is invariant under parity, we conclude that
Spvpe®) =S, (x) (4.72)

Finally, scale invariance implies that T, transforms covariantly under scale
transformations, with scaling dimension 2 since it is a density. This means that

Spe(Ax) =174S,,  (x) 4.73)

uvpo
All these constraints restrict the most general form that S, can take:

Suopo®) = O A18,,8,0 67 + s, 810 +8,08,)6%F
4.74)
+A;(g,,x,x, + gmx“xv)xz +Ax, XXX, ]
(cf. Ex. 4.9). The constants A, to A, are not all arbitrary. Indeed, the conservation

law 3“T,, = 0 obviously extends to the Schwinger function. Taking the derivative,
we find

S, 00 (X) = —(12)4{3(144 +24,)x,x %, + (44, + 34,)g ,x x°
(4.75)
+ (44, - A))(g, %, +gwx,,)x2}

This vanishes everywhere only if each combination of coefficients in parentheses
vanishes. This leaves only one arbitrary constant:

A =3A A,=-A Ay =—4A A,=8A (4.76)
Upon inserting these values into Eq. (4.74), we find

A
Suaso® = G35 OB ~ Bt — 1o
“4.77)

— ax%(g, X %, + 80X, %,) + 8\x“x|,xpxo}
It is then straightforward to show that the trace
S* 7, (x) = (T, (x)T,(0)) (4.78)
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vanishes everywhere. In particular (T o (0)?) = 0, which implies that the operator
T* , has zero expectation value and zero standard deviation in the ground state.
In fact, the general result is the Ward identity (4.68), which states that T# M(x)
vanishes within correlation functions, except when x coincides with the position
of another field present in the correlator.

Exercises

4.1 Check Egs. (4.3) and (4.5) explicitly.

4.2 Demonstrate that the metric scale factor produced by a special conformal transformation
is given by Eq. (4.16).

4.3 Check Eq. (4.22) explicitly.

44

a) Show that the expression (4.62) for the four-point function is conformally covariant.

b) Show that there are only two independent cross-ratios of the form (4.23) that can be built
out of four points, except in dimension two, where the two cross-ratios are related.

4.5 Scale invariance in momentum space
In momentum space, a correlation function of a set X of n fields ¢;(x;) is represented by its

Fourier transform 'y (k, - - -, k,,):
= i"*_ . dﬁ'—_‘ ... i(ky-x ) +--+knxn)
(¢1 (xl) M ¢n(xn )) = (27T)d . (Zﬂ)d l-'X(kl- : ,k,,)e (4~79)

where —k, = k; + - - - + k,—; is fixed by momentum conservation (translation invariance).
a) Show that scale invariance imposes the following constraint on I'x:

Tx(ky,--- k) = s®Dd=81==8nDy (sky, - - -, skyy) (4.80)

where A; is the scaling dimension of the field ¢;.
b) Show that the two-point function I';(k) of a scale-invariant theory is of the form
1
k&) ~ o (4.81)
where 7 is the critical exponent defined in Table 3.1 and k = |k|.

¢) In dimension two, show that the two-point function in coordinate space must accordingly
be
> dk
G(r) = ’?l-_—”.,o(kr) (4.82)
L
where r = |x; — x2|, k = |k|, Jo is the zeroth-order Bessel function and L~! is a low-
momentum (infrared) cutoff. Explain how this is compatible with the form (4.55).

4.6 Consider the Lagrangian of a free fermion in dimension two:
L= % WOk, U

Obtain the precise form of the spin generator S, that would ensure Lorentz invariance.
Then, write down the canonical energy-momentum tensor, the Belinfante modification to
the latter, and the dilation current.
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4.7 Traceless energy-momentum tensor

a) Write down a modification of the energy-momentum tensor for the massless scalar field
that is tracelessind > 2.

b) Repeat the exercise for the massless ¢* theory ind = 4.

4.8 Liouville field theory
Consider the Liouville field theory in d = 2, with Lagrangian density

1 1 5,
L= Eauwa“tp— Em (4

Write down the canonical energy-momentum tensor and add a term that makes it traceless
without affecting the conservation laws.

4.9 The Schwinger function

Eq. (4.74) gives the most general form of the Schwinger function compatible with trans-
lation, rotation, and scale invariance, as well as parity, in dimension two. The requirement
of invariance under parity transformations is not essential in order to prove the traceless-
ness S*,”,(x) = 0, but simplifies the discussion. However, nothing in the form (4.74) is
specific to two dimensions. The specificity comes from the possible introduction of the
antisymmetric tensor in dimensions higher than two.

a) Show that a possible addition to (4.74) in two dimensions, compatible with all the
symmetries, is

AS(euaevp + €upeua)(xz)2

and demonstrate that it reduces to a linear combination of the first two terms of (4.74).
b) Show that an admissible generalization of this addition in three dimensions is

A5(€uo'a€vpﬁ + Gumewﬂ)x"xﬂ(xz)

Show that this addition is not equivalent to a combination of the other terms and that
the imposition of the conservation law 8“S,,,,,(x) = 0 does not lead to the tracelessness
property S*,",(x) = 0 in three dimensions.

Notes

The conformal group was studied early on by mathematicians, in particular by Lie [256]. The
invariance of Maxwell’s equation under the conformal group was noticed by Bateman [26]
and Cunningham [85] at the beginning of the century. Even before, the tracelessness of the
electrodynamic energy-momentum tensor had been noticed indirectly by Bartoli in 1876
and by Boltzmann [50], who wrote down the relation P = %5 between the radiation pressure
P and the energy density £.

A detailed account of the applications of conformal invariance in four-dimensional
quantum field theory and an extensive bibliography of early work on the subject are found
in Todorov, Mintchev, and Petkova [335]. The representations of the conformal group acting
on fields were studied by Mack and Salam [264] and Schroer and Swieca [324].

The form of the two-, three- and four-point functions in a conformally invariant the-
ory was obtained by Polyakov [295]. The procedure followed to make the symmetric
energy-momentum tensor traceless is borrowed from Ref. [312]. The proof that the energy-
momentum tensor is traceless in dimension two if the theory has translation, rotation, and
scale invariance is due to Liischer and Mack [259].



CHAPTER 5

Conformal Invariance in
Two Dimensions

Conformal invariance takes a new meaning in two dimensions. As already appar-
ent in Section 4.1, the case d = 2 requires special attention. Indeed, there exists
in two dimensions an infinite variety of coordinate transformations that, although
not everywhere well-defined, are locally conformal: they are holomorphic map-
pings from the complex plane (or part of it) onto itself. Among this infinite set of
mappings one must distinguish the 6-parameter global conformal group, made of
one-to-one mappings of the complex plane into itself. The analysis of the previous
chapter still holds when considering these transformations only. However, a local
field theory should be sensitive to local symmetries, even if the related transforma-
tions are not globally defined. It is local conformal invariance that enables exact
solutions of two-dimensional conformal field theories.

Section 5.1 introduces the essential language of holomorphic and antiholomor-
phic coordinates on the plane, used in the remaining chapters of this book. This
section also clarifies the distinction between local and global transformations, in-
troduces generators for local conformal transformations, defines the notion of a
primary field, and translates the results of Sect. 4.3.1 on correlation functions
in holomorphic language. Section 5.2 adapts the Ward identities of conformal
invariance to complex coordinates and also provides an alternate derivation of
the Ward identities, specific to two dimensions. Section 5.3 introduces the no-
tion of a short-distance product of operators (operator product expansion) and
applies this language to the Ward identities and to specific examples of free con-
formal fields: the boson, the fermion, and ghost systems. Section 5.4 describes the
transformation properties of the energy-momentum tensor itself and introduces
the central charge c. Throughout this chapter, no mention is made of the oper-
ator formalism (radial quantization and so on), which is introduced in the next
chapter.
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§5.1. The Conformal Group in Two Dimensions
5.1.1. Conformal Mappings

We consider the coordinates (z°,z') on the plane. Under a change of coordinate
system z¥ — w#(x) the contravariant metric tensor transforms as

awr\ [ aw”
g — ( % ) (g)g"” ;.1

The condition (4.1) that defines a conformal transformation is g:w(w) « gw,(z)

or, explicitly,
w2 amo\? aw'\? awh\?
(820) +(az1) =(8z°) +(8z‘) ©2

aWO awl aM,O awl
%0 0 T ol
These conditions are equivalent either to

w!  aw' aw’ aw!

=0 (5.3)

w-w ™M W w 69
or to

ow! w° aw®  aw!

= ™M T -3

In Eq. (5.4) we recognize the Cauchy-Riemann equations for holomorphic
functions, whereas Eq. (5.5) defines antiholomorphic functions.

This motivates the use of complex coordinates z and Z, with the following
translation rules:

_ 0, 1 1 _
2=z +iz 2 =5@E+2)
z=2"-iz!
1 z‘=l(z—2) 5.6
9, = 53— i) 2 (-6)
1 . 30=3z+32
3z = 5(30 +za,) 3 = i(az _ az)

We shall sometimes write 3 = 9, and 3= 0; when there is no ambiguity about the
differentiation variable. In terms of the coordinates z and Z, the metric tensor is

o ! v 0 2
we(Bd) e e

where the index u takes the values z and Z, in that order. This metric tensor allows
us to transform a covariant holomorphic index into a contravariant antiholomorphic
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index and vice versa. The antisymmetric tensor €, in holomorphic form is!

w3 d) ) e
In this language, the holomorphic Cauchy-Riemann equations become simply
aw(z,2) =0 (5.9)

whose solution is any holomorphic mapping (no Z dependence):
z—> w(z) (5.10)

It is a well-known result that any analytic mapping of the complex plane onto itself
is conformal (i.e., preserves angles). This is made plainly obvious by considering
the differential

dw = (d—w) dz (5.11)
dz

The derivative dw/dz contains a dilation factor |[dw/dz|, along with a phase
Arg (dw/dz), which embodies a rotation. The conformal “group” in two dimen-
sions is therefore the set of all analytic maps, wherein the group multiplication is
the composition of maps. This set is infinite-dimensional, since an infinite number
of parameters (the coefficients of a Laurent series) is needed to specify all func-
tions analytic in some neighborhood. It is precisely this infinite dimensionality
that allows so much to be known about conformally invariant field theories in two
dimensions.

The first question that comes to mind regards the status of the variables z and
Z, that is, whether they should be considered as independent. The proper approach
is to extend the range of the Cartesian coordinates z° and z' to the complex plane.
Then Eq. (5.6) is a mere change of independent variables, and Z is not the complex
conjugate of z, but rather a distinct complex coordinate. It should be kept in mind,
however, that the physical space is the two-dimensional submanifold (called the
real surface) defined by z* = Z.

5.1.2. Global Conformal Transformations

All that we have inferred from Eq. (5.4) ff. is purely local, that is, we have not
imposed the condition that conformal transformations be defined everywhere and
be invertible. Strictly speaking, in order to form a group, the mappings must be
invertible, and must map the whole plane into itself (more precisely the Riemann
sphere, i.e., the complex plane plus the point at infinity). We must therefore distin-
guish global conformal transformations, which satisfy these requirements, from
local conformal transformations, which are not everywhere well-defined. The set

! Usually, &,, is taken as a pseudotensor, always given by its Cartesian components (0 or 1), but
multiplied by the Jacobian of the coordinate transformation. Here we choose to include this Jacobian
in the definition of &,,,.
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of global conformal transformations form what we call the special conformal
group. It turns out that the complete set of such mappings is

with ad —bc=1 (5.12)

where a, b, ¢, and d are complex numbers. These mappings are called projective
transformations, and to each of them we can associate the matrix

_f(a b
A—-(C d) (5.13)

We easily verify that the composition of two maps f; o f, corresponds to the
matrix multiplication A,A,. Therefore, what we call the global conformal group
in two dimensions is isomorphic to the group of complex invertible 2 x 2 matrices
with unit determinant, or SL(2, C). It is known that SL(2, C) is isomorphic to
the Lorentz group in four dimensions, that is, to SO(3, 1). Therefore, as far as
the conformal group proper is concerned, we have learned nothing new since
the previous chapter: the global conformal group is the 6-parameter (3 complex)
pseudo-orthogonal group SO(3, 1).

It is interesting to show explicitly why the transformations (5.12) are the only
globally defined invertible holomorphic mappings. Consider such a mapping, say
f(2). Itis clear that f should not have any branch point or any essential singularity.
Indeed, around a branch point the map is not uniquely defined, whereas in any
(however small) neighborhood of an essential singularity the function f sweeps
the entire complex plane, and is therefore not invertible. Consequently, the only
singularities deemed acceptable are poles, and the function f can be written as a
ratio of polynomials (without common zeros):

P(z)
@) 0@ (5.149
If P(z) has several distinct zeros, then the inverse image of zero is not uniquely
defined and f is not invertible. If, moreover, P(z) has a multiple zero z, of order
n > 1, then the image of a small neighborhood of z;, is wrapped » times around 0,
and therefore f is not invertible. Thus P(z) can be only a linear function: P(z) =
az + b. The same argument applies for Q(z) when looking at the behavior of f(z)
near the point at infinity. We therefore arrive at the form (5.12) with the proviso that
the determinant ad — bc be nonzero in order for the mapping to be invertible. Since
an overall scaling of all coefficients a, b, ¢, d does not change f, the conventional
normalization ad — bc = 1 has been adopted.

5.1.3. Conformal Generators

As is typical in physics, the local properties are more immediately useful than
the global properties, and the local conformal group (the set of all, not necessarily
invertible, holomorphic mappings) is of great importance. We now find the algebra
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of its generators. Any holomorphic infinitesimal transformation may be expressed
as

7 =z2+¢€(2) e(z) = chz"“ (5.15)

where, by hypothesis, the infinitesimal mapping admits a Laurent expansion around
Z = 0. The effect of such a mapping (and of its antiholomorphic counterpart) on
a spinless and dimensionless field ¢(z, Z) living on the plane is

¢ @,7)=¢(z,2)

= 80.2) - WD) - DT D)
or
8¢ = ~e(2)3¢ — &2)d¢
=3 {catud(2.2) +8,8,8(2)} .17
n
where we have introduced the generators
¢, = —7""3, L, =-7""y, (5.18)
These generators obey the following commutation relations:
L, 8,1 =n—-m)e,,,,
[, t,]1=mn-m)},,,, (5.19)

[, £,1=0

Thus the conformal algebra is the direct sum of two isomorphic algebras, each
with very simple commutation relations. The algebra (5.19) is sometimes called
the Witt algebra.

Each of these two infinite-dimensional algebras contains a finite subalgebra
generated by £_,, £,, and £,. This is the subalgebra associated with the global
conformal group. Indeed, from the definition (5.18) it is manifest that £_;, =
—3, generates translations on the complex plane, that £, = —zd, generates scale
transformations and rotations, and that £, = —zzaz generates special conformal
transformations. The generators that preserve the real surface z,,z, € R are the
linear combinations

¢,+¢, and i(¢,—¢,) (5.20)

In particular, £, +ZO generates dilations on the real surface, and i(£, — Zo) generates
rotations.

5.1.4. Primary Fields

In two dimensions the definition of quasi-primary fields applies also to fields with
spin. Indeed, given a field with scaling dimension A and planar spin s, we define
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the holomorphic conformal dimension h and its antiholomorphic counterpart h as?

1 - 1
h= E(A +5) h= i(A —s) (5.21)

Under a conformal map z — w(z), Z — w(Z), a quasi-primary field transforms

as
—~h _\ —h
d'(w,w) = (%3) (‘—ij‘f’—) #(z,2) (5.22)
Z Z

This constitutes a generalization of Eq. (4.32). The above shows that a quasi-
primary field of conformal dimensions (%, /2) transforms like the component of a
covariant tensor of rank /2 + k& having k2 “z” indices and 4 “Z” indices.

If the map z — w is close to the identity—that is, if w = z + €(2) and
W = Z + €(z) with € and € small (at least in some neighborhood)—the variation
of quasi-primary fields is

8.,:0=09(22) -2
= —(h¢d,€ + €3,0) — (hpd,E + €,¢)

In fact, a field whose variation under any local conformal transformation in two
dimensions is given by (5.22) (or, equivalently, (5.23)) is called primary. All pri-
mary fields are also quasi-primary, but the reverse is not true: A field may transform
according to (5.22) under an element of the global conformal group SL(2, C), but
for those conformal transformations only. As we shall see, an example of a quasi-
primary field that is not primary is the energy-momentum tensor. A field which is
not primary is generally called secondary. For instance, the derivative of a primary
field of conformal dimension 4 # 0 is secondary.

(5.23)

5.1.5. Correlation Functions

Expressed in terms of holomorphic and antiholomorphic coordinates, the rela-
tion (2.149) for conformal transformations of » primary fields ¢; with conformal
dimensions 4; and h; becomes

(¢1(w11w1) e ¢n(wnrv-vn)) =

" rd —h; dw ~h; 5.29)
]"[(d%’) (d—‘:) (#1212 8,2 20)

i=1 w=w; w=w;

This relation fixes the form of two- and three-point functions. The novelty here is
the possibility of nonzero spin, incorporated in the difference 4; — ;. The relations
(4.55) and (4.61) are still valid in two dimensions. Let us express them in terms of

2 One often uses the terminology left and right, instead of holomorphic and antiholomorphic, in that
order.



§5.1. The Conformal Group in Two Dimensions 117

complex coordinates, taking spin into account when imposing rotation invariance.
The distance x;; is equal to (z;,Z;)"? and Eq. (4.55) becomes

(611,220 7,)) = Cra if {h'zhzzh (5.25)

121, 21)P82>, 22)) = — - - - .
(Zl - 22)2}'(21 - Zz)Zh hl = hz =h

The two-point function vanishes if the conformal dimensions of the two fields

are different. The additional condition on the conformal dimensions comes from

rotation invariance: the sum of the spins within a correlator should be zero.
Equation (4.61) for the three-point function becomes

1
(0, (x1)9,(x5)5(x3)) = C123Zh.+hz—h3 Foxths <y s

12 3 | 13 (5.26)

X

zil':zl+izz—i13 Z§:§+ﬁ3—}}, Zil'1§+i1.-i.2
Again, the sum of the spins of the holomorphic part cancels that of the
antiholomorphic part, thus ensuring rotation invariance.

The forms (5.25) and (5.26) of the simple correlators raises the question of
multivaluedness and locality. Indeed, the two-point function (5.25) will have a
branch cut at z; = z,, Z; = Z, if the spin s of the two fields is not an integer
or a half-integer. This is an aspect of the spin-statistics theorem. However, in two
dimensions it is possible to bypass this theorem. The price to pay is the introduction
of fields, called parafermions, which have a mutual long-ranged interaction. These
fields will not be studied in this volume.

As before, global conformal invariance does not fix the precise form of the four-
point function and beyond, because of the existence of anharmonic ratios. However,
in two dimensions the number of independent anharmonic ratios is reduced, since
the four points of the ratio are forced to lie in the same plane, which leads to an
additional linear relation between them. Indeed, we have

2122 Z142 Z422
_ %12%34 1 —p= 42 1 N _ %12%4 (527
213224 213224 N 214223

The four-point function may then depend on 7 and 7 in an arbitrary way—provided
the result is real. The general expression (4.62) translates into

4 - - -
(@G- 0y = fin ) [ 27" 2> (528)

i<j

where h = i h; and 2 = Y7, ;. This form for the four-point function may
also be understood as follows. Given three distinct points z, to z,, it is always
possible to find a global conformal transformation that maps these three points
to three other points fixed in advance, for instance 0, 1, and the point at infinity.
Indeed, the transformations (5.12) involve three independent complex parameters.
Consider the anharmonic ratio n above. If we use a global conformal map to send
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Z, to 1, z, to 00, and z; to 0, then n = —z, and a generic four-point function will
depend on this last point.

The expression (5.28) may, of course, take different forms, since the product
multiplying f(», 77) may be modified by insertions of anharmonic ratios. Take, for
instance, the four-point function of a single field ¢ of conformal dimension 2 = A.
Eq. (5.28) becomes

- —2h/3

(¢(x1) e ¢(x4)) = f(r’: 7]){ (212213214223224234) X C.C.} (5.29)

(c.c. stands for “complex conjugate”). This may also be expressed as

_ (1 _ T])4h/3 1
) X C.C 5.30
f(n, ) { B Gz (5.30)
or as follows:
2432 2
fin, 7) { [n(1 — )} (—‘—3—2"’——) X c.c. (5.31)
212223214334

§5.2. Ward Identities
5.2.1. Holomorphic Form of the Ward Identities

In Chap. 4 we have derived a set of Ward identities associated with translation,
rotation, and scale invariance: Egs. (4.63), (4.66), and (4.68), respectively. In so
doing, we used the canonical definition of the energy-momentum tensor, with
suitable modifications needed to make it symmetric and traceless.? Recall that the
tracelessness of the energy-momentum tensor implies the conformal invariance of
the action. Let us assemble these three Ward identities:*

? < d
7o (THX) = — ; 8(x —x;) ax? (x)
£, (T (@)X) = =i ) 5;8(x — x;)(X) (5.32)
i=1

(TA (X)) = — Y 8(x —x,)A,(X)
i=1

Here X stands for a string of » primary fields ®(x,) - - - ®(x,,). In the second equa-
tion we have used the specific two-dimensional form s;¢ , of the spin generators

N i“uv
S,,,» where ¢, is the antisymmetric tensor and s; is the spin of the field ¢;.

3 We have not shown in general that the energy-momentum tensor of a two-dimensional scale-
invariant theory can always be made traceless, but we know no example of the contrary.

4 Ward identities, whether in Cartesian or holomorphic form, are valid only in the sense of
distributions, that is, when integrated against suitable test functions.
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We wish to rewrite these identities in terms of complex coordinates (cf. Eq. (5.6))
and complex components. We use expressions (5.7) and (5.8) for the metric tensor
and the antisymmetric tensor, respectively. For the delta functions we use the
identity

1_1

1.1
8(x) = —8,- = —d,-
w -z T "2

(5.33)

This identity is justified as follows. We consider a vector F#* whose divergence is
integrated within a region M of the complex plane bounded by the contour oM.
Gauss’s theorem may be applied:

/ d’xd,F* = | dg, F* (5349
M M
where d&'u is an outward-directed differential of circumference, orthogonal to
the boundary dM of the domain of integration. It is more convenient to use a
counterclockwise differential ds”, parallel to the contour 3M: d§,, = ¢, ,ds”. In
terms of complex coordinates, the above surface integral is nothing but a contour
integral, where the (anti)holomorphic component of ds” is dz (dZ):

/ d’x 8,F* = / {dz &, F* +dz ¢ ,F*}
M oM

] (5.35)
- _if {~dz F* + dz F?)
2 Jom

Here the contour dM circles counterclockwise. If FZ (F%) is holomorphic (anti-
holomorphic), then Cauchy’s theorem may be applied; otherwise the contour aM
must stay fixed. We consider then a holomorphic function f(z) and check the cor-
rectness of the first representation in Eq. (5.33) by integrating it against f{z) within
a neighborhood M of the origin:

/124 d*x 8(x)f(2) = % ./1:4 d*x f(z)a%

T Jm ‘\z (5.36)
1 dzﬁz—)

= 27 M Z
= f(0)

In the second equation we have used the assumption that f(z) is analytic within
M, in the third equation we used the form (5.35) of Gauss’s theorem with FZ =
f(2)/7z and F* = 0, and in the last equation we used Cauchy’s theorem. A similar
proof may be applied to the second representation in Eq. (5.33), this time with an
antiholomorphic function f(Z). Of course, one may in principle use either one of
the two representations in Eq. (5.33), but the first one will be useful if the integrand
is holomorphic and vice versa.
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The Ward identities are then explicitly written as

" 1
213, (T;, X) + 273,(T, X) = Z 3 z_ZWan (X)
213, (T;,X) + 213, (T, X) = — Z %y O (X)
AT X) +2T,X) = —Zs(x x;)A;(X)

2T X) + AT, X) = — Z 8(x — x;)s;(X)

i=1

(5.37)

The n points x; are now described by the 2 complex coordinates (w;, w;), on
which the set of primary fields X generally depends. If we add and subtract the
last two equations of the above, we find

2m(T, X) = Z % h i#X)

(5.38)
2m(TX) = Za-_ h<X)

where we have chosen the representation (5.33) appropriate to each case and
used the definition (5.21) of the holomorphic and antiholomorphic conformal
dimensions. Inserting these relations into the first two equations of (5.37), we
find

5, l(T(z,Z)X) -y [Z e

i=1

h,
W)+ s (X)]}

) " . ’; (5.39)
3, {(T(Z,Z)X) —;[Z 9,50 + oy (X)“
where we have introduced a renormalized energy-momentum tensor
T = -2nT, T = —2aT, (5.40)

Thus the expressions between braces in (5.39) are respectively holomorphic and
antiholomorphic: we may write

(T()X) = Z

_h

where “reg.” stands for a.holomorphic function of z, regular at z = w;. There is a
similar expression for the antiholomorphic counterpart.
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5.2.2. The Conformal Ward Identity

It is possible to bring the three Ward identities (5.32) into a single relation as
follows. Given an arbitrary conformal coordinate variation €”(x), we can write

1 1
3,(e,T"") =€,3,T"" + 5(8#6‘, +8,€,)T"" + E(auev —d,€,)T" 542
1 1 )
= €,9,T"" + (8,6, T*" + —z—s“ﬂaaeﬂsuvT’“’
where the relations

1 1

5(8,L6v + aveu) = ‘i(apép)ﬂ‘“,

1 ) (5.43)

5(3u€v —d,6,) = 2 P Oy€ BE

have been used. We note that %6 € is the local scale factor f(x) of Eq. (4.3) and

%s""’ 9,€4 1s a local rotation angle. Integrating both sides of (5.42), the three Ward
identities (5.32) derived in Sect. 4.3.2 may be encapsulated into

5.(X) = f d’x 3, (T*(x)e, (x)X) (5.44)
M

where §_(X) is the variation of X under a local conformal transformation. Here
the integral is taken over a domain M containing the positions of all the fields in
the string X.

Since the integrand is the divergence of a vector field F*, Gauss’s theorem may
be used. Applying (5.35) to F* = (T**(x)e (x)X), one finds

8 :(X) = %i /C [~dz(T%€,X) + dz(T%€, X))} (5.45)

We have defined € = €% and € = €7, respectively holomorphic and antiholomor-
phic. Note that (7, X)) and (T ,;X) do not contribute to the contour integrals, since
the contours do not exactly go through the positions contained in X, and since
these expressions vanish outside these points, according to Eq. (4.68).> Finally,
substituting the definition (5.40), we obtain the so-called conformal Ward identity:®

1 1 e
8.:(X) = ~9m fc dz e(2)(T(2)X) + 2 i dz €(Z2)(T(D)X) (5.46)

Again, the counterclockwise contour C needs only to include all the positions
(w;,w,) of the fields contained in X. The relative sign of the two terms on the

5 Of course, Eq. (4.68) itself holds only for primary fields; however, this specific property is general:
it only depends on the locality of the transformation properties of X..

6 Some readers may be puzzled by the sign appearing in front this equation, since many review papers
on the subject have it differently. This sign reflects our conventions on what is the variation of a field
under a symmetry transformation, stated in Eq. (2.114) and its infinitesimal version (2.125).
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r.h.s. reflects the use of a counterclockwise integration contour for the antiholo-
morphic variable Z or, said otherwise, that Cauchy’s theorem has been complex
conjugated (and 27i — —2mi).

In deriving the identity (5.46), we have used the property that the fields in the
set X are primary, through the Ward identities (5.32). However, the validity of
Eq. (5.46) extends beyond primary fields, and may be taken as a definition of the
effect of conformal transformations on an arbitrary local field within a correlation
function. Indeed, the r.h.s. of the identities (5.32) needs not have this precise form
in order for Eq. (5.46) to follow. However, the variation §® of the local field @
under a conformal transformation should be local, ensuring the presence of delta
functions 8(x — x;) on the r.h.s. of Eq. (5.32).

If the fields in X are primary, the integral in the conformal Ward identity (5.46)
may be done by the method of residues:

5.(X) =— Z (ew))d,, + de(w)h;) (X) (5.47)

We recover formula (5.23) for the variation of a primary field under an infinitesimal
holomorphic conformal mapping:

8,0 = —edep — hode (5.48)

It is interesting to apply the conformal Ward identity to global conformal trans-
formations (the SL(2, C) mappings of Eq. (5.12)). According to the discussion
surrounding Eq. (2.159), the variation _(X') must vanish for infinitesimal SL(2, C)
mappings, since they constitute a true symmetry of the theory. Such infinitesimal
mappings have the form

(+a)z+8

f2) = vZ+1—-—«o

(5.49)

where ¢, B8, and y are infinitesimal. At first order, the coordinate variation €(z) is
€(z) = B+ 2az — yZ* (5.50)

For a, B, and y arbitrary, this implies the following three relations on correlators
of primary fields:

Z Ap W), (w,)) =0
Z(W,'awl. + h,) w9, (w,)) =0 (5.5
D, + 2wk w,) - 6, (w,) = 0

It is a simple matter to check that the two- and three-point functions (5.25) and
(5.26) satisfy these constraints. In fact, it is possible to infer the forms (5.25) and
(5.26) from the above relations. The relations (5.51) simply embody global confor-
mal invariance. In the first of these relations we recognize the obvious consequence
of translation invariance.
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The Ward identity (5.46) sums up the consequences of local conformal sym-
metry on correlation functions, and is the main result of this section. It should be
mentioned that its application rests on the assumption that the energy-momentum
tensor is regular, meaning that it is everywhere well-defined. In particular, 7(0)
should be finite (in the sense of correlation functions). This implies that T'(z) should
decay asz~* as z — oo. This may be seen as follows: Since the energy-momentum
tensor is symmetric, traceless, and represents an energy density, it should have scal-
ing dimension 2 and spin 2, leading to conformal dimensions # = & = 2. Under
the global conformal transformation z — w = 1/z, it should transform as

dz

Since the resulting tensor 77(1/z) is just as regular as 7(z) the condition that 7/(0)
be finite implies that 7(z) decay as z~* as z — oo. This may be argued differently:
The trivial correlator (1) must be invariant under an infinitesimal special conformal
transformation. In other words,

-2
T'w)= (@) T(z) = 2*T(z) (5.52)

1
5.(1) = ~5m fé dz €(z)(T(z)) =0 (5.53)

This must be true for any contour circling the point at infinity. Since €(z) is quadratic
in z for special conformal transformations, 7(z) must behave as z~* near infinity
if no residue is to be picked up around that point.

5.2.3. Alternate Derivation of the Ward Identities

This subsection provides an alternate derivation of the Ward identities (4.63),
(4.66), and (4.68), based on the quantum definition of the energy-momentum ten-
sor, given by Egs. (2.202) or (2.203). The advantage of proceeding this way is
to avoid the hypothesis that the canonical energy-momentum tensor can be made
traceless in two dimensions. The following demonstration is not specific to two
dimensions, except for scale invariance, where the aspects particular to two dimen-
sions will be stressed. Accordingly, the formalism will be as general as possible,
without holomorphic coordinates. The reader willing to accept the use of the Ward
identity (4.68) in dimension two may skip this subsection, since nothing in the
remainder of the text rests on it.

We shall assume that the action may be expressed on a Riemannian manifold in
terms of a collection @ of fields and of a tetrad e}, (see App. 2.C for an introduction
to tetrads):

S = f d’xe L(®,D,®,¢5) (554
The use of tetrads is necessary if the derivation is to apply to theories involving

spinor fields (e.g., Dirac fermions). Here e = det(e‘;) ensures that the measure
e d*x is reparametrization invariant, and D . 18 the covariant derivative appropriate
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to the field ®: it reduces to d,, for a scalar field. For instance, the action for a simple
scalar field ¢ is

S = f dxelend, 070, - Vi) (5.55)

Recall that the greek (or Einstein) index of the tetrad is raised and lowered with
the help of the metric tensor &> Whereas the Latin (or Lorentz) index is moved
with the help of the Minkowski tensor 7.

Translation invariance—that is, the absence of explicit dependence of the
Lagrangian density upon the coordinate of the local field—is generalized into
reparametrization invariance on a Riemannian manifold. The action and the func-
tional integration measure should be independent of the coordinate system used.
Under a reparametrization x — x’(x) the tetrad e}, and the fields transform as
follows:

v

a a __ a
- e, e

u T oaxm
d(x) > P'(x) = P(x)

e

(5.56)

Covariant derivatives transform like tensors of rank 1, like any quantity with one
Einstein index. In the tetrad formalism the local fields ®(x) do not carry Einstein
indices, but they are affected by reparametrizations through their arguments and
covariant derivatives.

In order to derive the Ward identity associated with reparametrization invari-
ance, we first consider a generic correlation function (X), in some background
tetrad e (as before, we denote by X a product ¢,(x,) ... ¢,(x,) of various fields
taken at different positions):

Z,X), = f [d®], X e~SI®#] (5.57

where Z, is the vacuum functional. Implicit in this expression is the choice of
a coordinate system. We then perform an infinitesimal reparametrization x’ =
x + &(x). The variations of the tetrad and fields is then

8P(x) = —£;'"8u<b(x)

R (5.58)
8e‘; = —Bvezé -9, el

The above variations reflect a change in the functional dependence of the fields
on the coordinates. We then assume that the action and the measure are invariant
under such variations:

S[® +8P,e + de] = S[P,e]

5.59
[do +dsdl,,; = [d], ©-9)
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The effect of this infinitesimal reparametrization on the correlation function is

Z,s X+ 8X)grse = / [do + dsdl, (X + 5X)e~SIP+50.e-+5e]

= [ [d®],(X + 8X)eS1®4] (5:60)

=2Z,X), +Z,(8X),

In particular, by taking X = 1 we conclude thatZ, , ;, = Z,: the vacuum functional
is reparametrization invariant. Therefore, we may write

(X +8X),,p, = (X), + (8X), (5.61)

On the other hand, a change of functional integration variables from ® + §® to ¢
in the first of Egs. (5.60) yields

Ze+,5e (X + 8X), 15 =~/[d¢]e+5ex e~ SIPe+ie]
= / [do],X 5104 [1 + / dzxeae;Tg} (5.62)
=Z,(X), +Z2, /dzx e 8¢ (T4X)

where we have used the quantum definition (2.203) of the energy-momentum
tensor. Comparing Eqgs. (5.61) and (5.62), we conclude that

(8X), = / d’x e8¢’ (THX), (5.63)
Strictly speaking, this identity is true only when 8X and de), are obtained through an
infinitesimal reparametrization (5.58). Since these variations involve d parameters
in d dimensions, the number of Ward identities implied is d, corresponding to the

conservation of energy and momentum. If we substitute the variations (5.58) into
(5.63) and restrict ourselves to flat space with e‘; = 8‘;, we obtain

v 0
(8X), = - & (x‘)@“ (X)
! (5.69)
/ d’x e 8¢S, (TLX), = — / d’x 3,£"(T* X) = / d’x £"8,(T* X)
Since the function £"(x) is arbitrary, this allows us to write our first Ward identity:

3 n 3
7o (T 0X) = — ; 8(x — x")?ax_,v (X) (5.65)

This indeed coincides with Eq. (4.63).
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In order to obtain the second Ward identity associated with rotation (or Lorentz)
invariance, we must perform on the fields and tetrad an infinitesimal local rotation:

ez — e‘; + o (x)ebu
i (5.66)
¢, > ¢; — Ew (x)si,ab‘pi

Here S, , is the spin generator for the field ¢;, and w*® = —"?. The use of tetrads
(or of a metric tensor in arbitrary coordinates) has promoted rotation invariance to
the status of a local symmetry. The action and the integration measure are invariant
under such local rotations, and consequently Eq. (5.59) still holds, except that the
variations e and 8¢ are of the form above. The same argument applies and the
identity (5.63) follows. If we substitute the explicit form of the variation, the flat
space form of the tetrad, and if we use the arbitrariness of the antisymmetric
function w??, we obtain the following Ward identity:

(T, ()X} — (T, (0)X) = —i Y _ 8(x — xS, ,,(X) (5.67)
i=1

associated with rotation invariance. This, apart from the covariant indices,
coincides with Eq. (4.66).

Finally, we derive the Ward identity associated with scale invariance. We
perform an infinitesimal, local scale transformation of the frames:

a a a
e, — e, +e(x)e, (5.:68)
¢ —> ¢; — G(x)Aid’i
The scale factor A(x) of Eq. (4.1) is here equal to 1 + 2¢(x), and, according to
Eqgs. (4.32) and (4.33), the variation of a quasi-primary field is indeed given by the
above in terms of its scaling dimension A,;. Since we are performing an arbitrary
local scaling, only primary fields (as opposed to quasi-primary) will transform as
above. It is here that we must distinguish the case of two dimensions from the
others. In three or more dimensions an action cannot be invariant under a local
scale transformation: The use of tetrads and covariant derivatives allows us to
define actions invariant under local rotations of the frames, but not under local
scalings. In contrast, the two-dimensional conformal group includes local scale
transformations and we may proceed as before, and end up with the following

Ward identity, the same as Eq. (4.68):

(T4 @X) = — ) 8(x —x,)A,(X) (5.69)
i=1
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§5.3. Free Fields and the Operator Product
Expansion

It is typical of correlation functions to have singularities when the positions of two
or more fields coincide. This reflects the infinite fluctuations of a quantum field
taken at a precise position. To be more precise, the average

b, = 1 f d*x ¢(x) (5.70)

of a quantum field within a volume V has a variance (¢,, ¢,, )} which diverges as
V — 0. The operator product expansion, or OPE, is the representation of a product
of operators (at positions z and w, respectively) by a sum of terms, each being a
single operator, well-defined as z — w, multiplied by a c-number function of
Z — w,possibly diverging as z — w, and which embodies the infinite fluctuations
as the two positions tend toward each other.

The holomorphic version (5.41) of the Ward identity gives the singular behavior
of the correlator of the field T(z) with primary fields ¢,(w;, w;) as z approaches
the points w;. The OPE of the energy-momentum tensor with primary fields is
written simply by removing the brackets (. ..), it being understood that the OPE
is meaningful only within correlation functions. For a single primary field ¢ of
conformal dimensions % and %, we have

h
T(2)¢p(w,w) ~ m‘f’(w- w) + ZTIM—)aWCb(W,W)
i (5.71)

TP, ) ~ T o, W) + 3, B, )
(z—w) Z—w

Whenever appearing in OPEs, the symbol ~ will mean equality modulo expres-

sions regular as w — z. Of course, the OPE contains also an infinite number of

regular terms which, for the energy-momentum tensor, cannot be obtained from

the conformal Ward identity. In general, we would write the OPE of two fields

A(z) and B(w) as

N
AQBW)= > {(/;31}_“(:;)

(5.72)
where the composite fields {AB},(w) are nonsingular at w = z. For instance,
(To}, = 3,6(w).

We stress that, so far, the quantities appearing in Eq. (5.71) are not operators but
simply fields occurring within correlation functions. We shall now proceed with
specific examples, in order to familiarize ourselves with basic techniques and with
simple (but important) systems.
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5.3.1. The Free Boson

From the point of view of the canonical or path integral formalism, the simplest
conformal field theory is that of a free massless boson ¢, with the following action:

1
S= 58 f d’x 3,939 (5.73)

where g is some normalization parameter that we leave unspecified at the moment.
The two-point function, or propagator, has been calculated in Section 2.3:

(p®)p(y)) = b In(x — y)? + const. (5.79)
4rg

In terms of complex coordinates, this is
_ - 1 o
{p(z, Dp(w, w)) = _4—71g {ln(z —w)+In(z — w)} + const. (5.75)

The holomorphic and antiholomorphic components can be separated by taking the
derivatives d,¢ and 9;¢:

1 1
(8,9(2,2)3, 0w, W)) = —— ——
471rg (z 1w)2 5.76)
(3;90(2,2)3; 0w, W)) = ~d Gy

In the following we shall concentrate on the holomorphic field 9 = 9, . It is now
clear that the OPE of this field with itself is

1 1

dp(z)dp(w) ~ —Zzg‘ m

(5.77)

This OPE reflects the bosonic character of the field: exchanging the two factors
does not affect the correlator.
The energy-momentum tensor associated with the free massless boson is

1
T,, =gd,p,0— > Muvd,99 ®) (5.78)

Its quantum version (5.40) in complex coordinates is
T(z) = —2mg : 3¢pdp: (5.79)

Like all composite fields, the energy-momentum tensor has to be normal ordered,
in order to ensure the vanishing of its vacuum expectation value. More explicitly,
the exact meaning of the above expression is

T(z) = —2mg lim (dp(2)dp(w) — (3p(2)dp(w))) (5:80)
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The OPE of T(z) with 3¢ may be calculated from Wick’s theorem:
T(2)dp(w) = —2ng :3p(2)dp(2): dp(w)

~ —4rg : 3p(2)d ¢(2) : dp(w) (5.81)
. _9e(z)
(z—w)?

By expanding d¢(z) around w, we arrive at the OPE

dp(w) | 2Ze(w)
z-w)3 (z-w)

T(2)op(w) ~ (5.82)
This shows that dg is a primary field with conformal dimension 2 = 1. This was
expected, since ¢ has no spin and no scaling dimension; hence its derivative has
scaling dimension 1.

Wick’s theorem also allows us to calculate the OPE of the energy-momentum
tensor with itself:

T@)T(w) = 4n’g? :3¢(2)d¢p(2):: p(W)Bp(w):
N 1/2 _ 4ng : 9p(z)dp(w):
(z—-w)* (z—w)? (5-83)
12 2T(w) aT(w)
@—-w)} @Z-wr (z-w)
In the second equation the first term is the result of two double contractions,
whereas the second term comes from four single contractions. We immediately

see that the energy-momentum tensor is not strictly a primary field, because of the
anomalous term }/(z — w)*, which does not appear in Eq. (5.71).

5.3.2. The Free Fermion

In two dimensions, the Euclidian action of a free Majorana fermion is

1
S = 58 / d’x Wy 9, W (5.84)
where the Dirac matrices y* satisfy the so-called Dirac algebra:
Yeyr + vyt =20 (5.85)

If »** = diag(1, 1), a representation thereof is’

0 __ 0 1 1 _ 0 -1
p=(Cl) =0 e

7 The factor of i in ' was not present in Sect. 2.1.2 since we were then working in Minkowski
space-time.
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and therefore

Y’ (03, +y'9,) =2 (% g ) (5.87)
Z

Writing the two-component spinor W as (y, /), the action becomes
S=g / d*x (v + ¢ay) (5.88)

The classical equations of motion are 3y = 0 and 8y = 0, whose solutions are
any holomorphic function ¥(z) and any antiholomorphic function ¥(Z).

Our first task is to calculate the propagator (W;(x)W¥;(y)) (i,j = 1,2). This is
done by expressing the action as

1
s=21 f dxdy U(0)A %, Y)Y, () (5.89)
where we have defined the kernel
A;(x,y) = gdlx — y)(¥°y*); 9, (5.90)

From previous knowledge of Gaussian integrals of Grassmann variables, the two-
point function is then K ;(x,y) = (A7"),,(x, y), or®

d
88(x =V Vi 5 Kij(x,y) = 8(x — )3 (5.91)

In terms of complex coordinates, this becomes

2% (a2 0 ) ((Vf(z.i)tlf(w,ﬁ/)) <w(z,z):/?(w.ﬁz»)

0 3, ) \(W2dyWw,w)) (Ylz,D¥w,w))
o, 1 0 (5.92)
= — —-w
T 0 3 1
Z 2 — ﬁ/

where we translated x — (z,Z) and y — (w,w) and used the representations
(5.33) for the delta function. The solution of the above matrix equation is easily
read off:

11
(Y(z, Dyw,w)) = 5
ngzZ—w
(¥(z, )P (w, W) = ZL 1 (5.93)
ngZ—w

¥z, D9 (w,w)) =0

8 This differential equation may also be derived from the equations of motion, as done in Ex. (2.2)
for the boson.
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These, after differentiation, imply

1 1
(azllf(z’ z)’/’(wr w)) = ’_""-—-——_ 3
217rg (z : w) 594
(0,9, Do pw, ) = - L
ng (z —w)

and so on. The OPE of the fermion with itself (holomorphic components) is then

Y()yw) ~ L (5.95)

2ngz —w

Again, this OPE reflects the anticommuting character of the field: exchanging
the two factors y(z) and y(w) produces a sign that is mirrored in the two-point
function.

Second, we wish to calculate the OPE of the energy-momentum tensor with
Y and with itself. The canonical energy-momentum tensor for the above action
may be found from the general expression (2.165) even if we use holomorphic
coordinates, with the indices # = 0, 1 standing for z and Z, respectively, provided
we start from the expression (5.88) for the action. We find

- L
2 =2—0b = 2
T% =250 gy Iy
TZ = 23-‘:—54> = 2gyoy (5.96)
39D
- oL -
T# =2—8d — 2L = —2gyd
200 L= —-2gydy

We see that the energy-momentum tensor is not identically symmetric, since 7% #
0. However, T% vanishes if we use the classical equations of motion. According
to the discussion of Section 2.5.1, we need not worry and may keep the energy-
momentum tensor in its present form. The standard holomorphic component is
then

T(z) = —2nT,,
= —%nﬁi (5.97)

= g YDNWQ):

where, as before, we have used the normal-ordered product:

Yoy (1) = lim (V(2)dY(w) — (P(2)dy(w))) (5.98)
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Again, the OPE between T and the fermion y is calculated using Wick’s theorem:

T@)y(w) = —ng :¥(2)ay(2): y(w)
_ 1ay(2) + 1 9@
2z—w  2(@z-—w)? (5.99)
1yw) 4 W)

z-w)P z-—w

In contracting ¥(z) with ¥(w) we have carried y¥(w) over 9y(z), thus introducing
a (—) sign by Pauli’s principle. We see from this OPE that the fermion v has a
conformal dimension & = 1.

The OPE of T(z) with itself is calculated in the same way, with, however, a
greater number of contractions:

T()Tw) = ng* : Y(2)aY(z):: p(w)dy(w):
4 2T(w)  aT(w) (5.100)
@Z-w)y @Z-w)2  (z—-w)

This OPE has the same form as Eq. (5.83) except for a numerical difference in the
anomalous term.

5.3.3. The Ghost System

In string theory applications, there appears another simple system, with the
following action:

1 v
S = 58 / d’xb,,d"c (5.101)

where the field b v 18 @ traceless symmetric tensor, and where both ¢ and b v AT€
fermions (i.e., anticommuting fields). These fields are called ghosts because they
are not fundamental dynamical fields, but rather represent a Jacobian arising from
a change of variables in some functional integrals. More precisely, they are known
as reparametrization ghosts.
The equations of motion are
b, =0 P +#Fc*=0 (5.102)

o

In holomorphic form we write ¢ = ¢? and ¢ = ¢?. The only nonzero components

of the traceless symmetric tensor b, are b = b, and b = b;;. The equations of
motion are then

b=0

b =0

I
© o

(5.103)

g &
[

|

&
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The propagator is calculated in the usual way, by writing the action as

1
s=1 f dPxd’y b, ()AL (x,y)c"(y)
(5.104)

1
ARV (x,y) = 28 8, 8(x —y) 3

where we must consider (i, v) as a single composite index, symmetric under the
exchange of u and v. The factor of % in front of A%(x, y) compensates the double
counting of each pair (u, v) in the sum, which should be avoided since b*" is the
same degree of freedom as b"#. Again, the propagator is K = A~!, satisfying®

1
78 84 0" K2 (x,y) = 8(x — y)8,5 (5.105)

or, in complex representation,

1 1

go,Kp = %% (5.106)

which implies
1
ngz —

(b()cw)) = K%, (z,w) = (5.107)

In OPE form, this is

b@)ew) ~ —

gL —w

(5.108)

from which we immediately derive the following:

(Cc@bw)) = ——
ngz—w
1 1
ng (2 — w)?
1 1
g @ —w)?

(b(»)dc(w)) = — (5.109)

(8b(2)c(w)) =
The canonical energy-momentum tensor for this system is

1
o =g (bredc, — n*b*d,c,) (5.110)

Again this tensor is not identically symmetric, and should be put in the Belinfante
form before proceeding: We add 9 pB"’“’, where

1
BPHY — —Eg(b"pc" — b¥cP) (5.111)

9 Again, this differential equation could also be obtained from the equations of motion, as in Ex. (2.2).
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The antisymmetric part of T*" is

1 1

E(Té“’ -T*) = Zg(b““a"ca —b™dc,) (5.112)

and we easily verify, with the help of the classical equations of motion, that
this is compensated exactly by the antisymmetric part of 3,B”*". Therefore, the
identically symmetric Belinfante tensor is, after using the equations of motion,

1
Tgv _ _2_g [b;mavca +bvaauca + aabuvca _ nuvbaﬂaacﬂ} (5.113)

This tensor is not only symmetric, but also identically traceless.
The normal-ordered holomorphic component is obtained from the above by
setting 4 = v = 1, that is, by considering 7% = 4T ,:

T(z) = g :(26¢c b + cdb): (5.114)

The OPE of the energy-momentum tensor with c¢ is again calculated using Wick’s
theorem:

T(2)c(w) = ng :(26¢ b + cdb): c(w)
- ¢ 28ZC(Z.)
G—wy " Zi—w (5.115)
c(w) a,cw)
T G@-wr T z-w

Therefore c is a primary field with conformal dimension 2 = —1. On the other
hand, b is a primary field with conformal dimension /2 = 2:
T(2)b(w) = ng :(28c b + cdb): b(w)
b@)  3,b@)
(z —w)? zZ—w (5.116)
b(w) a,b(w)

Z—-w)? z-—w

~2

~2

We note that the anticommuting nature of b and c is crucial in order to obtain the
above OPEs. The OPE of T with itself contains many more terms, which add up
to the following:

T(Z)T(w) = ng? :(2ac(2)b(2) + c(2)ab(2)):: (2ac(W)b(w) + c(w)db(w)):
- 13 2T(w) aT(w)
@—w)y (@—wy2 (z—-w)

(5.117)

Again, but for a different coefficient of the anomalous term, this OPE has the same
form as (5.83).

An alternate theory is obtained by modifying the action in such a way that

the OPE of the fields ¢ and b with themselves are not changed, but the energy-
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momentum tensor is modified, by subtracting a total derivative : 3(cb): as follows:

T(z) = ng :oc b: (5.118)
We shall call this new theory the simple ghost system. The OPE of T with the fields
¢, b, and with itself is, of course, modified:
ac(w
Tetw) ~ X
Z—w
b(z)
(z —w)2
b(w) abw)
z-w)3 z-w

T(2)b(w) ~ (5.119)

In this new theory, c is therefore a primary field of conformal dimension 2 = 0,
and b is a primary field of conformal dimension 2 = 1. The OPE of T with itself
is

-1 2T(w) aT(w)
(z—w)  (z-w)? (z—w)
We still have the same form as above, albeit with a different coefficient in the
anomalous term.

T()T(w) ~ (5.120)

§5.4. The Central Charge

The specific models treated in the last section lead us naturally to the following
general OPE of the energy-momentum tensor:

c/2 2T(w) aT(w)

T@)Tw) ~ @—w) (-w)3 (z-w)

(5.121)

where the constant c—not to be confused with the ghost field described above—
depends on the specific model under study: it is equal to 1 for the free boson, % for
the free fermion, —26 for the reparametrization ghosts, and —2 for the simple ghost
system. This model-dependent constant is called the central charge. Except for this
anomalous term, the OPE (5.121) simply means that T is a quasi-primary field with
conformal dimension 2 = 2. Bose symmetry and scale invariance make const./(z—
w)? the only sensible addition to the standard OPE (5.71). Moreover, we already
know from symmetry considerations that the Schwinger function (T, (x)T ,,(0))
takes the form (4.77). This is, of course, compatible with the OPE (5.121), and
further confirms that the latter is the most general form the OPE of T with itself can
take. Indeed, if we convert Eq. (4.77) to holomorphic coordinates using Egs. (5.6),
(5.7), and (5.40), we find

/2

TN =22 @I =%

= 5.122
z ( )
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All other components of the Schwinger function vanish. The constant A of
Eq. (4.77) is proportional to the central charge: A = c/(472).

The central charge may not be determined from symmetry considerations: its
value is determined by the short-distance behavior of the theory. For free fields,
as seen in the previous section, it is determined by applying Wick’s theorem on
the normal-ordered energy-momentum tensor. When two decoupled systems (e.g.,
two free fields) are put together, the energy-momentum tensor of the total system
is simply the sum of the energy-momentum tensors associated with each part,
and the associated central charge is simply the sum of the central charges of the
parts. Thus, the central charge is somehow an extensive measure of the number of
degrees of freedom of the system.

5.4.1. Transformation of the Energy-Momentum Tensor

The departure of the OPE (5.121) from the general form (5.71) means that the
energy-momentum tensor does not exactly transform like a primary field of di-
mension 2, contrary to what we expect classically. According to the conformal
Ward identity (5.46) the variation of T under a local conformal transformation is

5.T(w) = _5_175 ﬁ dz e@T@)TwW)
(5.123)

= L0 2l0) — 2T0) B, el0) — ew) 2, Tw)

The “exponentiation” of this infinitesimal variation to a finite transformation z —
w(z) is

, dw\ ™2 c,
T (W)=(d—z) [T(z)—ﬁ{w,z}] (5.124)

where we have introduced the Schwarzian derivative:
wig) = W) 3 (dzw/alz2 ?
8= awid) T 2\ awidz

This induction is far from obvious and we shall be content in verifying it for
infinitesimal transformations. For an infinitesimal map w(z) = z + €(2), the
Schwarzian derivative becomes, at first order in €,

(5.125)

3

e 3 a2 \2
17)=—%— — = 2 ~ 9 5.126
fetez) 1+9,¢e 2(1+aze) 2 ( )

The infinitesimal version of Eq. (5.124) is therefore, at first order in €,

T'(z+¢€) =T'(2) + €(2)3T(z)

1. (5.127)
= (1 -23e(@)(T(2) — 1;¢%;€(2))
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or
8.T@) = T'(2) - T(2)

= — [pe8e(z) — 20,60T() - 22,T)

which indeed coincides with Eq. (5.123).

To confirm the validity of the transformation law (5.124), we must verify the
following group property: The result of two successive transformations z — w —
u should coincide with what is obtained from the single transformation from
Z — u, thatis

(5.128)

T(u) = (2’%)~2 [T = S s wi]

du\ "2 -2
=(3%) [(%) [T(z)—%{W;z}]—lc—z{u;w}] (5.129)

= (‘;—:)_2 [T(z) - %{u; z}]

The last equality requires the following relation between the Schwarzian
derivatives:

2
{u; 2} = w2z} + (‘;—W) {u; w) (5.130)
Z

It is a straightforward exercise to demonstrate that this condition is indeed satisfied.
Moreover, if we set u = z, we find that

d 2
fw; 2z} =— (—w—) {z; w} (5.131)
dz
and this relation allows us to rewrite the transformation law (5.124) as
dw\™? c
Tw)=\—5) T@+ {zw) (5.132)
dz 12

Itis equally straightforward to verify that the Schwarzian derivative of the global
conformal map

_az+b
T cz+d

w(2) (ad —bc=1) (5.133)
vanishes. This needs to be so, for 7(z) is a quasi-primary field. In fact, it can be
shown that the Schwarzian derivative in (5.124) is the only possible addition to the
tensor transformation law that satisfies the group property (5.130) and vanishes
for global conformal transformations.

Instead of providing a long and technical proof of this last statement, we shall
derive Eq. (5.124) directly by means of the free boson representation. We write
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the free boson energy-momentum tensor (5.80) as

. 1 1 1
T(z) = —2ng gg% (a(P(Z + E&)B{p(z - 58) + I@E) (5.134)

Consider the transformation z — w(z). Since ¢ has conformal dimension zero,
d¢p transforms as

3,0(2) = w3, o' (W) (5.135)

(here we denote the n-th derivative of w by w in order to lighten the notation).
Hence T(z) transforms as

1 1 1 1
T(z) = —2nglim {W“)(z + Eé)w(”(z — 588,¢' Wz + 583, ¢/ Wiz - 58)

+

1
47g?

1 1
= éin(n) {W(l)(z + Ea)w“)(z — 58)[ —2ng :9,,¢'(W)9,,¢'(w):

1 1
HETOYeRn 18) —w(z — %a))Z] - ﬁ}

wilz + 3wz —~38) 1
2wz + 38) —w(z — 38))2 28

= (W@) T'w) + lim

o\ 1 lw® 3 /w®)\?
— (w( )(Z)) T'w) + H 1w ~ 3\ wm (5.136)

Since ¢ = 1 for a free boson, we recover (5.124) after isolating 7’(w).

5.4.2. Physical Meaning of ¢

The appearance of the central charge ¢, also known as the conformal anomaly,
is related to a “soft” breaking of conformal symmetry by the introduction of a
macroscopic scale into the system. In other words, ¢ describes the way a specific
system reacts to macroscopic length scales introduced, for instance, by boundary
conditions. To make this statement more specific, we consider a generic conformal
field theory living on the whole complex plane, and we map this theory on a cylinder
of circumference L by way of the transformation

Z->w= £ Inz (5.137)
2

Then, dw/dz = L/(2nz) and the Schwarzian derivative is 1/2z2. The energy-
momentum tensor Tcyl. (w) on the cylinder is related to the corresponding tensor
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T,,.(z) on the plane by

L 24

If we assume that the vacuum energy density (7T’ p1.) vanishes on the plane, then
taking the expectation value of the above equation yields a nonzero vacuum energy
density on the cylinder:

T, (w) = (2—”) {1, @2 —ﬁ} (5.138)

cn2

6L2
The central charge is seen to be proportional to the Casimir energy, the change
in the vacuum energy density brought about by the periodicity condition on the
cylinder. The Casimir energy naturally goes to zero as the macroscopic scale L
goes to infinity.

This remark allows us to relate the central charge to the free energy per unit
length of a statistical system defined on a cylinder. The free energy F, which
coincides with the connected functional W, varies in the following way when the
metric tensor is changed:

T, w)) = (5.139)

1
F = = / d’x /gsg,,,(T*") (5.140)

In cylindrical geometry, we apply an infinitesimal scaling of the circumference:
L — (14+¢&)L or 8L = ¢L. This is realized by applying a coordinate transformation
w?® — (1 + e)w?, where w? is the coordinate running across the cylinder (w =
w0 +iw!). According to Eq. (2.192), the infinitesimal variation of the coordinate is

e = ew®8 ; and the corresponding variation of the metric is 8g,, = —2£8,,8 .
Since
nc
(T%) = (T,) +(T) = ~(Ua)T) = 5 (5.141)

the variation of the free energy is
sL
§F = [ dwldw' ==
/ A

This equation supposes that (7°°) vanishes in the L — oo limit or, in other words,
that (T p,.(z)) = 0. If, on the contrary, we suppose that there is a free energy f, per
unit area in the L — oo limit, then the above equation is replaced by

- 0dw! e\ 3L
BF-/dw dw (f°+6L2 7
The integral over w® gives a trivial factor of L, and we can dispose of the integral
over w! by defining a free energy F, per unit length of the cylinder, in terms of
which the variation is

SF, = (f0 6L2) 5L (5.142)
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After integration, it follows immediately that

nc
F, =f,L— 137 (5.143)

This relation is important in the study of finite-size effects of statistical systems and
numerical simulations; we shall come back to this in Chap. 11 (cf. also Ex. 3.5).

The central charge also arises when a conformal field theory is defined on a
curved two-dimensional manifold. The curvature introduces a macroscopic scale
in the system, and the expectation value of the trace of the energy-momentum
tensor, instead of vanishing, is proportional to both the curvature R and the central
charge c:

C .
(1%, (x), = 54—7:R(x) (5.144)

This quantum breaking of scale invariance is called the trace anomaly. The proof
of (5.144) is not simple, and is given in App. 5.A for the free boson, although the
argument may be generalized to other systems.

Appendix 5.A. The Trace Anomaly

In this appendix we demonstrate Eq. (5.144) for the trace anomaly for a free boson.
We consider the generating functional

Z[g) = / [dg], e™51s)

— W

(5.145)

where S[g, g] is the action of a free scalar field in a background metric g, ,:

Sle. gl = fdzx V& g"'d,pd,p

(5.146)
=- f d’x Jg 9Dy
We have introduced the Laplacian operator A:
1
Ap = —9, (/88" 0,9 (5.147)
20 (VEE"0,9)

Under a local scale transformation of the metric 8 -1+ o(x))g,w, the action
varies according to

8Slyp,gl = —% / &’xT"8g,, = _% / d*x o(x)T", (5.148)
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where o(x) is infinitesimal. Consequently, the variation of the connected vacuum
functional Wig] is

sWigl = _% / d*x ox)(T" (x)) (5.149)

According to the Ward identities previously derived, this variation vanishes in flat
space, since (T, (x)) = 0. This is no longer true on an arbitrary manifold.

To see this, we define the functional measure [d¢] in a fashion more suited to an
arbitrary metric. We proceed by analogy with integration on a general manifold of
dimension d: the line element is then ds? = gwdx“dx", and the volume element

isdQ = /g dx'...dx?.1f a coordinate system can be found such thatg,, =n,,,
then ./g = 1 and the integration measure simplifies accordingly. In the space
of field configurations, the analog of the metric is defined in a reparametrization
invariant way:

o) = [ &x JEvie, (5.150)

and the line element is simply
18¢] 1> = (3¢, 8¢) (5.151)
In order to diagonalize this “functional metric”, we introduce a complete set of or-
thonormal functions {g, } (i.e., such that (¢,,,, ¢,) = 8,,,,) and express any general

field configuration as ¢ = ), c,,¢,,. The line element thus reduces to

lIsell> = (8¢, (5.152)

which allows us to define the functional integration measure as

[del = []dec, (5.153)

Of all possible complete sets {¢,,}, the most useful is the set of normalized
eigenfunctions of the Laplacian, with eigenvalues —A,:

Ag, = —A,0, (5.159)

The action of a configuration specified by the expansion coefficients c,, is then
simply

Sip.81= ) _A,ck (5.155)

which means that the modes ¢, decouple. However, all is not trivial since the
eigenfunctions ¢, and the eigenvalues A,, depend on the background metric 8
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The vacuum functional may be written as

Z[gl = / T1 {dc,, e—w}

We must be cautious here, since the Laplacian always has a zero-mode ¢, =
const. with vanishing eigenvalue. Such a mode is a source of divergence in the
vacuum functional. To fix this “infrared” problem, we “compactify” the field ¢:
We assume that ¢ takes its values on a circle, such that the values ¢ and ¢ + a are
equivalent. The circumference a can be chosen very large, and taken to infinity
at the end of the calculation. Then the range of integration of ¢, is no longer the
whole real axis, but the segment [0, av/A A}, where A is the area of the manifold. This
follows from the normalization condition (¢,, ¢,) = Apz = 1 and the condition
0 < cy9, < a. The above expression for the vacuum functional is then replaced by

(5.156)

Zigl= e .
lel=avA]] - (5.157)
n#0 n
The connected functional W([g] is then
1 1., —-A
W[g] = —Ina - ElnA‘f' ETI' ln?]‘[— (5.158)

where Tr’ indicates a trace taken over all nonzero modes. We then use the following
representation of the logarithm:

mB=—tim [ & (e —e™) (5.159)
£—0 t

€

in order to write
1 1 o dt
Wigl=—-lna— -InA— - Tr’ / — (e —e™) (5.160)
2 2 PO §
(we have scaled ¢ — 2xt). From now on we keep ¢ finite and shall send it to zero
at the end of the calculation.
‘We now perform an infinitesimal local scale transformation. The variation of

the metric is ég,,, = og,,,, and that of the Laplacian is A = —o A. The variation
of the second term of (5.160) is

(__ Ind) = -4 f &x Jgo (5.161)

and that of the trace in Eq. (5.160) is

—Tr { / dtorAe’A} —Tr’ { f dt o— dte’A} ——-Tr'(aem) (5.162)



§5.A. The Trace Anomaly 143

In the second equality, we used the property that all nonzero eigenvalues of A are
negative, so that only the lower-bound of the integral over ¢ contributes. Since

1 1 1
57 | *x V8o = —5 9y, 099) = — (g, 5e*> ;) (5.163)
2A 2 2

we may combine the two variations into a single expression:
1
Wigl = > Tr (0e®?) (5.164)

This expression contains the contribution of the zero-mode, hence Tr’ has been
replaced by Tr.
To proceed, we introduce the heat kernel

(xle’® [y) (t>0)
G(x,y;t) =
.y 1) { 0 (t<0)

Since the eigenvalues of A can be arbitrarily negative, the expression e’® has
meaning only for ¢ > 0. In terms of this kernel, the variation of W[g] is

(5.165)

sWig] = —% / d*x /g o(x)G(x,x; £) (5.166)

The crucial point here is the short-time behavior of the diagonal kernel, which can
be shown to be
1 1
G(x,x;e) = — + —R(x) +O0(e) (5.167)
4ne 24w

(this result is proven in the App. 5.B). It follows that

Wig] = —gl,; f d*x /g o(x) — Z:;E / d*x /g o(x)R(x) (5.168)

In the limit ¢ — O, the first term seems problematic, being infinite. The origin of
this divergence lies in the assumed finite size of the manifold and has nothing to do
with curvature. To fix it, we add to the original action the following ¢-independent
counterterm:

S,gl=u f d’x Jg (5.169)

which is simply equal to uA. Under a local scale transformation it undergoes the
following variation:

8S,lgl=p / d’x \/g o(x) (5.170)

By suitably choosing u to be equal to —1/87we, the variation of the counterterm
action S, cancels the divergent term in (5.168). The second term in (5.168) cannot
be eliminated in the same way. Indeed, if we add a second counterterm of the form

S,lgl = / d*x \/g R(x) (5.171)
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we find that it is proportional to the Euler characteristics x, a topological invariant
that depends only on the number of handles of the manifold. Therefore, it is invari-
ant under a local scale transformation, and cannot cancel the rest of the variation
8W{g]. Then, the equivalence of (5.149) and (5.168) implies that the trace of the
energy-momentum tensor does not vanish, according to (5.144), with the value
¢ = 1 appropriate for a free boson.

In order to relate the trace anomaly to the central charge figuring in the
OPE of the energy-momentum tensor or, equivalently, in the two-point func-
tion (T uv(x)Tpk(y)), we proceed as follows. We use the “conformal gauge”, a
coordinate system in which the metric tensor is diagonal:

gy = 8,,e%% (5.172)

In two dimensions it is always possible to find such a system, at least locally. In
terms of the field ¢, the determinant /g and the curvature are

JE=¢e* JVER = ¥ (5.173)

Since a local scale transformation amounts to a local variation of the field ¢, the
corresponding variation of the connected functional W(g] is

SWig] = —;T” f d*x 3¢ 8¢ (5.174)

where ¢ is some constant, equal to unity in the case of a free boson, as argued
above. This implies that

Wigl = Ef)? / d2x (3p) (5.175)

up to terms independent of ¢. In terms of the Green function K(x,y) of the
Laplacian, this is

Wigl = o [ dxdy oG, 9F000) (5.176)

This follows from the defining property 32K(x,y) = 8(x — y) and integration by
parts. The natural extension of the above to an arbitrary coordinate system is

Wigl =~ [ sy o) 60) ROKGYRG)  (5177)

where K(x, y) now satisfies

V8@ A.K(x,y) = 8(x —y) (5.178)

The above expression for W[g] can be used to calculate the two-point function of
the energy-momentum tensor (the Schwinger function):

2w

[ — 5.179
52,088 2 0) ©-179)

(Tuu(x)TpA(Y)) =
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Without a detailed calculation, it is by now clear that the Schwinger function will
be proportional to ¢, which confirms that the central charge and the coefficient of
the trace anomaly are one and the same thing.

Appendix 5.B. The Heat Kernel

In this appendix we show that the heat kernel G(x, y; t) defined in (5.165) has the
short-time behavior given in (5.167) forx = y.
From the definition of the heat kernel, we see that it satisfies the equations

0 1
b—tG(x,y, 1) = A Gx,y; 1) A= EB”\/EB"

] (5.180)
G(x,y; 0) = —é8(x —y)
N/3
These two equations may be combined into
1
9, — A)G(x,y;t) = —8(x —y)s(t) (5.181)
( t x) \/g

The equivalence of this single equation with Eq. (5.180) may be seen by first
considering the case ¢ > 0, and then by integrating the above equation over ¢ from
—e¢ to &, where ¢ is infinitesimal, remembering that G(x,y; t) = 0 if ¢ < 0. The
heat kernel is then the Green function for the diffusion equation:

Glx,y;t) = (x,1(3,— 2)" Iy, 0) (5.182)

We know the (normalized) solution to this equation in flat infinite space:

1 — v)2
Go(x;y, t) = _4;1' exp - (x 4ty)
‘We now wish to find the small ¢ behavior of G(x, x; t) on a general curved manifold.
Physically, G(x, x; t) is the probability that a random walker will diffuse from x
back tox in a time £. If ¢ is small the diffusion cannot go very far, and we can restrict
our attention to the immediate neighborhood of x. To this end we writey = x + x
and use a locally inertial frame at x, withg,, (x) = 7, and 3,g,, ,(x) = O:

(5.183)

1
8 +8x) ~n,, + 5C,, 8385 (5.184)

where the constants C Lvpx are symmetric under the interchanges 4 < v and

p © A. It is then a simple exercise to show that
Alx) ~ 3,9 +a""3,9, + b*a, (5.185)
wherein

1 1
@ = —SOW 808 and b = S (Cf - O, )axt (5.186)
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The heat kernel then becomes

1

Gle,yit) = (xtlr—5

ly,0) (5.187)

where

A=08.0 (5.188)
B=a""3,3,+b"3,
A perturbative solution for G(x, y; t) is obtained by expanding

1 1 1.1 1.1 1

To first order, this yields

Glx,y; 1) = (x,t|A" |y, 0) + / dvdz (x,t|A7 Yz, T)(z, TIBA™ |y, 0)

t
= Gylx,y; 1) +j dt/dzz Gylx,z;t — 1) (5.190)
0
x {a‘“’(z) & +b“(z)—?~}G (@y: 7)
dz+ 87" azr | O

The range of the t integration follows from the vanishing of G (x,y; t) for ¢ < 0.
One checks that the low ¢ behavior of the 7-th order contribution in perturbation
theory is #"~!. We are thus justified in keeping only the first-order contributions.
Substitution of the explicit form (5.183) of G,(x,y; t) and (5.186) of a** and b*
yields

1
+ —

G ’ ;t = -
e, 0) = o+ o

(C"*M - C“,‘*A) + 0@ (5.191)

On the other hand, it is straightforward to show that the scalar curvature is given
by

RGx) = (€, —C*2,) (5.192)

Therefore, the short-time behavior of the heat kernel on a curved manifold is given
by

1
G(x,x;e) = L 4+ —R(x) + O(e) (5.193)
dre 247

Even if this result is obtained in a specific local inertial frame, the relation of the
curvature with the short-time heat kernel is coordinate independent.
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Exercises

5.1 The group SL(2,C)
a) Write down the explicit SL(2, C) matrices corresponding to translations, rotations,
dilations, and special conformal transformations.

b) Given three points z;, 2,, and 23, find the explicit SL(2, C) transformation (5.12) that
maps these three points respectively to 0, 1, and oco.

We have seen in Chap. 4 that the global conformal group in Euclidian space is isomorphic to
SO(d+1,1).Ford = 2, this means that SL(2, C) should be isomorphic to the Lorentz group
SO(3, 1) of Minkowski four-dimensional space-time. The Lorentz group is the set of linear
transformations on a four-vector x* that leaves the interval s? = (x%)? — (x')? — (x2)? — (x3)?
invariant. To x* we may associate a 2 x 2 matrix X = x#o*, where ¢! are the usual Pauli
matrices and o? is the unit matrix.

¢) Show thats? = det X and that any transformation X — S’XS leaves the interval invariant
if S is a SL(2, C) matrix, and vice versa. Conclude on the isomorphism of SL(2, C) with
the Lorentz group. What about the topology of these two groups? Hint: Changing the sign
of the SL(2, C) matrix should have no consequence on the Lorentz transformation.

5.2 Cluster property of the four-point function

Consider the expression (5.28) for a generic four-point function. Show how a product of
two-point functions is recovered when the four points are paired in such a way that the
two points in each pair are much closer to each other than the distance between the pairs.
You must assume that the scaling dimensions are positive (i.e., that the correlations do not
increase with distance).

5.3 Four-point function for the free boson
Calculate the four-point function (3pdpdpdyp) for the free boson using Wick’s theorem.
Compare the result with the general expression (5.28). What is the function f(n, ) ?

5.4 Verify the details of the calculation of the OPE of the energy-momentum tensor with
itself, in Egs. (5.83), (5.100), (5.117), and (5.120).

5.5 Free complex fermion
Given two real fermions y; and i, one may define a single complex fermion ¥ and its
Hermitian conjugate y' this way (with holomorphic and antiholomorphic modes):
1 . ~ |
= —= +1 = —= +1
1// ﬁ (‘//l VIZ) "/, \/i (]/fl ]/,2)

1

(5.199)
w*:iw.—iw) U= —= — i)
V2 2 J2or T

The real fermions ¥, and ¥, are governed by the action and energy-momentum tensor of
Sect. 5.3.2.

a) Show that the OPE of the complex fermion with itself is
VEUW) ~ ——  Y@¥w) ~ Y ~0  (5.195)
b) Show that the energy-momentum tensor may be expressed as
T@) = S @¥'Y — ¥'a) (5.196)

and that the conformal dimension of  is % and that the central charge isc = 1.
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¢) Show that the action describing the complex fermion system may be written as
Slyl=g [ d*x wy'y*3,w (5.197)

where W = (¢, ¥') is a two-component field.

5.6 Generalized ghost system _
The ghost system may be generalized to a pair of fields b(z) and &(z), either both
anticommuting (¢ = 1) or commuting (¢ = —1). Their OPE is defined to be

Hbw) ~ ——  BEw) ~ —— (5.198)
Z—w zZ—w
and the associated energy-momentum tensor is defined as
T(2) = (1 - 2)(3b8)(2) — MB)EN2) (5.199)

where A is some constant.
a) Show that the ghosts b(z) and ¢(z) have, respectively, dimensions A and 1 — A.
b) Calculate the central charge of this system. Answer:

¢ = —2€e(6A% — 6A + 1). (5.200)
What is the range of ¢ if A is real ?

5.7 Calculate explicitly the transformation property of the energy-momentum tensor of a
free fermion using the point-splitting method, as has been done for the free boson. Check
that the Schwarzian derivative appears there also, with the correct value of the central charge.

5.8 Express all components of the Schwinger function (4.77) in terms of holomorphic
coordinates. What are the only nonzero (anti)holomorphic components of the Schwinger
function?

5.9 The Schwarzian derivative

a) Demonstrate explicitly the group property (5.130) of the Schwarzian derivative.

b) Show that the Schwarzian derivative of the SL(2, C) transformation (5.12) vanishes.

5.10 Demonstrate in detail the expressions (5.185) and (5.186) for the Laplacian in a locally
inertial frame near the origin.

5.11 Heat kernel on a sphere
The Laplacian operator on a sphere of radius » embedded in three-dimensional space is

A = —L?/r?, where L is the angular momentum operator of quantum mechanics.
a) Show that the heat kernel G(x, x; t) is given by
1
Glr,x: 1) = = 3 [¥im(e) e~ 0" (5.201)
lm

where x stands for the angular coordinates (6, ¢). The spherical harmonics Y;,,,(6, ¢) are
eigenfunctions of L? and L,:
Lzle,m = I(I + 1)Ylm Lz Yl,m = mYl,m (5-202)
b) By setting x = 0 (the north pole § = 0) and using Euler’s summation formula, show
explicitly that
1 1

GO0 ="+ o

+-.-. (5.203)
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This result agrees with Eq. (5.167), since the scalar curvature R of a sphere of radius r is
R =2/

Notes

The seminal work of Belavin, Polyakov, and Zamolodchikov [36] (henceforth referred to
as BPZ; see also [35]) had an immense influence on the developments of two-dimensional
conformal field theory. Some of these developments are described in many review articles
and lecture notes. Of note are those of Alvarez-Gaumé, Sierra, and Gémez [12], Cardy [68,
69], Christe and Henkel [76], Ginsparg [177], Saint-Aubin [312], and Zamolodchikov and
Zamolodchikov [367]. A large chapter of the two-volume set by Itzykson and Drouffe [203]
is devoted to conformal invariance in two dimensions. Recent books [235,227] cover a great
variety of subjects. The collection of reprints assembled by Itzykson, Saleur, and Zuber [204]
is a handy reference and contains an extensive bibliography (up to 1989). The two-volume
set by Green, Schwarz, and Witten [187] on superstring theory also contains a generous
bibliography in which early work on free-field theories can be found.

The use of holomorphic and antiholomorphic coordinates in the context of string theory
appears in Polyakov [297, 298] and in a lecture by Friedan [139]. The definition of a primary
field appeared in BPZ [36]. The Ward identities were used extensively in BPZ, but the
conformal Ward identity appears in the present form in Ref. [142]. The alternate derivation
of the Ward identities on a Riemannian manifold follows the presentation of H. Kawai [233].
The operator product expansion was first introduced in field theory by Wilson [356) and
Kadanoff [223]; it was used in string theory by Friedan [139] (see also [142]).

Bosons, fermions, and ghosts in dimension two were studied in the context of string
theory. Fermions were introduced in string theory by Ramond [302] and Neveu and
Schwarz [281]. Reparametrization ghosts were introduced in string theory by Polyakov
[297, 298]; the extension of bosons, fermons, and ghosts to superstrings was studied in
Friedan, Martinec, and Shenker [142], in which a detailed discussion of the relation between
string theory and conformal field theory can also be found.

It was recognized in BPZ [36] that the central charge is a fundamental characteristic
of a conformal field theory. Its deeper significance as a measure of the number of degrees
of freedom in a theory is discussed by Zamolodchikov [363]. The behavior of the energy-
momentum tensor under conformal transformation appeared in BPZ [36]; the argument
given in this chapter for the free boson is due to Cardy [69]. The interpretation of the central
charge as a Casimir energy is due to Affleck [1] and Blote, Cardy, and Nightingale [49].
Our treatment of the trace anomaly follows H. Kawai [233], derived from the original work
of Polyakov [297].



CHAPTER 6

The Operator Formalism

In the previous chapter, the consequences of conformal symmetry on two-
dimensional field theories were embodied in constraints imposed on correlation
functions known as the Ward identities. These Ward identities were most easily
expressed in the form of an operator product expansion of the energy-momentum
tensor with local fields. It was implicit, however, that operator product expansions
were occurring within correlation functions and no use was made of any oper-
ator formalism or Hilbert space: The correlation functions could in principle be
obtained in the path integral formalism.

Hilbert spaces and operators are nonetheless extremely useful in conformal
field theory because of the power of algebraic and group-theoretical methods. The
operator formalism of quantum mechanics implies a choice of reference frame, as
it is not manifestly Lorentz invariant; this amounts to choosing a time axis in space-
time. In a Euclidian theory, the time direction is somewhat arbitrary; in particular,
it may be chosen as the radial direction from the origin. This is the object of radial
quantization, described in Sect. 6.1. The use of complex coordinates then allows a
representation of commutators in terms of contour integrals, making the operator
product expansion a particularly useful computational tool. Section 6.2 expresses
the conformal transformation of fields in terms of quantum generators, whose
commutation relations define the Virasoro algebra. The general features of the
Hilbert space and the notion of descendant states are also introduced. Section 6.3
discusses at length the quantization of the free boson on the cylinder with various
boundary conditions. Some notions introduced here (e.g., vertex operators) will be
of greatimportance later. Section 6.4 gives a comparable treatment of free fermions.
Section 6.5 describes a new definition of normal ordering for interacting conformal
fields. Section 6.6 introduces the notion of descendant fields, conformal families
and operator algebra, and is of special importance for a good understanding of the
structure of conformal field theories.
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§6.1. The Operator Formalism of Conformal Field
Theory

6.1.1. Radial Quantization

The operator formalism distinguishes a time direction from a space direction. This
is natural in Minkowski space-time, but somewhat arbitrary in Euclidian space-
time. In the context of statistical mechanics, choosing time and space directions
amounts to selecting a direction in the lattice (e.g., rows) that we call “space”, and
defining a space of states spanned by all the possible spin configurations along that
direction. The time direction is then orthogonal to space, and the transfer matrix
makes the link between state spaces at different times. In the continuum limit the
lattice spacing disappears and we are free to choose the space direction in more
exotic ways, for instance along concentric circles centered at the origin. This choice
of space and time leads to the so-called radial quantization of two-dimensional
conformal field theories.

In order to make this choice more natural from a Minkowski space point of view
(in particular in the context of string theory), we may initially define our theory
on an infinite space-time cylinder, with time ¢ going from —oo to +o00 along the
“flat” direction of the cylinder, and space being compactified with a coordinate x
going from O to L, the points (0, ¢) and (L, ¢) being identified. If we continue to
Euclidian space, the cylinder is described by a single complex coordinate £ = t+ix
(or equivalently £ = t — ix). We then “explode” the cylinder onto the complex
plane (or rather, the Riemann sphere) via the mapping illustrated on Fig. 6.1.

7z = e¥L 6.1

The remote past (¢t — —oo0) is situated at the origin z = 0, whereas the remote
future (t — +o00) lies on the point at infinity on the Riemann sphere.

Figure 6.1. Mapping from the cylinder to the complex plane.

We must also assume the existence of a vacuum state |0) upon which a Hilbert
space is constructed by application of creation operators (or their likes). In free-
field theories, the vacuum may be defined as the state annihilated by the positive
frequency part of the field (see Sect. 2.1). For an interacting field ¢, we assume
that the Hilbert space is the same as for a free field, except that the actual energy
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eigenstates are different. We suppose then that the interaction is attenuated as
t — $o0 and that the asymptotic field

Py ¢ lim o(x, 1) 6.2)

is free. Within radial quantization, this asymptotic field reduces to a single operator,
which, upon acting on |0}, creates a single asymptotic “in” state:

|6;p) = lim #(z,2)|0) (6.3)

THE HERMITIAN PRODUCT

On this Hilbert space we must also define a bilinear product, which we do indi-
rectly by defining an asymptotic “out” state, together with the action of Hermitian
conjugation on conformal fields. In Minkowski space, Hermitian conjugation does
not affect the space-time coordinates. Things are different in Euclidian space, since
the Euclidian time t = if must be reversed (t — —t) upon Hermitian conjugation
if ¢ is to be left unchanged. In radial quantization this corresponds to the mapping
zZ —> 1/z*. This (almost) justifies the following definition of Hermitian conjugation
on the real surface Z = z*:

(62, D1 = 2%z % ¢(1/z, 112) (6.4)

where by assumption ¢ is a quasi-primary field of dimensions /2 and h. The
prefactors on the r.h.s. may be justified by demanding that the asymptotic “out”
state

(Dol = o) (6.5)

have a well-defined inner product with |¢, ). Following the definition (6.4) of
Hermitian conjugation, this inner product is

(Goul¥in) = _lim _ (01(z, z) ¢(w, w)|0)

= _lim z %77 20|¢(1/Z, 1/2)p(w, W)|0) (6.6)

z,Z,w,w—0

= Jim B2 (0|g(E, £)¢(0, 0)|0)

According to the form (5.25) of conformally covariant two-point functions, the
last expression is independent of £, and this justifies the prefactors appearing in
Eq. (6.4): Had they been absent, the inner product (¢, |¢;,) would not have been
well-defined as £ — co. Notice that the passage from a vacuum expectation value
to a correlator in the last equation is correct since the operators are already time-
ordered within radial quantization: The first one is associated with ¢ — oo and the
second one to ¢t — —oo.
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MODE EXPANSIONS
A conformal field ¢(z, Z) of dimensions (%, ) may be mode expanded as follows:

W22 =3 Y ",
meZ nel ( 6.7)
1. mh—1 1 5 sn+h—1 5
Pmn = 5= dzz 20 dzz #(2,2)

A straightforward Hermitian conjugation on the real surface yields

¢t =3 Y zhenhel | (6.8)

meZ neZl

while the definition (6.4) gives instead
#(2,2) =2 %7 Pe(11z, 117)
— Z——Z’IZ—Z}; Z z¢ zm+hzn+it
mn

meZ nel

- Z Z¢—m._nz—m—hz——n—l—1

meZ nel

6.9)

These two expressions for the Hermitian conjugate of the mode expansion are
compatible provided

Brin = P_mn (6.10)

This is the usual expression for the Hermitian conjugate of modes, and justifies
the extra powers of 2 and 4 occurring in Eq. (6.7). If the “in” and “out” states are
to be well-defined, the vacuum must obviously satisfy the condition

Gpenl0) =0 (m > —h,n > —h) 6.11)

In the following, we shall lighten the notation by dropping the dependence of
fields upon the antiholomorphic coordinate. Thus, the mode expansions (6.7) will
take the following simplified form:

o)=Y 27",

meZ
1
b = 5 fdz 2" 1g(2)

It must be kept in mind, however, that the antiholomorphic dependence is al-
ways there. The decoupling between holomorphic and antiholomorphic degrees
of freedom that pervades conformal theories makes it a simple task to restore the
antiholomorphic dependence when needed.

(6.12)

6.1.2. Radial Ordering and Operator Product Expansion

Within radial quantization, the time ordering -that appears in the definition
of correlation functions becomes a radial ordering, explicitly defined by (cf.
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Eq. 2.77))

R, @)b,w) = b, (2)P,(w) ff |zl > w| 6.13)
o,W)®,(2) if lz] <wl
If the two fields are fermions, a minus sign is added in front of the second ex-
pression. Since all field operators within correlation functions must be radially
ordered, so must be the Lh.s. of an OPE if it is to have an operator meaning. In
particular, the OPEs written previously have an operator meaning only if |z] > |w].
We shall not write the radial ordering symbol R every time, but radial ordering
will be implicit.
We now relate OPEs to commutation relations. Let a(z) and b(z) be two
holomorphic fields, and consider the integral

f dz a(Dbw) 6.14)

wherein the integration contour circles counterclockwise around w. This expres-
sion has an operator meaning within correlation functions as long as it is radially
ordered. Accordingly, we split the integration contour into two fixed-time cir-
cles (see Fig. 6.2) going in opposite directions. Our integral is now seen to be a
commutator:

fdz a@bw) = fc dz a(@)b(w) — fc dz bw)a(z)

= [A,b(w)]

where the operator A is the integral over space at fixed time (i.e., a contour integral)
of the field a(z):

(6.15)

A= f a(z)dz (6.16)

and where C, and C, are fixed-time contours (circles centered around the origin) of
radii respectively equal to |w| + € and |[w| — &, € being infinitesimal. Naturally, an
operator relation cannot be obtained from considering a single correlation function.
We must allow an arbitrary number of different fields to lie beside b(w) and a(z)
within a generic correlator; the decomposition into two contours is valid as long as
b(w) is the only other field having a singular OPE with a(z), which lies between
the two circles C; and C,; this is the reason for taking the limit ¢ — 0. The
commutator obtained is then, in some sense, an equal time commutator. We note
that if a and b are fermions, the commutator is replaced by an anticommutator.
In practice, the integral (6.14) is evaluated by substituting the OPE of a(z) with
b(w), of which only the term in 1/(z —w) contributes, by the theorem of residues.

The commutator [A, B] of two operators, each the integral of a holomorphic
field, is obtained by integrating Eq. (6.15) over w:

[A,B] = fdw f dz a@)bw) 6.17)
0 w
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N No

Figure 6.2. Subtraction of contours.

where the integral over z is taken around w, and the integral over w around the
origin, and where

A= f a(zdz B = f b(z)dz (6.18)

Formulas (6.15) and (6.17) are important: They relate OPEs to commutation re-
lations, and allow us to translate into operator language the dynamical or symmetry
statements contained in the OPE.

‘We note that whenever a contour integral is written without a specified contour,
it is understood that we integrate at fixed time (i.e., along a circle centered at the
origin). Otherwise the relevant points surrounded by the contours are indicated
below the integral sign.

§6.2. The Virasoro Algebra

6.2.1. Conformal Generators

We apply Egs. (6.15) and (6.17) to the conformal identity (5.46). We let €(z) be
the holomorphic component of an infinitesimal conformal change of coordinates.
We then define the conformal charge

1
Q. = 5 fdzc@T@ 6.19)
2ni
With the help of Eq. (6.15), the conformal Ward identity translates into
5. o(w) = —[Q., 2(w)] (6.20)

which means that the operator Q, is the generator of conformal transformations—in
other words, the conformal charge, in the spirit of Eq. (2.163).
We expand the energy-momentum tensor according to (6.7):

—_ 2 : —-n-2 _ 1 f n+1
T(Z) - neZZ L" Ln - 2mi dZ z T(Z)
6.21)
T@=Y7"2L, L,=-— f 7R

" " 2nmi

nez
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We also expand the infinitesimal conformal change €(z) as

€)=Y 2", (6.22)

neZ

Then expression (6.19) for the conformal charge becomes

Q. =) €L, (6.23)

neZ

The mode operators L, and L, of the energy-momentum tensor are the generators
of the local conformal transformations on the Hilbert space, exactly like £, and ¢,
of Eq. (5.18) are the generators of conformal mappings on the space of functions.
Likewise, the generators of SL(2, C) in the Hilbert space are L_,, L,, and L, (and
their antiholomorphic counterparts). In particular, the operator L, + L, generates
the dilations (z,Z) — A(z,Z), which are nothing but time translations in radial
quantization. Thus, L, + l_,o is proportional to the Hamiltonian of the system.

The classical generators of the local conformal transformations obey the algebra
(5.19). The quantum generators L, obey an identical algebra, except for a central
term:

c
Iin(n2 - 1), +m0

(L, L,=0 (6.24)

[Ln'Lm] = (n - m)Ln-(-—m +

o _ c
iL,L,)=n-m)L,, + l—zn(rz2 =108, 1m0

where c is the central charge of the theory. This is the celebrated Virasoro algebra.
It may be derived from the mode expansion (6.21), the OPE (5.121) and Eq. (6.17):

— 1 m+l¢ n+l[ c/2
L, L,1= @iy f;dww wdzz GC—wy

2T(w) aT(w)
C—wr " G-w T “”g‘]

= L fdw wntl [ic(n + Dnn - 1Dw' 2+
271"1 0 12

+

2(n + W"T(w) + w"“aT(w)}

1
= 5on(n* = D8,y + 200 + DL, ,

- L fdw (n +m + 2w (W)
2ni Jo

1 ,
= Ecn(rz2 =18, mot+n—m)L, . (6.25)
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where, in the third equation, the last term has been integrated by parts. The last
equation of (6.24) is demonstrated in exactly the same way, and the second equation
of (6.24) follows from the trivial OPE T(z)T(w) ~ 0.

6.2.2. The Hilbert Space

The Hilbert space of a conformal field theory may have an intricate structure,
which will be discussed in Chapter 7. For the moment we shall simply explain
some general facts.

The vacuum state |0) must be invariant under global conformal transformations.
This means that it must be annihilated by L_,, L, and L, and their antiholomorphic
counterparts (this fixes the ground state energy to zero). This, in turn, can be
recovered from the condition that T(z)|0) and T(Z)|0) are well-definedasz,Z — O,
which implies

L,0y=0

L.0)y=0
which includes as a subcondition the invariance of the vacuum |0) with respect to
the global conformal group. It also implies the vanishing of the vacuum expectation
value of the energy-momentum tensor:

(0IT(2)10) = (0|T(2)|0) = 0 6.27)

Primary fields, when acting on the vacuum, create asymptotic states, eigenstates
of the Hamiltonian. A simple demonstration follows from the OPE (5.71) between
T(z) and a primary field ¢(z,Z) of dimensions (%, /), translated into operator
language:

1
L, $00,9)) = 5 - § dz 2 T@ow, )
2mi J,,
] - -
-1 f dz 7 ho(w,w) + dp(w, w) + reg. (6.28)
27i Jy (z—-w)? Z-w
=h(n+ DwW'p(w,w) + w'op(w,w)  (n>-1)
The antiholomorphic counterpart of this relation is
(L, 6w, W)] = h(n + DWW ¢(w, W) + W Hagw,w)  (n > —1) (6.29)
After applying these relations to the asymptotic state

(n>=-1) (6.26)

Ik, k) = $(0,0)/0) , (6.30)
we conclude that
Lylh,h) = hih, h) Lylh, hy = hih, k) (6.31)
Thus Ih,l—z) is an eigenstate of the Hamiltonian. Likewise, we have
Lhhy =0
if n>0 (6.32)

Lhhy =0
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Excited states above the asymptotic state |h,}_z) may be obtained by applying
ladder operators. Explicitly, if we expand the holomorphic field ¢(w) in modes
according to (6.12), then we easily find the commutation rule

L, ¢,] = [nh—1) —ml,,,, (6.33)
of which a special case is

Ly, d,,] = —me,, (6.34)

(the antiholomorphic index, if included, would simply be a spectator). This means
that the operators ¢,,, act as raising and lowering operators for the eigenstates of
L,: each application of ¢_,, (m > 0) increases the conformal dimension of the
state by m.

The generators L_,,, (i > 0) also increase the conformal dimension, by virtue
of the Virasoro algebra (6.24):

[Ly,L_,)=mL_,, (6.35)

This means that excited states may be obtained by successive applications of these
operators on the asymptotic state |/2):

L_le_kz b 'L_k" lh) (1 S k‘ S e S kn) (6.36)

By convention the L_;, appear in increasing order of the k;; a different ordering
can always be brought into a linear combination of the well-ordered states (6.36)
by applying the commutation rules (6.24) as necessary. The state (6.36) is an
eigenstate of L, with eigenvalue

K =h+k +k,+---+k,=h+N (6.37)

The states (6.36) are called descendants of the asymptotic state |i2) and the integer
N is called the level of the descendant. The number of distinct, linearly independent
states at level N is simply the number p(N) of partitions of the integer N. It is easy
to convince oneself, through a Taylor expansion, that the generating function of
the partition numbers is (cf. Ex. 6.4)

g N, (6.38)
PO L Nt '
where ¢(q) is the Euler function.

The relevance of descendant states lies in their conformal properties: The effect
of a conformal transformation on a state is obtained by acting on it with a suitable
function of the generators L,,. The subset of the full Hilbert space generated by
the asymptotic state |;2) and its descendants is closed under the action of the Vira-
soro generators and thus forms a representation (more correctly, a module) of the
Virasoro algebra. This subspace is called a Verma module in the mathematical lit-
erature. Chap. 7 will develop these ideas further. We shall come back to descendant
states in Sect. 6.6.1.
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§6.3. The Free Boson

This section gives a detailed account of the canonical quantization of the free boson
on the cylinder. The mode expansions are obtained, after imposing the appropriate
boundary conditions. The mapping from the cylinder to the complex plane is used to
define the conformal generators and, in particular, the vacuum energies. Free-field
theories are of special importance not only because they can be solved explicitly,
but also because they are the building blocks of more complicated models, or can
be shown to be equivalent to interesting statistical models. This section and the
following one will be applied extensively when discussing modular invariance, in
Chap. 10. Note that we generally adopt the normalization g = 1/47, except when
we keep the normalization arbitrary in order to make comparison with other work
easier.

6.3.1. Canonical Quantization on the Cylinder

We let ¢(x,t) be a free Bose field defined on a cylinder of circumference L:
¢(x + L,t) = ¢(x,1). This field may be Fourier expanded as follows:

plx,1) = ey (1)

1 . (6.39)
@, ) = I / dx e 7L y(x, 1)
In terms of the Fourier coefficients ¢, the free field Lagrangian
1
38 [ & (@ - @) (6.40)

becomes
1 .. 2\ 2
EgL Z {¢n¢—n - (T) (0,1(0_"} (6.41)
n
The momentum conjugate to ¢, is
w,=gLo_, lp,m,]1=15,, (6.42)
and the Hamiltonian is

1
H= 2L ; {m._, + 2mng)p,0_,} (6.43)

‘We notice that ¢}, = ¢_,, and similarly n} = m_, . Of course, this Hamiltonian
represents a sum of decoupled harmonic oscillators, of frequencies w,, = 27|n|/L.
The vanishing of one of the frequencies (n = 0) is of special importance, since it is
a consequence of the absence of a mass term, which, with the boundary conditions
chosen, is tantamount to conformal invariance.
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The usual procedure is to define creation and annihilation operators a,, and @},

- 1

= — (2ng|n|e, +in_ 6.44
"= Tangh (2nginle, n) (6.44)
such that [@,,a,,] =0and [q,, &fn] = §,,,; this, of course, does not work for the
zero-mode ¢,. Instead of these we shall use the following operators:

{—iﬁ&n n>0  _ [—i na_, (n>0)
an= an=
1

iv-na', (n<0) 645

—nal (m<0)
and treat the zero mode ¢, separately. The associated commutation relations are

la,.a,l=mné,,, la,.a,]=0 la,.a,l=nsé,., (6.46)
The Hamiltonian is then expressible as

H = ﬁ o + Z(a_nan +a_,a,) (6.47)
n;é()

The commutation relations (6.46) lead to the relation

2
[H,a_,)= 7 M (6.48)
which means thata_,,, (7 > 0), when applied to an eigenstate of H of energy E,
produces another eigenstate with energy E + 2mn/L.

Since the Fourier modes are

0, = ’_—471 ——(a, —a._,) (6.49)
the mode expansion at ¢ = 0 may be written as
o(x) = @y + Z ~(a, —a_,)e* L (6.50)

n;éo
The time evolution of the operators ¢, a,,, and 2, in the Heisenberg picture follows
immediately from the above Hamiltonian:
1 a (l‘) —a (0) e~2m'nt/L
) = 9y(0) + —m,t " " .
¢O ¢0 gL 0 &n (t) — &n (O)e—ZJTlnt/L

In terms of constant operators, the mode expansion of the field at arbitrary time is
then

1 i 1 . .
(x,1) = + .t + - (a e2mn(x—t)/L —a e2mn(x+t)lL) 6.52
4 ) =9, gL 0 @ n§;é0: n \“n -n ( )

If we go over to Euclidian space-time (i.e., replace f by —it) and use the conformal
coordinates

(6.51)

7 = 2L 7 = e (TH+x)L (6.53)
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we finally obtain the expansion

i i 1
Z) = —_—— l v —_— >—n .
#(z,2) = ¢, ang 0" (22) + Jig nz - (a, 2" +a,z™) (6.54)

We know that ¢ is not itself a primary field, but that its derivatives d¢ and 3@
are. We concentrate on the holomorphic field d¢. From Eq. (6.54) the following
expansion follows:

. 1 m, 1

idp(z) = —=2+—— ) a,z"! 6.55

W=7t i § n (655)
(the normalization g = 1/4s will usually be used in this work). This expansion
coincides with the general conformal mode expansion (6.7). We may introduce
two operators a,, and a,,:

_ 0,
=d, = 6.56
a 0 fang (6.56)
which allow us to include the zero-mode term into the sum:
1
id =— ) az"! 6.57
() T Z 2 (6.57)

The periodicity condition on the field ¢ is the source of the decoupling between
holomorphic and antiholomorphic excitations. Thus, the operators a,, create or de-
stroy “right-moving” excitations, whereas the a,, are associated with “left-moving”
excitations. In string theory applications, these boundary conditions describe a
closed string. The zero-mode ¢, is then the center-of-mass of the string (or, more
precisely, one of the components thereof) and i, is the string’s total momentum.

6.3.2. Vertex Operators

Since the canonical scaling dimension of the boson ¢ vanishes, it is possible to
construct an infinite variety of local fields related to ¢ without introducing a scale,
namely the so-called vertex operators:

V,(2,Z) =:e¥2D; (6.58)

The normal ordering has the following meaning, in terms of the operators appearing
in the mode expansion (6.54):

V,(2,Z) = exp [ia<p0+ \/Z—Z (a_,z" +a_,,z")}
n>0

(6.59)

xcxp{::t—g 'Tngz —(a,z™" +az")}

n>0

Within each exponential, the different operators commute.
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We shall now demonstrate that these fields are primary, with holomorphic and
antiholomorphic dimensions

2

h(e) = h(a) = E;%é (6.60)
We first calculate the OPE of d¢ with V:
207,009 = 5 X 002) s tow,
n=0
(‘“) vyt 6.61)
~—4_7fgz WZ( (p(W'W) ' “

ia V, (w,w)
dng z—w

Next, we calculate the OPE of V,, with the energy-momentum tensor:

TRV, (w,w) = —2”82 G )n :0¢(2)09(2):: p(w, W)
n=0
- (ld) . = \n—2
87tg z- w)2 nz_; -2) 9w, W)

Z (za)"n :0p(Dpw, w)1:

oz_2 v,w,w) 9,V (w,w)
8ng (z —w)? Z—w

(6.62)

To the n-th term in the summation we have applied 2n single contractions and
n(n—1) double contractions. We have replaced d¢(z) by dp(w) in the last equation
since the difference between the two leads to a regular term. It is now clear by the
form of this OPE that 'V, is primary, with the conformal weight given above. The
OPE with T has exactly the same form.

In order to calculate the OPE of products of vertex operators, we may use the
following relation for a single harmonic oscillator:

efief?: = A2 gAY (6.63)

where A; = a,a + B,a' is some linear combination of annihilation and creation
operators (this relation is demonstrated in App. 6.A). Since a free field is simply
an assembly of decoupled harmonic oscillators, the same relation holds if A, and
A, are linear functions of a free field (see also Ex. 6.7). In particular, we may write

1621 1 gber; = 1 gt01tben; gabloren) (6.64)
Applied to vertex operators, this relation yields
Vo (2, DV w, W) ~ |z — WPV, (W, W) + - - (6.65)
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However, we have seen previously that invariance under the global conformal
group forces the fields within a nonzero two-point function to have the same
conformal dimension. Furthermore, the requirement that the correlation function
(V,(z, i)Vﬁ(w,ﬁz)) does not grow with distance imposes the constraint ¢ < 0,
which leaves @ = —p8 as the only possibility (g = 1/4x):

V (2, 2)V_ W, W) ~ |z —w|™2 +... (6.66)

In general, the correlator of a string of vertex operators V, vanishes unless the
sum of the charges vanishes: ) ; &; = 0; this will be demonstrated in Chap. 9, in
which vertex operators will be further studied. From now on, the normal ordering
of the vertex operator will not be explicitly written but will always be implicit.

6.3.3. The Fock Space

The independence of the Hamiltonian (6.47) on ¢, implies that the eigenvalue of
T, is a “good” quantum number, which may label different sets of eigenstates of
H. Since 7, commutes with all the q,, and a,,, these operators cannot change the
value of 7, and the Fock space is built upon a one-parameter family of vacua |a),
where « is the continuous eigenvalue of a, = m,/,/4ng. As mentioned above,
the conformal modes a,, and a,, are annihilation operators for 7 > 0 and creation
operators for n < O (this is also in accordance with the general expansion (6.7)
and the definition of the conformal vacuum):

a,la) =d,la) =0 (n>0) with ayla)=adjle) =c|a) (6.67)
As we know, the holomorphic energy-momentum tensor is given by

I(z) = —27rg :0¢(2)dp(2):
_ - Z —n-m-2 . . (6.68)

a,:
nmeZ

which implies (for g arbitrary)

Z Ay mBm (n 75 0)
2 et (6.69)

Ly=) a_,a,+ ao

n>0

and similarly for antiholomorphic modes. The Hamiltonian (6.47) may then be
written as

2 _
H = T”(L0+L0) (6.70)

This confirms the role of L, + L, as a Hamiltonian, modulo some multiplicative
factor. The mode operators a,,, play a role vis-a-vis L, similar to L, , because of

the commutation [Ly,a _,, ] = ma_,,. This does not mean that a,,, is equivalent to



164 6. The Operator Formalism

L,,, but rather that its effect on the conformal dimension (the eigenvalue of L) is
the same as thatof L.

From expression (6.69) we see that the vacuum |a) has conformal dimension
%az (we'set g = 1/4m). The elements of the Fock space are, of course, obtained
by acting on |a) with the creation operatorsa_,, anda_,, (n > 0):

ny nz

a"a---anamy---la)  (n;,m; > 0) (6.71)

These states are eigenstates of L, with conformal dimensions
1 . = 1 .
h= Eaz + Zmi h= iaz + Z}mi 6.72)
i i

Each vacuum |a) may be obtained from the “a!)solute” vacuum |0) by ap-
plication of the vertex operator V, (z,Z) = e®¥%?. We now show explicitly
that

le) =V,(0)]0) (6.73)

We shall proceed by showing that V,(0)|0) is an eigenstate of 7, with eigenvalue
«, and that a,, |a) = 0 for n > 0. For this we need the Hausdorff formula

[B,e*] = €*[B, A] (6.74)

where [B, A] is assumed to be a constant. If we set B = m, and A = iap(z, Z), we
find

7y, V] =V, (6.75)
This relation, applied at z = O to the invariant vacuum |0), gives
3V, (0)|0) = aV,(0)|0) (6.76)

which is one of the desired elements. The other is obtained by setting B = a,,; it
follows that

la,,V,(2,2)] = —az"V (2,2) 6.77)

Atz = 0, this relation yields a,,V,|0) = 0 when applied on |0). A similar relation
holds fora,, (n > 0).

6.3.4. Twisted Boundary Conditions

A variant of the free-boson theory may be obtained by assuming antiperiodic
boundary conditions on the cylinder: ¢(x + L,t) = —¢(x,t). This is compatible
with the Lagrangian (6.40) since the latter is quadratic in . This twisted boundary
condition will be fully exploited in Chap. 10, when we discuss modular invariance
and the orbifold. For the moment, we shall simply be interested in the effect it
has on the vacuum energy density. Of course, this boundary condition implies that
the field ¢ is double-valued on the cylinder. Once the cylinder is mapped onto the
plane, this amounts to defining the theory on a pair of Riemann sheets.
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The mode expansion (6.54) may be retained, except that the zero-mode now
disappears, and the summation index 72 must take half-integral values. This modi-
fication naturally incorporates the antiperiodicity of ¢, without affecting the com-
mutation relations [a,,,a,,] = n§,, .. We define the operator G that takes ¢ into
—¢: GpG~! = —¢. This operator anticommutes with ¢, and with all the mode
operators a,,; in fact it brings the system from one Riemann sheet to the other. Since
G? = 1,its eigenvalues are *1; since it commutes with the Hamiltonian, every
state has a definite value of G, and the two states |} and G|y) are degenerate.
In particular, the ground state is doubly degenerate, and we must distinguish the
vacua |0, ) and |0_), eigenstates of G with eigenvalues +1 and —1 respectively.

We now proceed to calculate the two-point function with the help of the mode
expansion. In fact, we also consider the periodic case and verify that the result

(Bp(2)dpw)) = — —

(z—w)?

obtained by path integral methods, may be recovered by operator methods. From
the mode expansion, we find (|z] > |w|)

(6.78)

1
@@y = Y —la,a,)"w ! (6.79)
m,n#0 n
But (a,a,,) = né, ,, if n > 0, and 0 otherwise. It follows that
1 w\"
(@(2)p(w)) = — 3 (—) (6.80)
w n>0 2z

So far we have not specified the periodicity or antiperiodicity of the field. In
the periodic case, the summation index » takes positive integral values, and the
correlator becomes

1 w/z 1

(p(2)3p(w)) = —

= 6.81
wl—-wlz z—w ( )

If we differentiate with respect to z, we recover the two-point function written
above.

In the antiperiodic case, the summation index starts at n = % and takes half-
integral values thereafter. The vacuum expectation value is taken in one of the two
ground states (or a combination thereof) and

(P(2)apw)) = lﬁ ’
wV z1—-w/z

(6.82)
_ JZ 1
T Ywz—w
Applying 9, yields
1/ «/
(B()ap(w)) = —5 YL E YW (6.83)

2 (z—-w)
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This expression has branch cuts at z = 0,00, and w = 0, oo; the antiperiodic
boundary condition on ¢ as z circles around the origin is incorporated in the
square roots. The periodic and antiperiodic two-point functions coincide in the
limitz — w, meaning that the short distance behavior of the theory is independent
of the boundary conditions.

The vacuum energy density may be obtained from the following normal ordering
prescription

(T()) = L lim (—(8¢(z + £)3p(2)) + iz) (6.84)
2 e>0 &

from which it follows that (7(z)) = 0 in the periodic case, on the plane. The same
calculation applied to Eq. (6.83) gives

(T(2)) = (6.85)

1622
Since L, is the coefficient of 1/z2 in the mode expansion of the energy-momentum
tensor, this nonzero expectation value implies a constant term in the expression
for L, in terms of modes, in the antiperiodic case:

1
Ly=) a_,a,+ 16 (6.86)

n>0

On the cylinder, the vacuum expectation value of the energy-momentum tensor
must be shifted by a constant, according to Eq. (5.138):

1 (27\? .
(Tcyl.) = 1 2 2 (687)
T C
B (—E) (antiperiodic)

These vacuum expectation values may be used to fix the constants added to the
Hamiltonian when expressed in terms of the mode operators on the cylinder. If we
write

2 -
H = Tn((LO)cyl. + (LO cyl.) (688)
then

1 .
(Lo)cyl. = Za_nan ~ 5 (periodic)
n>0

) (6.89)
Ly, =Y a_,a, + g (antiperiodic)

n>0

This difference between antiperiodic and periodic boundary conditions in the vac-
uum energies will also appear when considering fermions, although in the opposite.
manner, as we shall discover.
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6.3.5. Compactified Boson

The invariance of the free-boson Lagrangian (6.40) with respect to translations
¢ — @-const. means that it is possible, without modifying too much the dynamics
of the field, to restrict the domain of variation of ¢ to a circle of radius R. In
other words, we may identify ¢ with ¢ + 2nR, thereby giving ¢ the character of
an angular variable. This brings the following two modifications to our previous
analysis: First, the center-of-mass momentum 7, can no longer take an arbitrary
value: it must be an integer multiple of 1/R, otherwise the vertex operator V, is no
longer well-defined. Second, we may adopt the more general boundary condition

plx + L,t) = ¢(x,t) + 2nrmR (6.90)

under which the field ¢ winds 1 times as one circles once around the cylinder (m2
is the winding number of the field configuration). These two considerations lead
naturally to the following modified mode expansion (cf. Eq. (6.52)):

(x,1) = ¢, + ? + 2mRm
PED=%T RL L
Z ( p2mik—1L _ a, eZm'k(xH)/L)

i
+
JVang k;eo

If we express this expansion in terms of the complex coordinates z and Z, we find

(6.91)

- . 1
0(z2,2) =@y — 1 (n/47rgR + EmR) Inz + — Z % az7*
k 0
1 * (6.92)
—i (n/4ngR - —mR) InZ+ —— Z az*
2 ,/ 8 7o AR
The holomorphic derivative id¢ then has the expansion
idg(z) = (n/4mgR + mR) + = Zakz ! (6.93)

k;eo

The expression (6.69) for L, and that of its antiholomorphic counterpart
specialize to

1 2

n>0

- - n 1 2
LO = Za_nan + 27Tg (-@ - —2—mR)

n>0

(6.94)

Once exploded onto the plane, the winding configurations (12 # 0) are vortices
centered at the origin. This is strongly reminiscent of the classical XY spin model,
in which similar configurations arise. It is then possible to define an operator
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creating such a configuration of vorticity m with momentum value n. Such an
operator has conformal dimension

n 1 2

We shall come back to this matter in Chap. 10. At this point it suffices to say that
the vacua (the highest weight states), now labeled |n, 72), have conformal weight
h,, .., and are annihilated by all the a,, ;.

§6.4. The Free Fermion

In this section we proceed to an analysis similar to what was done in the preceding
section, but this time for free fermions.

6.4.1. Canonical Quantization on a Cylinder

The free fermion has the action
1
S = 58 / d*x W'yOy40, v (6.96)

This system was studied in Sect. 2.1.2 and Sect. 5.3.2. The holomorphic and
antiholomorphic fields are the two components of the spinor ¥ = (¥, ¥). We have
found in Sect. 5.3.2 that the OPE between y and itself is

1
w) ~ ——— 6.97
YY) ~ —— (6.97)
wherein the normalization g = 1/2x was chosen. This result was, of course,
obtained on the plane, with the tacit assumption that the field ¢ was single-valued.
We also found that the holomorphic energy-momentum tensor is

T(z) = —% :Y(2)ay(2): (6.98)

and that the central charge of this system is ¢ = % the fermion field ¢ having
conformal dimension 2 = 1.

‘We work on a cylinder of circumference L, and write down the mode expansion
of the fermion in terms of creation and annihilation operators, as was done in
Sect. 2.1.2. With our choice of normalization, the mode expansion at a fixed time

(t = 0) takes the form

Y(x) = ‘/? D by ¥ (6.99)
k

wherein the operators b, obey the anticommutation relations

b, by} = 84140 (6.100)
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We must distinguish between two types of boundary conditions:

Y(x+2nL) = ¢Y(x) Ramond (R)

(6.101)
Y(x + 27aL) = —yY(x) Neveu-Schwarz (NS)

In the periodic case (R) the mode index k takes integer values, whereas in the
antiperiodic case (NS) it takes half-integer values (k € Z + %). Of course, the
action is periodic whatever boundary condition we choose (R or NS). We are in
the R (resp. NS) sector when the boundary conditions are of the Ramond (resp.
Neveu-Schwarz) type.
In the limit where the lattice spacing a goes to zero, the Hamiltonian of
Sect. 2.1.2 reads
2k
H = g“’kb—kbk +E0 wk = -‘-Zl‘—l

(6.102)

where E,, is some constant having the meaning of a vacuum energy. There is a
similar Hamiltonian for the antiholomorphic component \5, and one must consider
the sum of these two Hamiltonians in the complete theory. The time evolution of
the mode operators in the Heisenberg picture is

b, (t) = b, (0)e~2mkIL (6.103)

The mode expansion of the time-dependent field ¢ may then be written as

Y(x, 1) = ,/2—2’- D b e (6.104)
k

where we have introduced the complex coordinate w = (t —ix), T being the usual
Euclidian time.

In the R sector there exists a zero mode b, which does not enter the Hamiltonian
and leads to a degeneracy of the vacuum: If we define a vacuum |0) annihilated by
all the b, with k > 0, then the state b;|0) is degenerate to |0), and is annihilated
by the same bk. Because of the anticommutation relations (6.100), the zero-mode
operator obeys the relation b3 = 1.

6.4.2. Mapping onto the Plane

The cylinder is mapped onto the plane by introducing the coordinate z = e?™/L.
Since the field ¢ has conformal dimension %, it is affected by this mapping, in
contrast with the free boson: according to Eq. (5.22) we have

172
Yon @) —> Y (@) = (;—j)) Y@

2
=/ T @

(6.105)
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On the plane the field has thus the following mode expansion:
Y@) =Y b+ (6.106)
k

In the Ramond sector, this coincides with the general mode expansion (6.7). The
factor ,/z picked up in the transformation has interchanged the meanings of the
two types of boundary conditions when z is taken around the origin: The NS
condition now corresponds to a periodic field (k € Z + %) and the R condition to
an antiperiodic field (k € Z):

Y(e?™z) = —y(2) Ramond (R)
Y(e?™z) = ¥(2) Neveu-Schwarz (NS)
The field ¥ is double-valued on the plane under Ramond conditions. This has
consequences on the two-point function, which will be different from the NS two-

point function. We first calculate the two-point function in the NS sector from the
mode expansion:

(6.107)

Wyw) = Y z* VW Vbp )

k.qeZ+1/2
_ Z 7k k12
keZ+1/2, k>0

[o ] 1 w n
=§2(2)
1

(6.108)

Z—w
This agrees with the OPE (6.97) and with the general relation (5.25). However, in
the Ramond sector, the result is different:

WRYw)) = Y 27wV bb )

kgeZ
—k—1/2 12
+) z wk=

=it

1 1 w
=—1-+4 —
x/zw{z ;(z }
_ 1 zZ+w
T2 tw z—w
_ 1vaw + vwlz (6.109)
2 Z—w

This result coincides with the previous one in the limit w — z. The two-point
function picks up a sign when z or w is taken around the origin. Strictly speaking
this correlator must be defined using Riemann sheets for the variables z and w.
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From the above expression for the two-point function, we may easily show that
the energy-momentum tensor has a nonzero vacuum expectation value on the plane,
contrary to the NS case. We need to use the same normal-ordering prescription as
for the boson:

(T@) = 5 lim (—(t!f(z + €)3y(2)) + iz) (6.110)
2 &0 &

which leads to (T(z)) = O in the NS sector, as is trivially verified. In the R sector,
the same calculation yields

«/%+«/17sz) 1

1
(T = a4 v%'l—rpz % ( Z—w 2(z —w)?

1

T 1622

6.111)

6.4.3. Vacuum Energies

We now find an expression for the conformal generators L,, in terms of the mode
operators b, for the two types of boundary conditions on the plane. The expression
(6.98) for the energy-momentum tensor leads to

1 1
Tpl,(Z) =5 Z(k + E)Z—q_mz_k_y2 :bqbk:

. ka . 6.112)
= —2— Z’k(k + E)Z—n—z :bn—-kbk:

From this, we extract the conformal generator
1 1
L,=; ;(k +3) b, by (6.113)

If we fix the constant to be added to L, from the vacuum energy density (like we
did for the boson), we find

Lo—_-Zkb_kbk (NS :k eZ+%)

k>0 ‘ (6.114)
1
L0=kzokb~kbk+‘lg (R.kGZ)

We apply this result to the calculation of the vacuum energies on the cylin-
der. From Eq. (5.138), we see that the vacuum expectation values of the
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energy-momentum tensor on the cylinder are

2
—-—l- (2_7:) NS sector
48 \ L
(Tep) = (6.115)
Zn R sector
24 L

In general, the Hamiltonian on the cylinder may be written as in Eq. (6.88) or,
equivalently, as

H="" (L +L,— 12) (6.116)

'We have checked this explicitly for the boson in the last section. The added constant
(¢c/12) ensures that the vacuum energy of the Hamiltonian vanishes in the L — oo
limit in the NS sector. We could split the Hamiltonian into a contribution H from
the holomorphic modes plus a contribution H; from the antiholomorphic modes,
with

Hp= 2%’ (Lo - 214) (6.117)

From the above considerations, we see that the correct expressions for Hy, in terms
of modes, in the two sectors, is indeed given by Eq. (6.102), which further confirms
Eq. (6.116), with the following vacuum energies:
1
TS NS sector
L
ZE, = 418 (6.118)

+ 24 R sector

The similar result obtained for the boson field had the periodic and antiperiodic
values interchanged.

This result could have been obtained in a different way, using ¢-function reg-
ularization. We now explain how. The vacuum energy term may be thought of as
the result of filling all the states in the Dirac sea (cf. Eq. (2.43)):

k
{ kb b Zk}

k>0

(6.119)

As such, E, is formally infinite. However, it may be regularized by means of the
generalized Riemann ¢-function:

is,q) = (6.120)

Z(q-l-n)s

The usual Riemann ¢-function is ¢(s) = &(s, 1). The above series definition is
valid provided Re s > 1 and g is not a negative integer or zero. However, this
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function may be analytically continued to other regions of the s plane: its only
singular point is s = 1. In particular, we have

B
¢(-n,q) = ——;‘%(f—) (neN, n>0) (6.121)
where B,,(q) is the n-th Bernoulli polynomial, defined by the generating function
te™ = "
1= an(x);l—! , (6.122)

and B, (1) = B, is the n-th Bernoulli number. The above expression for the
vacuum energy may then be written as

1 1
—54‘(—1,5) NS sector
—E={ 2 (6.123)
—EC(—I,I) R sector
Since B,(x) = x> —x + ¢, we find B,(3) = —7; and By(1) = 1, and the values
(6.118) are recovered.

§6.5. Normal Ordering

Up to now, we have introduced normal-ordered products only for the very special
class of free fields. The characteristic property of a free field is that its OPE with
itself (or various derivatives of this OPE) contains only one singular term, whose
coefficient is a constant (cf. Egs. (5.77), (6.97) and (5.108)). The regularization of
a product of two such fields can be done simply by subtracting the corresponding
expectation value (cf. (5.80) and (5.98)). In terms of modes, this is equivalent to
the usual normal ordering in which the operators annihilating the vacuum are put
at the rightmost positions.

However, this is no longer true for fields that are not free in the above sense.
For instance, we see what happens when trying to regularize 7(z)T(w) by sub-
tracting (7(z)T(w)) from the product T(z)T(w) as z — w. This prescription will
eliminate the most singular term, proportional to the central charge. However, the
two subleading singularities in 7'(z)T(w) remain: The simple prescription used
for free fields does not work in general. It is clear how this prescription should be
generalized: Instead of subtracting only the vacuum expectation value, we should
subtract all the singular terms of the OPE. To distinguish this generalized definition
of normal ordering from that used previously, we shall denote it by parentheses:
The normal-ordered version of A(z)B(z) will be written (AB)(z).

More explicitly, if the OPE of A and B is written as

N
AQBwW)= " %3%}%?_)

n=-—00

(6.124)
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(N is some positive integer), then
(AB)(w) = {AB},(w) (6.125)

Our definition of the contraction is generalized to include all the singular terms of
the OPE:

A@B(w) = Z ek (w) (6.126)
Hence the above expression (6.125) for (AB)(w) may be rewritten as
(AB)w) = lim [A(Z)B(W) - A(T)B(w)] 6127)
and the OPE of A(z) with B(w) is expressed as
A@BM) = AQBW) + (AQBwW)) (6.128)

where (A(z)B(w)) stands for the complete sequence of regular terms whose
explicit forms can be extracted from the Taylor expansion of A(z) around w:

A@BwW) =Y (i%'"’—)k (3aB) w) (6.129)

k>0

The method of contour integration provides another useful representation of
our newly introduced normal ordering:

UB)w) = 5 f < dz —A@BW) (6.130)

The equivalence of (6.130) with (6.125) is readily checked by substituting (6.124)
into (6.130).

Before translating this expression in terms of modes, a little digression is in
order. Until now, all Laurent expansions for fields were made around the point
z = 0 (cf. Eq. (6.7)). But this point is not special, and it is possible to expand
instead around an arbitrary point w as

) =) (z—w) "¢, (w) (6.131)
nez
In particular, for the energy-momentum tensor, we have
T(2) =) (z—w) ™" *L,(w) (6.132)
neZ

or equivalently

L,(w)= % f dz (z —w)"™'T(z) (6.133)
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In this way, the OPE of T(z) with an arbitrary field A(w) can be written as

TRAW) = Y (2 —w) ™" (L, A)w) (6.134)

neZ
This defines the field (L, A). Comparing this with the expression

AW | AW)
TRAW) = -+ 025 + oy + TAW) (6.135)

+ (z — w)(@TAW) + - - -

we see that

(LAYW) = R Aw)

(6.136)
(L_,A) W) = 2A(w)
as expected, but also
1

(L_n2A) W) = — (9"TA) W) (6.137)

In particular, when A is the identity field I, this reads

1

(L_, o) W) = — " T(w) (6.138)

We now derive the mode version of (6.130). The contour integration in (6.130)
is rearranged along two contours:

fivzdzwA(Z)B( )_f dz ) — dzw

lzi>w) € — W lzl<iw) £ —

(6.139)
We consider the first term. Expanding the two fields around an intermediate point
x such that |z| > |x| > |w)| yields

AR =) @—x)"MA, (x)

6.140
B(w) = Z(w — x)""h"Bp(x) ( )
P
Writing z — w = Z — x — (w — x), with the expansion
w—x)
—w Z (z —xy+ (6.141)

>0
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we find

1 dz

278 Jyzpiwy 2 — W

= f de 3 olw =0} el 2T, (0B, )

>0

A(z)B(w)

(6.142)

= E w—x)"7? 'h"_h"An(x)Bp(x)
P
ns—h,q

The only singularity inside the contour is at z = x, and only the pole contributes;
hencel +n +h, = 0. Since l > 0, it follows that n < —h,. For the second term,
we proceed in a similar way. With the roles of w and z in (6.141) interchanged, it
follows that

1 dz

271 Sy 2 —W

BWwW)A(z)

(6.143)
>0
= Z w—x)7"7P —h"hBBp(x)An (x).
n>€h,4

since I — n — h, = —1. Collecting these two results, we find

(4B),, = > AB, .+ > B, A, (6.144)
nf—hA n>—h,4
wherein the modes (AB),, are defined by

(AB)(z) = Y .z " " ~"=(4B),. (6.145)

Eq. (6.144) makes manifest the noncommutativity of the normal ordering:

(AB)(z) # (BA)(2) (6.146)

This generally differs from the usual normal ordering of modes denoted by ::,
in which the operator with larger subindex is placed at the right. A reformulation
of Wick’s theorem for interacting fields is thus required. This is developed in
App. 6.B. The normal order defined above is not associative: ((AB)C) # (A(BC)).
Appendix 6.C explains how to go from one form to the other (i.e., how to calculate
((AB)C) — (A(BO))).
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§6.6. Conformal Families and Operator Algebra

6.6.1. Descendant Fields

Primary fields play a fundamental role in conformal field theory. The asymptotic
state |2) = ¢(0)]|0) created by a primary field of conformal dimension A is the
source of an infinite tower of descendant states of higher conformal dimensions (cf.
Sect. 6.2.2). Under a conformal transformation, the state |/z) and its descendants
transform among themselves.

Each descendant state can be viewed as the result of the application on the
vacuum of a descendant field. Consider, for instance, the descendant L_,,|):

1
L_,lh) = L_,0)0) = > f dz 2"T(2)$(0)10) (6.147)

Using the OPE (6.134) this is merely (L_,¢)(0)|0): descendant states may be
obtained by applying on the vacuum the operators appearing in the regular part of
the OPE of T(z) with ¢(0) (for a definition of the notation (L_, ¢), see Sect. 6.5).
The natural definition of the descendant field associated with the state L_,, |h) is

¢ (w) = (L_,¢)w) = % f dz —I——T(z)gb(w) (6.148)

i), (@—wy!
These are the fields appearing in the OPE (6.134) of 7(z) with ¢(w). In particular,
pOw) =hp(w) and ¢"D(w) = dp(w) (6.149)

The physical properties of these fields (i.e., their correlation functions) may be
derived from those of the “ancestor” primary field. Indeed, consider the correlator

(L_,0)(W)X) (6.150)

where X = ¢,(w,) - - - ¢ (w)) is an assembly of primary fields with conformal
dimensions ;. This correlator may be calculated by substituting the definition
(6.148) of the descendant, in which the contour circles w only, excluding the
positions w; of the other fields. The residue theorem may be applied by reversing
the contour and summing the contributions from the poles at w;, with the help of
the OPE (5.41) of T with primary fields:

@) = - 5{ dz (z = W) (T(DPW)X)

1 1
=—— dz (z—w)'™ {———3w-( )X
27i Jiw,y z,: =W (PwX) (6.151)

h;
+ m (p(w)X) ]

=L_,(pwW)X) (n=1)
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wherein we defined the differential operator

_ (n — Dh; 1
L= Z {(Wi —wy (w; —w)y-! aWi]

i

(6.152)

We have thus reduced the evaluation of a correlator containing a descendant field
to that of a correlator of primary fields, on which we must apply a differential
operator £_,. We note that £_, is in fact equivalent to /0w, since the operator

4 (6.153)
i

ad
w T 2w
annihilates any correlator because of translation invariance.

Of course, there are descendant fields more complicated than ¢(‘"), correspond-
ing to the more general state (6.36). They may be defined recursively:

¢ (w) = (L_ L_,)(w)

6.154
- zi f dz (2 — W) T((L_, )W) ©159
7i J,

and so on. In particular,
$O W) = +n)¢p"Pw) and ¢ Pw) =3,¢6PWw)  (6.155)

These last two relations follow directly from the roles of L, and L _, as generator
of dilations and translations, respectively.
It can be shown without difficulty that

(¢(—k1 ..... _k")(W)X) = ‘C—kl - ‘C—k,,, {p(W)X) (6.156)

that is, we simply need to apply the differential operators in succession. We may
also consider correlators containing more than one descendant field, but at the end
the result is the same: Correlation functions of descendant fields may be reduced
to correlation functions of primary fields.

6.6.2. Conformal Families

The set comprising a primary field ¢ and all of its descendants is called a conformal
family, and is sometimes denoted [¢]. As indicated earlier, the members of a family
transform amongst themselves under a conformal transformation. Equivalently, we
can say that the OPE of 7(z) with any member of the family will be composed
solely of other members of the same family.!

! ‘We should keep in mind that conformal fields have an antiholomorphic part as well as a holomorphic

part. There will also be descendants of a field through the action of the antiholomorphic generators
L_,.
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For instance, we calculate the OPE of T(z) with ¢~ Eq. (6.134) implies
T} w) = Y _(z — wl2(L_;6"™)w)

k>0

+ Z w)k+2 Ty Lt W)

k>0

(6.157)

The first sum contains more complex descendant fields, ¢k of the same
family. The second sum is made of the most singular terms, and may be calculated
by considering the singular part of the OPE of T with itself:

(—n) — _l_ —1
T W) = 5= § dx e TOTEI)
1 1 cl2 2T(x) aT (x) w)
21 J,, . (x —w)rl {(z -x)* (z— x)2 }¢
_cn(n? —1)/12 D)
= ey oW ”f"x'"TZ"’ )
. { 2(x — w)i-2 + (I -2)(x—-—w)3 }
(z —x)? z—x

cn(n? — 1)/12 "ZH
(z-

=~ oy P+ )n+2 Gy W)

(6.158)
where we have used the identity
Fw) = (n+m-2) F(w)
27 fiv x—wy(z—x)" (n— DI(m—1)! (g —w)rtm-1 (6.159)

Again, the symbol ~ means an equality modulo regular terms. Assembling all the
terms and redefining the summation index in the last term, we finally write

T Pw) = TN,y Z( e # )

( )n+2
(6.160)
+ Z(Z — w)k2gkm ()
k>0
For instance, the OPE of T(z) with ¢~ = 3¢ is
T(2)3p(w) ~ 2hp(w) (b + 1)dp(w) = Pp(w) (6.161)

(z—w) (z—w)? z—w
The descendants of a primary field are called secondary fields. Under a
conformal mapping z — f(z), a secondary field A(z) transforms like

af

W
AR) > (d—z-) A(f(z)) + extraterms (6.162)
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where &' = h + n (n a positive integer) if A is a descendant of a primary field
of dimension /. The extra terms translate into pole singularities of degree higher
than two in the OPE of T(z) with A(w), as in Eq. (6.160).

6.6.3. The Operator Algebra

The main object of a field theory is the calculation of correlation functions, which
are the physically measurable quantities. Conformal invariance helps us in this task:
We have seen how the coordinate dependence of two- and three-point functions
of primary fields is fixed by global conformal invariance (cf. Egs. (5.25) and
(5.26)). Unfortunately, conformal invariance does not tell us everything, and some
dynamical input is necessary to calculate the three-point function coefficient Cy;;..
Indeed, the information needed in order to write down all correlation functions,
and hence solve the theory, is the so-called operator algebra: The complete OPE
(including all regular terms) of all primary fields with each other. Indeed, applying
this OPE within a correlation function allows for a reduction of the number of
points, down to two-point functions, which are known. The goal of this section is
to spell out the form of this operator algebra and to indicate which of its elements
are fixed by conformal invariance, and which are not.

We must first discuss the normalization of fields, that is, the two-point function

coefficients C,. We know that the two-point function vanishes if the conformal
dimensions of the two fields are different. If the conformal dimensions are the
same for a finite set of primary fields ¢, the correlators are
Cap - (6.163)
w —2)*(w - 2)*
Since the coefficients C,; are symmetric, we are free to choose a basis of primary
fields such that C 5 = §,4; it is a simple matter of normalization. We shall adopt
this convention in the remainder of this work, unless otherwise indicated. Thus,
conformal families associated with different ¢, ’s are orthogonal in the sense of
the two-point function. Of course, the same is true of the corresponding Verma
modules: By a suitable global conformal transformation, we can always bring the
points w and z of a correlator tow = oo and z = O respectively. The fields are then
asymptotic and the two-point function becomes a bilinear product on the Hilbert
space:

(B W, W)z, 2)) =

lim w?Ww? (g(w, w)¢'(0,0)) = (k') (|i') (6.164)

Ww,W-—>00
The orthogonality of the highest weight states implies the orthogonality of all
the descendants of the two fields (i.e., the orthogonality of the Verma modules
associated with the two fields).
Invariance under scaling transformations clearly requires the operator algebra
to have the following form:

$,(2,2)6,(0,0) = 3 3 oK o —hatKghy—hs kR g bk 0, 0)  (6.165)
P k)
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where K = 3", k; and K = ¥_; k;; the expression {k} means a collection of indices
ki .

We take the correlator of this relation with a third primary field ¢,(w, w) of
dimensions A, k,. Sending w — oo, we have, on the Lhs.,

(16,2 2Igy) = lim_w?w? (g, (w, W), (2,2)9,(0,0))
C 12

r

= Zhl +h2"‘hrzill+i12"}—1r

(6.166)

The last equality is obtained simply by applying the limit w — oo in the general
formula (5.26) for the three-point function. On the OPE side, the only contributing
term is p{k, k} = r{0, 0}, because of the orthogonality of the Verma modules. We
conclude that

¥ =, =C,, (6.167)

In other words, the most singular term of the operator algebra is the coefficient
of the three-point function. The normalization adopted for two-point functions
eliminates the distinction between “covariant” and “contravariant” indices. Since
the correlations of descendants are built on the correlation of primaries, we expect

the coefficients CY, A} 16 have the following form:

Ci]’ék,kl ﬂp(k)ﬁp{k} (6. 1 68)

This simply means that the descendant fields can be correlated to a third field
only if the primary itself is correlated, w1th the holomorphic and antiholomo; th
parts factorized. By convention we set ﬂp = 1. The other coefficients ﬂp «
determined (as functions of the central charge ¢ and of the conformal dlmenswns)
by the requirement that both sides of Eq. (6.165) behave identically upon conformal
transformations.

We shall illustrate this statement in the simple case 2, = h, = h. When
applying Eq. (6.165) on the vacuum, we find

(2, DIk, h) = Z o 7 P (@), (6.169)
wherein we have defined the operator
02 = KB, Ly, (6.170)
{k}

and similarly for @(Z). On the holomorphic sector we define the state
Iz, h,) = @(2)Ih,) (6.171)

which is therefore expressible as a power series:

lz,h,) =Y Z¥IN,h,) (6.172)

N=0
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The state |N, h,) is a descendant state at level N in the Verma module V(%,):
LyIN, h,) = (1, + N)IN, k) (6.173)

(we use the notation |0, hp) = lhp)). We now apply the operator L,, on both sides
of Eq. (6.169). Acting on the Lh.s., L, yields

L6,z Dlh,h) = [L,, ¢, Dk, h)
= ("3, + (n + 1h) ¢,(z, 2)Ih, h)
Applying this relation on the r.h.s. of Eq. (6.169), we find
3 Cud PR 12, b )2 by =
P

(6.174)

D Coua?? P2 [, + b — D) + 27419, 12, )2, By
14

Substituting the power series (6.172), we finally obtain
L,IN +n,hp) = (hp +(n—-1h +N)lN,hp) (6.175)

This relation, together with the Virasoro algebra, allows the recursive calculation
of all the [N, 1), and hence of all the 5.
We now calculate explicitly the lowest coefficients. First, we know that

11,h,) = B33 L_, )

since the r.h.s. is the only state at level 1. Operating with L; and applying the
relation (6.175), we obtain

L h,) =h,lh,) = FLL_ ) (6.176)
Since L,L_,|h,) = [L,,L_;llk,) = 2h,|h,), we find

1
1
AIES 5 (6.177)

At level 2, we have
12,h,) = BS VL2 |y + BSPL 1) (6.178)

We operate on this equation with L, and, separately, with L,, applying Eq. (6.175).
We need the following relations from the Virasoro algebra:

LI? =I2L +4L_L,—2L_,
LL ,=L_,L +3L_,
L2, =12 L,+6L_L, +6L, (6.179)
1
LL ,=L,L,+4L,+ EC
and we end up with the following matrix equation:

202h,+1) 3 i;‘"*)_..(;(h +1))
( 6h %C+4hp)( 1;2} B hpp+h ©150)

14



§6.6. Conformal Families and Operator Algebra 183

whose solution is
wy _ €—12h—4h, +ch, +8h12,
12 =
4c — 1ohp + ZChp + l6h§)
27 ¢ —10h, +2ch,, + 16h2

(6.181)

Ata given level N there are p(N) coefficients ﬂﬁk’ to be found, and accordingly
we need p(N) equations for these coefficients. These equations are obtained by
considering the p(N) ways to bring |N, hp) to level O with help of the Virasoro
operators L,, (n > 0).

In short, we have illustrated how the complete operator algebra of primary
fields may be obtained from conformal symmetry, the only necessary ingredients
being the central charge c, the conformal dimensions of the primary fields, and
the three-point function coefficient C,,,,,,,. In principle, any #2-point function can
be calculated from this operator algebra by successive reduction of the products of
primary fields. The correlators of descendant fields thus obtained can be expressed
in terms of primary field correlators, and so on. Hence, the theory is then solved, by
definition! Of course, the coefficients C, prim TUST be obtained from another source,
for instance through the conformal bootstrap (see below).

6.6.4. Conformal Blocks

In the last subsection we have mentioned that four-point functions can be reduced
to three-point functions with the help of the operator algebra (6.165). Here we
shall make this point more explicit, and find which part of a four-point function is
fixed by conformal invariance and which is not.

We consider the generic four-point function

(01(2,2)09,(2,, 2,)95(23, 23)04(24, 24)) (6.182)

We have seen that such a function depends continuously on the anharmonic ratios

_ (Zl - Zz)(Z3 - 24) = _ (21 - 22)(23 - 24)
= X= —

(2, —23)(z, — 2,) Z, —Z)0z, - Z,)

Since these ratios are invariant under global transformations, we shall perform

such a transformation in order to setz, = 0,2, = 00, andz, = 1; thenz, = x and

the above correlation function may be related to a matrix element between two
asymptotic states of a two-field product:

im 22172 (9, (2, 2,)0,(1, 1)y (x, £),(0, 0)) = GZ(x, )

21,2100

(6.183)

X

wherein we have defined the function
GHi(x, %) = (), 1, (1, 1)y (x, D)1y, by (6.184)
(the order in which the indices of G appear is important).
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We now use the operator algebra to reduce the products within the four-point
function. We write the operator algebra as

31, 9)8,(0,0) = Y G v s hughe~hs—hey (x,%10,0) (6.185)
p

wherein
¥, (x,500,0 = 3 BU BN Rt 0,00 (K=Y k)
{kj}
The function G2} may then be written as
Gl ®) = ) G, ChA%(plx, 1) (6.186)
p

where we have introduced the function
AL (plx, %) = (C}) ' xle Izl hs—ha(n b 19,(1, 1)W,(x, %10, 0)]0)

‘We have merely rewritten the four-point function as a sum over intermediate con-
formal families, labeled by the index p. The analogy with the diagrammatic ap-
proach to perturbation theory is clear: The intermediate conformal families corre-
spond to the different intermediate states formed during the scattering of the two
fields from (0,x) toward (1, 00). We could therefore represent A3\(p|x, %) by a
tree diagram with four legs (see Fig. 6.3). In the same spirit, we may refer to these
functions as partial waves.

k (0) 1(1)
Al (plz,3) =

j (=) i ()

Figure 6.3. Partial wave in diagrammatic language. The same diagram is often used to
represent only the holomorphic (or antiholomorphic) part of the partial wave, the conformal
block F2i(p|x).

It is clear from its definition that the partial wave factorizes into a holomorphic
and an antiholomorphic part:

AL plx, %) = Fo(pIx)F2(pI%)

where

h,l¢,(1)L_ L_, |h,)
F2(plx) = who—rhe 3 gotkl o a1 DLy, Loy, 11y 6.187
s(pl) = % 34 (h, s¢2(1)1h> (©.187)
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The denominator is simply equal to (C,)"2. The functions defined in Eq. (6.187)
are called conformal blocks. They can be calculated simply from the knowledge
of the conformal dimensions and the central charge, by commuting the Virasoro
generators over the field ¢,(1) one after the other. The field normalizations and
coefficients Ch,,, drop out of the conformal block at the end of this process. Going
back to the partial wave decomposition (6.186), we see that the conformal blocks
represent the element in four-point functions that can be determined from confor-
mal invariance. They depend on the anharmonic ratios through a series expansion.
The remaining elements are the three-point function coefficients C}, and C%,,
which are not fixed by conformal invariance. Therefore, the four-point function
(6.184) is expressed as

Gl @) =) G0, FLeWFLPIR) (6.188)

p

An explicit expression for the conformal blocks is not known in general. Al-
though the formula (6.187) may be applied in principle, its use becomes rapidly
tedious. One may write the conformal block as a power series in x:

[o o]
Fh(plx) =z ey " g K (6.189)
K=0
where the coefficient F;, depends on the conformal dimensions hi i=1,...,9

and h,,. The normalization fixes F, = 1. The next two coefficients may be obtained
by blindly applying the definition (6.187):

F — (h, +hy —h\)h, +hy—hy)

1 th

(6.190)

g _ (it iy =)y by — by 4+ Dt hy — )B4 hy By + 1)
2= 4h, (2, + 1)

+2 h +h + hy(h, — 1) 3k —h,)’ ’
2 22h,+1) 22k, +1)

2 -1
o (st By =1 3 — Ry 2h,(8h, — 5)
2 202k, +1) 20k, +1) 2h, +1
| (6.191)

6.6.5. Crossing Symmetry and the Conformal Bootstrap

In defining the function G24(x, X), we have chosen a specific order for the four
fields ¢, _, within the correlator. But the ordering of ficlds within correlators does
not matter (except for signs when dealing with fermions); we could have proceeded
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otherwise, for instance by sending z, to 0 and z, to 1. Then z; = 1 — x and we
obtain the identity

Gﬁ(x,:’c) = Ggé(l -x,1—-X%)
‘We could also interchange ¢, and ¢, and obtain

1

Gh(x,%) = —G%(1/x, 1/%)

x2h3x 3

' These conditions on the function Gg}, are manifestations of crossing symmetry.
We write the first of these relations in terms of conformal blocks:

3 CoLCE FpTECR = 3 CLCh Fialt 0Tl B (619
14

q

This relation is represented graphically on Fig. 6.4. Assuming that the conformal
blocks are known for arbitrary values of the conformal dimensions, the above
expresses a set of constraints that could determine the coefficients Cy,,, and the
conformal dimensions /. Indeed, if we assume the presence of N conformal fam-
ilies in the theory, the above relation yields, through naive counting, N* constraints
on the N3 + N parameters C,,,, and h,,. This program of calculating the correlation
functions simply by assuming crossing symmetry is known as the bootstrap ap-
proach. There is no proof that Eq. (6.192) can indeed determine the parameters of
the theory in the general case, but there are special cases (the minimal models) in
which the bootstrap equations can be solved completely. The bootstrap hypothesis
(6.192) is the sole “dynamical input” required to completely solve the theory, once
the explicit form of the conformal blocks has been determined from conformal
invariance. The crossing symmetry constraint (6.192) is quite natural from the
point of view of the operator algebra—rather like the Jacobi identity for Lie alge-
bras or Poisson brackets—and does not constitute a narrow condition excluding
interesting theories.

n l
n l
Y ck.ck z = S cici |
nm “Ylk - nl mk
p q
m k
m k

Figure 6.4. Crossing symmetry in diagrammatic language.
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Appendix 6.A. Vertex and Coherent States

In this appendix we demonstrate the following formula for the vacuum expectation
value of products of n vertex operators involving a single harmonic oscillator:

n
(e et ieh) =exp ) (AA) (6.193)
i<j
where A; = o;a + B,a’ is a linear combination of creation and annihilation
operators.
We first define the harmonic oscillator coherent state
l2) =e*'|0) (6.194)

It is simple to show that |z) is an eigenstate of a:
alz) =zlz) or fla)lz) =f(2)lz) (6.195)
Indeed, the Hausdorff relation
_A 1
eBe* = B+ [B,A] + E[[B,A],A] + - (6.196)
applied to A = za' and B = a yields
[a,e?!] = ze®t (6.197)

from which Eq. (6.195) follows. If [B, A] is a constant, which is true here, the
Hausdorff relation also implies that

ePet = etePelPA (6.198)
This, applied to our problem, yields
"l — g2’ gwagwz (6.199)
Within a vertex operator A;, the normal-ordered product reads
M= efid g (6.200)
In calculating the normal-ordered product of a string : e : ... : e : of vertex

operators, we want to bring all the annihilation operators to the right. For instance,
it follows from Eq. (6.199) that

eaiaeﬂma’ o eﬂna' — eﬂi-:»lat . ,eﬁnateaiaeai(ﬂi-ﬂ+ﬂl’+2+"'+ﬂn) (6.201)

Since [e%“,e%*] = 0, this implies
%4 sAirt - L pAn .. pAivi. . ohAn . 08 g0i(BinitBisvat+By) (6.202)

Applying this in succession fromi = 1toi = n — 1, we find

n
et e ... ehn = @Bt glart e CxPZ“iﬂi (6.203)

i<j
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Since (AiAi) = a;B;, one may finally write

et .. efti= gt AN exp Z(A,A’-) (6.204)

i<j

From the vacuum expectation value of this expression follows the relation (6.193).

Appendix 6.B. The Generalized Wick Theorem

In this appendix we reformulate Wick’s theorem for interacting fields, using the
generalization of the concept of normal ordering explained in Sect. 6.5. We are
not interested in the most general form of Wick’s theorem, which gives the rela-
tion between the time-ordered (or radial-ordered) product and the normal-ordered
product of free fields, illustrated in Eq. (2.109). Such a relation cannot be gen-
eralized to interacting fields. Rather, we wish to generalize a specialized form of
Wick’s theorem for the contraction of a field with a normal-ordered product. For
free (commuting) fields, this is

b, x) 195 o= ¢1(x)¢2()’) :¢3(Y): +¢, (x)¢3(}’) 3¢2(}’): (6.205)

The suitable generalization of this relation to interacting fields is
—— 1 dx f 1 —
ARYBOYW) = 5 f —w {A(Z)B(x)C(w) +B(x)A(z)C(w)] (6.206)
o X —

In order to demonstrate this relation, one must show that the contractions on the
r.h.s. extract all the singular terms of the integral as z — w. But these singular
terms can only come from the OPE of A(z) with B and C separately (the integral
amounts to a point-splitting procedure). We rewrite this expression as

1 dx {AB},(x)C(w) B(x){AC},,(w)
i b o {Z 2

(z—x) (z—w)y } 6207

n>0 n>0

From this expression it is manifest that all the inverse powers of (z—w) and (z—x)
in the integrand yield inverse powers of (z — w) after integration. Conversely,
nonnegative powers of (z — w) and (z — x) in the integrand, if added, would not
contribute to inverse powers of (z — w) after integration. Thus the modified Wick
rule (6.206) is correct. It is straightforward to check that the rule (6.206), applied
to a free boson ¢, leads to the same result as the usual Wick theorem. For instance,

2¢p(w)
—w

The subtlety with formula (6.206) applied to interacting fields is that one is left
with full OPE:s after one contraction. This is important since the first regular term

p(2)(pp)(W) =

(6.208)
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of the various OPEs always contributes. To see this, we consider the first term on
the r.h.s. of Eq. (6.206). Writing the OPE of {AB},,(x) with C(w) as

{AB},,(x)Cw) ~ ) _(x — w)"E™™(w) (6.209)

(no restriction on ), the first term on the r.h.s. of Eq. (6.206) becomes

1 E®m(w)
i fivdx Z Z (z — x)"(x — wym+!

n>0 m
(6.210)
nm n+m-—1) S
= %rnzz;)ﬁ( )(W)m(z—w)

(we have used Eq. (6.159)) and the term 72 = 0 indeed contributes. On the other
hand, it is simple to see that only the first regular term contributes to the second
term on the r.h.s.of Eq. (6.206). Indeed, since the OPE B(x){AC},,(w) is expressed
in terms of fields evaluated at w, only the pole at x = w contributes.

The main steps of an illustrative application of the Wick rule (6.206) on the
energy-momentum tensor follow:

QT Do) = 5 6 xif—z {TT)T(x)T(w) +T6) @(w)]

1 dx c/2 2M(x) | aT(x)
- %i,x —-w [[(z—x)“ (z—x)? M (z~x)] Tw)
cl2 2T(w) aT(w)
+ Tk [(z -w)t + (z—w)? + (z —W)]} ©21h)

To proceed we need

—2c 4T(w) aT(w)
x—w) (x-w) (x-—w)

T (x)T(w) = + O@TDH(W) +--- (6.212)

which is obtained by differentiating the OPE T(x)T(w) with respect to x. The OPE
T(x)aT(w) is obtained in the same way. Substituting in Eq. (6.211) the required
OPEs, and using Eq. (6.159), we find that

3¢ @ +c)T(w) 3aT(w)
(z—-w)s (z—w)* z—w)
ATTH(w) + ATTH(w)

z-w)2  (z—w)

TXTT)(w) ~
(6:213)

Finally, if we want to calculate (BC)(z)A(w), we should first evaluate
A(2)(BC)(w), then interchange w <> z, and finally Taylor expand the fields eval-
uated at z around the point w . For instance, from Eq. (6.213) it is simple to
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derive
3¢ B+c)T(w)  (5+)T(w) | HTT)(w)))
TD@TW) (z—w)s + (z—w)* z-w) (z—w)?
(1 +¢/2)32T(w) + (c — 1D)3Tw) 33(TDH(w)
(z—w)? 6(z —w) (z—-w)
(6.214)

Appendix 6.C. A Rearrangement Lemma

We often encounter composite operators involving more than two operators, for
instance (A(BC))(z). This notation means that the product of B and C must be first
normal ordered and, in a second step, the product of A with the composite (BC)
must be normal ordered. This prescription, wherein operators are normal ordered
successively from right to left, will be our standard choice. It will be referred to
as right-nested normal ordering. The necessity of a well-defined prescription is
forced by the absence of associativity,

(A(BO))(2) # ((AB)C)(2) (6.215)

which is readily seen from the mode expansions of the two sides of this equation
(see also the end of this appendix). Using the contour representation

(ABON(R) = (2;1.)2 fyd_yz f xd_sz(y)B(x)C(z) (6.216)
we find that
ABONR) =A_,,B_1,C_p 1(2) (6:217)
or, equivalently,
(ABO)O)I0) =A_,,B_;,,C_,; |0) (6.218)

This correspondence with mode monomials illustrates neatly the naturalness of
the chosen prescription.

We now derive some technical results used to compare multi-component com-
posite operators with different ordering of the terms or different normal ordering
prescriptions.

The first case to be considered is the relation between (A(BC)) and (B(AC)).
Using the mode monomial representation, we write

(ABO))(2) — BAC)®) = [A_4,, B_;,,] C_p 1)
= (1A, B))C)(2)

This result can also be verified directly at the level of modes as follows. With
the OPE A(z)B(w) given by (6.124), that of B(z)A(w) follows by interchanging

(6.219)
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Z and w:

{AB},,(2)
(z—w)

= Z( 'y Wam{w}n(w)

m>0

B(2)A(w) = Z(—U"
(6.220)

where the second equality is obtained by Taylor expanding {AB},,(z). The normal-
ordered product (BA) is the sum of all terms with n# = m, that is

BA)(W) = Z(nl) d'{AB},(w) (6.221)
n>0
This leads to
( l)n+l
(A,B) =) ¥"'(AB},(w) (6.222)

n>0

Hence, field-dependent singular terms contribute to the normal-ordered commu-
tator while {AB}, cancels out. In particular, this means that the commutation of
two free fields vanishes. For instance, for a free boson ¢, one has

(3"p(93"9)) = ($(8"93"9) = (3" ¢(¢3"9)) (6.223)
By use of
(ABC)), = Y A, (BO),_,,+ Y (BC),_ ,A, (6.224)
m<-hy m>—hy

in which we substitute back the expression (6.130) for the modes of (BC) in terms
of those of B and C, one checks directly that

(A(BC)),, — (B(AQ)), = ((1A, B))C), (6.225)

The second case is that of a composite of four operators, normal ordered two
by two: We wish to relate ((AB)(CD)) to (A(B(CD))). One simply treats (CD) as
a single operator, say E, and proceeds as follows:

((AB)E) = (E(AB)) + (I(AB), E))
= (A(EB)) + ((IE,A]B) + ([(AB), E)) (6.226)
= (A(BE)) + (A([E, B])) + (((E, A1)B] + ([(AB), E)).

Replacing E by (CD) gives the desired result. The difference ((AB)E) — (A(BE))
gives the explicit expression for the violation of associativity:

((AB)E) — (A(BE)) = (A(IE, BD) + (([E,ADB) + ([(AB),E])  (6.227)
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Appendix 6.D. Summary of Important Formulas

OPE of the energy-momentum tensor with a primary field ¢:

h 1
T(2)p(w) ~ md’(w) + Z—_-;M(W) (6.228)
OPE of the energy-momentum tensor with itself:
c/2 2T(w) aT(w)
TRTW) ~ = Y aowr T aow) (6.229)
Normal ordering:
(AB)(w) = LY A(2)B(w) (6.230)

2ni )] z—w
With this new normal-ordering convention, we rewrite some formulae related
to free-field representations for which we make a standard choice of coupling
constants.
Free boson (g = 1/4m, c = 1):

p(D)pw) ~ —In(z —w) (6.231)

T@) = 3 (¢39)(2) (6.232)

Vertex operators are always assumed to be normal ordered and for these the
parentheses are usually omitted. With V, = ¢'*#, we have

Vo (2, D)V ,w, W) ~ |z — WPV, (W, W) + - -- (6.233)

The conformal dimension of V,, is a?/2.
Free real fermion (g = 1/27, ¢ = 1):

1
Y(@)y(w) ~ m (6.234)

T = — (FoV)e) (6.235)

Free complex fermion (c = 1):

v@yw) ~ ;_i; v@Qyw) ~ ¢ @yt w) ~ 0 (6.236)

T(z) = %(aulr*r/f —vlay)(@) (6.237)

Ghost system: The two ghosts b and & are either both anticommuting (¢ = 1) or
both commuting (¢ = —1) and have the OPE

HDbw) ~ lew bayoow) ~ —— (6.238)



Exercises 193

The energy-momentum tensor is
T(@@) = (1 — M)(3bE)(2) — A(b3E)(2) (6.239)
with central charge
c = —2e(6A% — 61 + 1). (6.240)

The dimensions of E(z) and &(z) are respectively A and 1 — A. In Sect. 5.3 we have
treated the case ¢ = 1, A = 0, giving ¢ = —2. On the other hand, when ¢ = 1 and
A= %, we recover the above free complex fermion theory.
Mode expansions:
1
—n—h h—
W)=Y 2, b= i)

neZ 2n
Virasoro algebra and mode commutation relations:

c
L, L,1=n-m)dL,,, + Tin(n2 —1)8,41m

L, ¢,] = [nth — 1) —mlg,,,

Exercises

6.1 Given a primary field ¢(w), demonstrate the following:

6.2 Find the mode commutation relations for a free real fermion, and for the simple ghost
system.

6.3 Demonstrate the identity (6.159).

6.4 Partition numbers
Show that the number p(#2) of partitions of a nonnegative integer n > 0 into a sum of
nonnegative integers is generated by

1
p(n)g" = =————.
nz?.o l_[kzl (1 - qk)
Find the generating function for the number s(72) of strictly ordered partitions of a nonneg-
ative integer n into strictly positive integers (we set s(0) = 1). Prove that s(n) is equal to
the number of partitions of # into positive odd integers.

Hint: Prove and use the identity [,..,(1 —¢**"')(1 +¢") = 1.

6.5 Conformal blocks

Demonstrate the relation (6.190) for the coefficient F, appearing in the power series ex-
pansion of the conformal block. If successful, demonstrate the relation (6.191) for the next
coefficient (F,).

6.6 Complete the details of the derivation of Eq. (6.219) in terms of modes.
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6.7 Contraction of two exponentials
Let A and B be two free fields whose contraction (with themselves and with each other) are
c-numbers.

a) Show by recursion that

| aa—

A(Z): B"(w) := n;(;;l—é(w) B (w):

and therefore

r 1 r 1
A(2) : 3™ = AQ)B(w) : €™ :
As usual, : --- : denotes normal ordering for free fields.
b) By counting correctly multiple contractions, show that

eA@B @ _ Z k! ('Z) (Z) [ADBWF: : A™*w)B"*(w) -

mn!
= exp [A(z)B(w) : AW gBW) .

And deduce from this the OPE (6.65) of two vertex operators.

6.8 Calculate ([T, (TT)]), first using Eq. (6.222) and the OPE T(z)(TT)(w) given in
Eq. (6.213), and then directly in terms of modes, from the equality

[Tr (TT)] = [T—Z, (m—‘]
with T_z = L-z and
(TT)_s=2 ZL—I—sLI—l +L.,L.,

>0
which follows from Eq. (6.213).

6.9 Rearrangement lemma for free fermions
a) Rearrange the product of real fermions

(i) )(Weyn))
whose OPE reads

vi (Z)ll’/ w) ~

(W)

in anormal ordering nested toward the right. Before using Eq. (6.226), reconsider the relative
signs of the different terms when fermions are present.

b) Same as part (a) for the product of complex free fermions:

()W)
with OPE

U W) ~ YD) ~
Z—w zZ—
vi@¥i(w) ~ 0 V@Y w)~0
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6.10 The quantum Korteweg—de Vries equation
Let us introduce an equation of evolution in time for the energy-momentum tensor through
the canonical equation of motion

1
AT =-HT) , H=_ §dw@TDw)
2
a) Using the OPE (6.213), check that the resulting evolution equation is
1
8T = 6(1 —¢)&T - 3(TT) (6.241)

This is called the quantum Korteweg—de Vries (KdV) equation since in the classical limit
¢ — —00,? the substitution T = cu(z, t)/6 and a rescaling of the time variable transforms
it into the standard KdV equation:

du = du + 6udu (6.242)
b) The quantum KdV equation (like its classical counterpart) is a completely integrable
system in the sense that it has an infinite number of conserved integrals H,,
a,H n — 0

(whose densities are polynomial derivatives in T'), all commuting with each other. Each
of these conserved integrals has a definite spin. The spin of these charges is always odd,
and there is one charge for each odd value of the spin. To illustrate this statement, check
that there can be no nontrivial conserved integral of spin 2 and 4. A conserved integral is
nontrivial if its density is not a total derivative.

¢) Show that the first nontrivial conservation law is
c+2
Hs = § dw (7 - €42

(The subindex indicates the spin of the integral.) To obtain this result, proceed as follows. At
first, argue that the above two terms in Hj are the only possible ones, up to total derivatives.
H; is thus necessarily of the form

Hs = f dw [(T(TT)) + a(3TaT)) (6.244)

(aTam)] (6.243)

where a is a free parameter to be determined. It is uniquely fixed by requiring 8,Hs = 0.
Explicitly, in the expression for 3,H s replace 8, T by the r.h.s. of the quantum KdV equation,
drop total derivatives and cancel the remaining terms by an appropriate choice of a.

d) The conservation of Hs can also be established independently of the equation of motion,
by proving directly the commutativity of Hs with the defining Hamiltonian H. For this
calculation, the following two intermediate results must first be derived:

TTATYw) ~-22_ | BF9) Tw) | 15 3T(w)

(z —w)s (z —w)s Z-w)y
24+ 2c) (TH(W) . 2 ATTH(w) 1 &T(w)
+ (z2 —w)* : (z—w) zz —w)? 6245
+ 6 (T(IT))Yw) | AT(TD))w)
(z—w)? z-w)

2 The classical limit corresponds to ¢ — =00, but —00 can be obtained, by a limit process, from the
minimal models to be introduced in the following chapter.
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and
18¢ 28 T(w)  (4c + 18) aT(w)
(z—-w)  (z—w)s (z—w)
58T(w) 4TT)(w) 6 (3TaT)(w)
z-wy = (z-wy (z —w)y?
3(aTaT)(w)
z—-w)
In these expressions, interchange z and w and then use Eq. (6.206) to calculate the
commutator.

T(z)(@TaNw) ~

(6.246)

6.11 The quantum Korteweg—de Vries equation atc = —2
a) Verify that for the central charge ¢ = —2, T can be represented by the bilinear

T =(¢y)
where ¢ and  are both fermions of spin 1 with OPE
-1 1
d(Dyw) = m , Y(@d(w) = (?_w—)z

This is, of course, nothing but a ghost representation (cf. App. 6.D), with¢ = ¢ and ob = ¢
and € = 1 (i.e., these are anticommuting fields).

b) Using the rearrangement lemma (6.226), show that

(ID@) = 5 @'Y + 69"

where a prime stands for a derivative with respect to the complex coordinate.
c) In terms of these variables and the quantum KdV Hamiltonian

1 1 "’ 4
H= s $aw@Dm = o §dw @'y + 49" )w)
derive the evolution equations

4¢=-[H¢l=-9¢" Yy =—[H yl=—-y"
Use these equations to recover the evolution equation of 7.
d) Prove that an infinite set of conserved quantities for this system of equations is

Hii = f}( dz(¢®Py)(z) with 3Hiy1 =0

where ¢®) = 3’z‘¢.
e) Verify the mutual commutativity of these charges.

f) Argue that for k odd these conserved integrals cannot be expressed in terms of T. For k
even this can be done as follows:

n—1
Hypy = 2 f d2(F)@)

n

where the notation (f:'-') means a nesting of the normal ordering toward the left:

T)=(...(@DDD)...T)  (n factors)
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The exact expression for (77) is
<« n
() = 2 (6229 + ¢y™?)

g) In preparation for establishing the above result for (F), check the following necessary
normal-ordered commutators

("), ¥]) = ( ),,,<m+z>
("™ ¥), ¢)) = ~¢""“’

om) ( D™ ms2)
Wy, 9D = ———¢ +2

([(py'"™), ¥]) = 51//‘"‘“’

h) Prove the above expression for (1(;) by an inductive argument. Hint: Assuming the

-
validity of the above expression for (7(;), calculate (T"*') = ((F)T) in terms of fermions
by reordering the terms toward the right using (A(BC)) = (B(AC)) + (([A, B])C) and the
commutators calculated in the previous part.

i) Express the charge Hs obtained in Ex. 6.10 in terms of ¢ and ¢ and compare with
§ dz (T°).

Jj) To see that the higher-spin conserved charges cannot be expressed in a simple way with
the usual nesting toward the right, compare (7(7(77T))) and (F).

k) To understand why ¢ = —2 is special, consider a general anticommuting ghost system
{b, &}, for which the energy-momentum tensor is given by Eq. (6.238). Show that

4 W NPT
(T7) = (57\(1 =)+ 1D)B"e) — 2A(1 = 1)(B®'(EC)
Obtain the evolution equation for b and . Observe that unless A = O or 1, these are coupled
equations, for which the integrals of motion cannot be written in a simple bilinear form.

6.12 The classical limit of the Virasoro algebra
The Poisson bracket form of the Virasoro algebra is obtained by replacing the commutator
by a Poisson bracket times a factor i, that is,

i{L,, L} = (n — m)Lyym + —n(n = Ddusmo

Letu(x, t) be the classical field defined on a cylinder (u(x+27,t) = u(x, t)) whose Fourier
modes are the L,,’s:

u(x) = ZL,,e -3

neZ

(the explicit time-dependence is omitted from now on). This is the classical form of the
energy-momentum tensor. Show that its equal-time Poisson bracket is

(), u()) = %’-’-[—az + 4u(x)a; -+ 20uGENBG — ) (6.247)
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Use:
1 .
$x—y) ==Y e
2 Z;

Recover the classical Korteweg—de Vries equation
du = —u + 6ud,u
from the following canonical formulation:
du={u,H), with H=— [dx u?
127

The above Poisson bracket defines the so-called second Hamiltonian structure of the KdV
equation. (The relative sign between the two terms on the r.h.s. of the KdV equation is not
as in the classical form derived in Ex. 6.10 (cf. Eq. (6.242)); this is explained by a ‘space
Wick rotation’, i.e., the space variables used in the two cases are related by a factor i.)

6.13 The Feigin-Fuchs transformation and the quantum Korteweg—de Vries equation
revisited

a) Verify that the following deformation of the energy-momentum tensor of a free boson

1
T= -i(arpa(o) +iade (6.248)
still satisfies the OPE (5.121), with ¢ related to by
c=1-12a2

This is called the Feigin-Fuchs (or sometimes Feigin-Fuchs-Miura) transformation.

b) Since the relative coefficients of the different terms of the conserved densities of the
quantum KdV equation (introduced in Ex. 6.10) depend only upon ¢, it implies that all these
conserved densities, when rewritten in terms of ¢ via the Feigin-Fuchs transformation, are
even functions of ¢ up to total derivatives. More explicitly, let

H, = f dz Hun (T such that oH, =0
and
Ha[T] = Halp)
when T is replaced by Eq. (6.248). Any quantum KdV conserved density satisfies
Halg) = Fal-¢) + 3(- - )

Verify that this is indeed so for the defining Hamiltonian H = $(Z7T). It turns out that this
criterion characterizes uniquely the quantum KdV conserved densities! Use it to recover
H; (cf. Ex. 6.10, Eq. (6.243)).

Hint: Start from the ansatz (6.244) of part (c) in Ex. 6.10, replace T by Eq. (6.248), drop
total derivatives and terms with an even number of ¢ factors; fix the relative coefficient
a by enforcing the cancellation of the remaining odd terms. Along the way, some normal
ordering rearrangements are necessary.

¢) Find the canonical evolution equation for the field B = d¢ defined by the Hamiltonian

H:fdz('m with T=—%(BB)+iaaB
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This is the quantum modified KdV equation.
Remark: The classical version of Feigin-Fuchs transformation is called the Miura
transformation:

u=2av+v?
and it is a canonical map from the Poisson bracket
v(x),v(y)} = 3:8(x — y)
to the KdV Poisson bracket (6.247) of Ex. 6.12 (up to an irrelevant multiplying factor).

Notes

General references for this chapter are identical to those of the previous chapter.

Radial quantization was introduced by Fubini, Hanson, and Jackiw [145]. It was ap-
plied on the complex plane by Friedan [139], who also represented the commutator of two
operators by a contour integral.

The Virasoro algebra first appeared in Ref. [344] in the context of dual resonance models.
Its general application to conformal field theory was pointed out by Belavin, Polyakov, and
Zamolodchikov (BPZ) [36].

The quantization of the free boson is immemorial. Vertex operators were introduced
in the context of dual resonance models by Fubini and Veneziano [144]. Fermions were
introduced in string theory by Ramond [302] and Neveu and Schwarz [281].

The concepts of a conformal family and conformal block were introduced in BPZ [36].
Analytic properties of the conformal blocks are discussed by Zamolodchikov and Zamolod-
chikov [367]. The generalized Wick theorem is discussed by Bais, Bouwknegt, Surridge,
and Schoutens [20].

Ex. 6.10 is based on Ref. [249], Ex. 6.11 on Ref. [94], Ex. 6.12 on Ref. [175], and
Ex. 6.13 on Refs. [316, 121].



CHAPTER 7

Minimal Models |

Chapters 5 and 6 dealt with general properties of two-dimensional conformal field
theories. The present chapter is devoted to particularly simple conformal theories
called minimal models. These theories are characterized by a Hilbert space made
of a finite number of representations of the Virasoro algebra (Verma modules); in
other words, the number of conformal families is finite. Such theories describe
discrete statistical models (e.g., Ising, Potts, and so on) at their critical points.
Their simplicity in principle allows for a complete solution (i.e., an explicit calcu-
lation of all the correlation functions). The discovery of minimal models and their
identification with known statistical models at criticality constitutes the greatest
application of conformal invariance so far. Since a detailed study of minimal mod-
els may rapidly become highly technical, we have split the discussion among two
chapters (this one and the next). The present chapter first explains some general
features of Verma modules (Sect. 7.1), and in particular the occurrence of states
of zero norm, which must be quotiented out. In Sect. 7.2 the question of unitarity
is discussed and the Kac determinant is introduced. In Sect. 7.3 a survey of the
theory of minimal models is presented. In Sect. 7.4 various examples of the cor-
respondence between minimal theories and statistical systems are described. The
next chapter will be devoted to more technical issues and will provide proofs for
some assertions of the present chapter.

§7.1. Verma Modules

In a conformal field theory, we expect the energy eigenstates (i.e., the eigenstates
of Ly and Ly) to fall within representations of the local conformal algebra (the
Virasoro algebra) much in the same way as the energy eigenstates of a rotation-
invariant system fall into irreducible representations of sx(2). In a given theory,
the Hilbert space will generically contain several irreducible representations of
the Virasoro algebra; this is analogous to the Hilbert space of the hydrogen atom
containing an infinite number of su(2) representations.



§7.1. Verma Modules 201

7.1.1. Highest-Weight Representations

Highest-weight representations are familiar to physicists through the theory of
angular momentum. We briefly recall what is done in that context: We assume that
the representation space is spanned by the eigenvectors |m) of one of the su(2)
generators, which we call J, (denoted J, in most texts on quantum mechanics). An
inner product is assumed to exist on the representation space, such that the three
generators are Hermitian: J} = J,. The other two generators of su(2) are arranged
into raising and lowering operators J+ = J, & iJ, with the commutation relations

Vo, Jel=XIx U4, J-1=2) (7.1

We then assume that the eigenvalue m of Jp has a maximum within the
representation space: There is a state |j) such that

The other eigenstates of Jg are obtained by applying J_ repeatedly on |j); we define
the (not normalized) states

Im) = (J_Y"™lj) 7.2)
The inner products of these states are easily calculated by using the relations
J+lj) =0and (lJ- =0:

m—1m-—1) = [jG+1) —m(@m — 1)}{m|m) (71.3)

(in order to find this explicit result, we also use the fact that the operator J2 =
Jo)* + %{J+,J _} commutes with all generators, and has therefore a fixed value
within the representation, equal to j(j + 1)). As seen from Eq. (7.3), states of
negative norm generically appear when m decreases below —j; the representation
is then nonunitary. The only exception to this rule occurs when j is an integer or
a half-integer: The state | — j — 1) then has norm zero, along with all other states
obtained by applying J_ on it. We say that these singular vectors decouple from
the first (2j + 1) states for the following reason: Consider any operator A built
from the generators J;; its matrix element (m|A|m’) between a positive-norm state
|m) and a null state |12’) necessarily vanishes. Indeed, the evaluation of the matrix
element proceeds by expressing A in terms of Jy and J 1, using the relations (7.3),
and it finally reduces to an expression proportional to (m|n2’), which vanishes.
The representation space is thus truncated to the first (2j + 1) states of Eq. (7.2),
which then form a unitary, finite-dimensional representation of su(2).

We shall proceed in a similar way in order to construct representations of the
Virasoro algebra

c

[Ln, L] =0 —m)Lyym + P

Representations of the antiholomorphic counterpart of (7.4) are constructed by
the same method. Since the holomorphic and antiholomorphic components of the
overall algebra (6.24) decouple, representations of the latter are obtained simply by
taking tensor products. Since no pair of generators in (7.4) commute, we choose a

n(n2 - 1)8n+m,0 (1.9
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single generator (here Ly), which will be diagonal in the representation space, also
called a Verma module. We denote by |/1) the highest-weight state, with eigenvalue
h of Ly:

Lolh) = hlh) 7.5

This state is, of course, the asymptotic state created by applying a primary field
operator ¢(0) of dimension 4 on the vacuum |0} (cf. Sect. 6.2.2). Since [Ly, L,,] =
—mLyy,, L, (m > 0) is a lowering operator for A, and L_,,, (m > 0) is a raising
operator. We shall adopt the condition

L,h) =0 (n>0) (7.6)

which is compatible with the regularity condition (6.26). Notice that the above
condition follows from the simpler condition L, |) = L,|h) = 0, by repeated use
of Eq. (7.4).

As discussed in Sect. 6.2.2, a basis for the other states of the representation,
the so-called descendant states, is obtained by applying the raising operators in all
possible ways:

L_jL_g,...Lg,thy (A <k <...<kn 7.7

where, by convention, the L_, appear in increasing order of the k;. Recall that this
state is an eigenstate of Ly with eigenvalue

W =h+ki+k,+...+ky,=h+N (7.8)

where N is the level of the state. Likewise, the level of a string of operators is the
level of the state it produces when applied on |%2). The first levels are spanned by
the states of Table 7.1.

Table 7.1. Lowest states of a Verma module.

I p®

|h)

L_,\h)

L2,|h), L_5|h)

L3,|h), L_1L_5|h), L_3}h)

L%,\h), L2,L_,\h), L_,L_s|h), L?,|h), L_4lh)

AW N =O
N W N = -

On the Verma module we define an inner product according to our previous
definition of the Hermitian conjugate: L}, = L_,,. Thus, the inner product of two
states

Ly ---L_g,|h) and L_4 ---L_4 |h)
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is simply
(h|Lg,, - - L, Ly, --- Ly, |h) 7.9
where the dual state (/] satisfies
(hiLi =0 G<0) (7.10)

The product (7.9) may be evaluated by passing the Ly, over the L_;; using the
Virasoro algebra until they hit |/2). Notice that the inner product of two states van-
ishes unless they belong to the same level. Indeed, two eigenspaces of a Hermitian
operator (here Lo) having different eigenvalues are orthogonal. Hermiticity also
forces A to be real.

A similar analysis can be done for the Verma modules associated with the anti-
holomorphic generators L,,. Denoting by V(c, %) and V(c, %) the Verma modules
generated respectively by the sets {L,} and {L,} for a value c of the central charge
and with highest weights /4 and 4, the energy eigenstates belong to the tensor prod-
wtVeV.In general, the Hilbert space is a direct sum of such tensor products,
over all conformal dimensions of the theory:

> Veh e Vic,h) (7.11)
ki

The number of terms in this sum may be finite or infinite; moreover, there may be
several terms with the same conformal dimension.

To conclude this section, we consider the example of the free boson, studied
in detail in Sect. 6.3. We recall that the Fock space is constructed by applying the
raising operators a_, (n > 0) on the vacua |a). The latter are obtained from the
“absolute” vacuum |0) by application of the vertex operator V,(0): |a) = V,(0)|0).
From the expression (6.69) for the Virasoro generators, we immediately see that
L,|a) = 0forn > 0, and the vacua |a) form a continuum of highest weight states,
with weight h = %a". Thus, to each value of « one associates a Verma module,
itself associated with the primary field V,. The descendant states are obtained by
repeated application of the creation operators a_,, (n > 0), which is equivalent to
a repeated application of L_,, since a_, also raises the conformal dimension by
n (cf. Sect. 6.3.3).

7.1.2. Virasoro Characters

To a Verma module V(c, k) generated by the Virasoro generators L_, (n > 0)
acting on the highest-weight state |/2), we associate a generating function xc 4)(1),
called the character of the module, defined as

Xe(t) = Tr g~/

— Z dlm(h + n)qn+h—-cl24

n=0

(q = eZm't)

(7.12)

where dim(hk + n) is the number of linearly independent states at level # in the
Verma module and t is a complex variable. The factor g~/?* is introduced in this
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definition for reasons that will become evident later, when considering modular
invariance (Chap. 10). Since dim(k + 1) < p(7), the number of (possibly depen-
dent) states at level #n, the series (7.12) is uniformly convergent if |g| < 1 (i.e.,
for t in the upper half-plane), because |g| < 1 is the domain of convergence of
the series (6.38). The characters are generating functions for the level degeneracy
dim(/% +n). In other words, knowing the character amounts to knowing how many
states there are at each level. Characters x,_ };(%) for the antiholomorphic Verma
module are defined in the same manner.

The character of a generic Verma module is easily written. We know that the
number of states at level # is p(1), the number of partitions of the integer n. Since
the generating function of the partition numbers is (cf. Eq. (6.38) and Ex. 6.4)

1 oo 1 00
_—= _— = p(n)q" (7.13)
v(q) ,EII 1—q" ,;0
the generic Virasoro character may be written as
h—cl24
Xen (D) = @ (7.19)
In terms of the Dedekind function
o0
n(t) = q1/24¢(q) — q1/24 I_I(l __qn) (7.15)
n=1
the generic Virasoro character becomes
h+(1—-c)/24
Xen (D) = @ (7.16)

7.1.3. Singular vectors and Reducible Verma Modules

It may happen that the representation of the Virasoro algebra comprising all the
states (7.7) is reducible. By this, we mean that there is a subspace (or submodule)
that is itself a full-fledged representation of the Virasoro algebra. The states of this
submodule transform amongst themselves under any conformal transformation.
Such a submodule is also generated from a highest-weight state |x), such that
L,|x) = 0 (n > 0), although this state is also of the form (7.7).

Generally, any state | x)—other than the highest-weight state—that is annihi-
lated by all L, (n > 0) is called a singular vector (we say also null vector or null
state). Such a state generates its own Verma module V, included in the original
module V(c, %). Singular vector are orthogonal to the whole Verma module. This
follows immediately from the basis states (7.7) and Hermitian conjugation:’

(X\L—g,L—t, ... L, 1) = (h|Lg, ...Lg, Lz, 1x)* =0 (7.17)

! In the bra-ket notation, non-Hermitian operators act on the ket, by convention.
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In particular, {x|x) = 0. This observation extends to all the descendants of |x):
They are also orthogonal to the whole Verma module V(c, ). This last assertion
is equivalent to saying that any descendant of |x) is orthogonal to all the states of
V(c, h) having the same level. Indeed, the relevant inner product has the form

Lk, ... L Ly, ...L_y 1) (7.18)

where Y, k; = N+, ri, N being the level of | x). By commuting systematically
all the Ly, over the L_,,, one ends up with a sum of products of the form (7.17), since
>";ki > 3", 7. Hence the assertion is proven. In particular, all the descendants of
|x) have zero norm, since the evaluation of their norm leads to an expression
proportional to (x| x).

Through the operator-field correspondence, a null state | x) is associated with a
null field x(z), which is at the same time primary (meaning that (L, x)(z) = 0 if
n > 0) and secondary, since it is a descendant of a primary field ¢, of dimension
h (cf. Sect. 6.6.1).

From a Verma module V(c, /) containing one or more singular vectors, one may
construct an irreducible representation of the Virasoro algebra by quotienting out of
V(c, h) the null submodule or, in other words, by identifying states that differ only
by a state of zero norm. These irreducible representations, which will will denote
M(c, %) in order not to confuse them with the reducible Verma module, contain
relatively “fewer” states than the generic Verma module, and their characters are
not given by the simple formula (7.16). Such representations are the building blocks
of minimal models.

§7.2. The Kac Determinant

7.2.1. Unitarity and the Kac Determinant

A representation of the Virasoro algebra is said to be unitary if it contains no
negative-norm states (often called ghosts in string theory). Since the explicit value
of the inner product (7.9) depends on the highest weight /2 and the central charge
¢, the requirement that a representation be unitary imposes some constraints on
these parameters. For instance, a simple unitarity bound on (%, ¢) is obtained by
calculating the norm of the state L_, |%):

1
(hILnL_nlh) = (h| | L—nLn + 2nLo + —cn(n® — 1)} |h)
12
) (7.19)
= [2nh + Ecn(n2 — D)(h|h)
If ¢ < O the above becomes negative for n sufficiently large. Therefore all
representations with negative central charge are nonunitary. Moreover, the case
n = 1 shows that all representations with negative conformal dimensions are also
nonunitary.



206 7. Minimal Models I

The necessary and sufficient conditions for unitarity are found by considering
the so-called Gram matrix of inner products between all basis states. We denote
the basis states (7.7) of the Verma module as |i) and let

M;; = (ilj) M' = M) (7.20)

be the Gram matrix. This matrix is block diagonal, with blocks M” corresponding
to states of level [. A generic state is a linear combination |a) = )_; a;|i) and its
norm is (in matrix notation)

(ala) = a'Ma (7.21)

Since M is Hermitian it may be diagonalized by a unitary matrix U: M = UAU".
If b = Ua, then

(ala) = EA.-(bil2 (7.22)

Consequently there will be negative-norm states if and only if M has one or
more negative eigenvalues. Moreover, there will be singular vectors if one of the
eigenvalues A; vanishes and, accordingly, the Verma module will be reducible.

The matrices M associated with the lowest levels of a generic Verma module
are easily calculated:

M® =1
MY =2k
M — (4h(2h +1) 6h )

(7.23)
6h 4h +c/l2

As an illustration of the steps leading to the above expressions, we calculate
explicitly a sample matrix element:

M) = (h|L\L,L_,)h)
= (hILy(L—2Ly + 3L_,)lh)
= 3(h|LyL_y|h)
= 6h(h|h)

(7.24)

From M© we cannot infer any condition for unitarity. From M) we recover
the condition # > 0. The product of the two eigenvalues of M@ is equal to its
determinant:

det M® = 3203 — 20k + dh*c + 2hc

(7.25)
=32(h — hy,1)(h — hy 2)(h — ha)
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§

wherein
h1=0
1
hyp = T (5 —c—V({1=c)25- C)) (7.26)

1
hoy = 1 (5 —c+v/A-0)@5 - c))
The sum of the eigenvalues is equal to the trace:
Tt M® = 8h(h + 1) +c/2 (7.27)

The representation is not unitary whenever det M@ or Tr M@ is negative. We
already know that every doublet (c, &) lying outside the first quadrant leads to a
nonunitary representation. We learn here that some regions of the first quadrant
also lead to nonunitary representations: As a function of ¢, the roots %, , and
h;, describe two curves that join at ¢ = 1, as illustrated on the leftmost graph
of Fig. 7.1. The determinant det M®(c, k) is negative between these two curves
(shaded area) and thus the associated representations are not unitary. We also learn
from this exercise that the Verma modules associated with points (c, ) lying on
these curves are reducible.

Figure 7.1. The vanishing curves C, s for levels 2, 3 and 4 (from left to right). The curves
at level / — 1 appear also at level /. The values of ,s are indicated near the curves when
they first appear. The black dots are first intersections (defined in the text). The shaded areas
correspond to manifestly nonunitary theories.

There exists a general formula, due to Kac, for the determinant of the Gram
matrix, the Kac determinant:

detMO =o [T th - (P (7.28)

rs>1
rs <l
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where p(I —rs) is the number of partitions of the integer [ —rs and ¢ is a positive
constant independent of /2 or c:

a = ]_[ [(2r)Ss!]m(r's)

rs>1
rs <l

m(r,s) =pl —rs) —p(l —r(s + 1))

The functions 4, s(c) may be expressed in various ways. A common expression is
the following:

(7.29)

1
hr,s(c) = hO + z(ra+ + S(X-)Z
1
ho=—( -1
0= 3 4(c ) (7.30)
J1—c+J25-c¢
ay =
24
Another convenient way to express the function /4, is
1
c=13-6 (t + ;)
(7.31)

h,s(@®) = %(r2 -t + %(32 - 1); - %(rs -1)

Here we have parametrized the central charge in terms of the (complex) number
t. The expression for ¢ as a function of ¢ has two branches:

t=1+1—12{1—ci,/(1—c)(25—c)} (1.32)

Which branch is actually used has no influence on the value of the Kac determinant.
Ifc < 1orc > 25, is real, whereas it lies on the unit circle if 1 < ¢ < 25. In terms
of t,

oy =/t a_ = "}i (7.33)
Yet another way of expressing the roots of the Kac determinant is the following:
== T
) (7.34)
hy () = (m+1r —ms]*—1
dm(m +1)

Again, the expression of m as a function of ¢ has two branches:

1 1 [25=¢
=4 = 7.35
M= WS¢ (7.35)
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The relation between ¢ and »z is not unique:

m+1
= 1 or t= = (7.36)

The expressions (7.28) and (7.30) [or (7.31), or (7.34)] are of central importance
in the theory of minimal models. The great success of conformal field theory in
the study of two-dimensional critical systems is due in great part to the knowledge
of the Kac determinant. The expressions (7.28) and (7.31) for the Kac determinant
will be demonstrated in the next chapter.

In the (c, k) plane, the Kac determinant vanishes along the curves & = h, (c),
called vanishing curves and denoted C, ;. These curves are shown in Fig. 7.1 for
all values of r and s allowed at levels 2, 3, and 4. Note that the Kac formula does
not provide the eigenvalues of the Gram matrix, but only their product. At each
level [ > 1, the number of roots A, of the determinant exceeds the number p(l)
of eigenvalues. As is clear from the Kac determinant formula (7.30), the first null
state in the reducible Verma module V(c, 4, 5) occurs at level ] = rs, since p({ —7s)
vanishes (by definition) if [ < rs.

t

7.2.2. Unitarity of ¢ > 1 Representations

The explicit expressions (7.28)—(7.34) for the Kac determinant allow us to prove
that the representations (¢ > 1,k > 0) are unitary. The proof is done in three
steps: First, we show that the vanishing curves C, s do not cross the region R =
{c > 1,h > 0). In a second step we show that det M® > 0 throughout this region.
Finally we argue that M® is positive definite in R. This last statement is in itself
equivalent to unitarity, but the first two steps will be useful in proving it.

The first step amounts to showing that the curves C,  lie below or on the axis
h = 0if c > 1. An explicit expansion of Eq. (7.30) yields

96

2
1—-c 25 —c¢

h () = — [(r+s)+(r—s) - ] —4 (7.37)

If 1 < ¢ < 25 we see that %, (c) is not a real number unless # = s, in which

case h,s(c) < 0. On the other hand, if ¢ > 25 the choice (7.35) implies that

—1<m<0.Thenm(m +1) <0and

[(m + Dr —msP = [(1 — jmr + |mis]*> > 1 (7.38)

which implies %, ;(rm) < 0 according to Eq. (7.34). Thus, we have shown that all
the curves C, s are located on or below the 2 = 0 axis ifc > 1.

When || is much larger than max({|%, |} for a given level, then det M® =~ o;h1",
for some positive r. Since «; is a positive constant, the Kac determinant is also
positive in this limit. Finally, since none of the roots 4, ; lies in the region R, the
Kac determinant is strictly positive throughout that region. This proves the second

point.
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In order to prove the last point, we must show that the matrix M® is positive
definite for at least one point (c, ) in R. Indeed, since the Kac determinant is
positive, the number of negative eigenvalues of M® must be even. That number
can change only across one of the curves C, ;, and consequently must stay the same
throughout R. It remains to show that this number is 0 at some point in R. To this
end, we use a slightly different basis for the level [ sector, namely the vectors

L_tL_y,...L_g,|h) (ki =ky>---=ky) (7.39)

and we define the length n(a) of a basis vector |a) as the number of operators L
used to define it. For instance, L? | |h2) has length 3 and L_;|/) has length 1. It is
then possible to show that the dominant behavior in £ of inner products is

(@la) = cu 1" [1+ 0] (e > 0)
(@|B) = OB r@+n®)2-1y 4

where |«) and |B8) are two basis states. We sort our basis in order of decreasing
lengths, and consider the submatrices M obtained by keeping only vectors of
length n. Eq. (7.40) implies that these submatrices are positive definite when 4 is
sufﬁc1ently large. In that limit, the eigenvalues of M are those of the submatrices
M®, and thus MO itself is positive definite.2

(7.40)

7.2.3. Unitary ¢ < 1 Representations

We mentioned earlier that the points (c, %) located between the two vanishing
curves on the leftmost graph of Fig. 7.1 correspond to nonunitary representations.
In fact, all the points in the region R : {(c,k)|0 < ¢ < 1,h > 0} are associated
with nonunitary representations, except the following discrete set:

6
c=1-——
m(:n+1l)) - (7.41)
h,;(m)=[m+ r—msl — (l<r<m,l<s<r)

4m(m + 1)

This expression coincides with Eq. (7.34) above, except that 71 is now an integer
greater than or equal to 2, and the integers 7 and s are bounded as indicated. That the
representations defined by Eq. (7.41) are unitary will be proven when discussing
cosets in Chap. 18. In the present context, we could prove only that points (c, )
not included in this discrete set correspond to nonunitary representation, that is,
Eq. (7.41) is a necessary (not yet sufficient) condition for unitarity. In fact, we shall
not give the proof, but simply indicate some of its elements.

It is relatively simple to argue that the points of R that do not lie on a vanishing
curve correspond to nonunitary representations. Consider such a point P. Since
the Kac determinant does not vanish at P, the associated representation does not

2 Tt is not sufficient to argue that M is diagonal in the 27 — oo limit, since off-diagonal terms may
be of the same (or even larger) degree in 4, than some diagonal terms. However, the eigenvalues are
equal to the diagonal elements in that limit. Consider, for instance, the simplest example, M' @ as given

in Eq. (7.23).



§7.3. Overview of Minimal Models 211

contain zero-norm states, but may contain negative-norm states. In order to show
that it does indeed, it is sufficient to demonstrate that the Kac determinant is
negative at P, for some level /. This can be done if there is, at some particular
level 1, a continuous path linking P to the ¢ > 1, > 0 region that crosses a single
vanishing curve such that p(I —rs) is odd. For instance, going back to Fig. 7.1, any
point left of the curve on the level-2 graph can be linked to the ¢ > 1,2 > O region
by a continuous path that crosses either C ; or C,,), and the factors (h — k; 2(c))
and (2 — h, 1 (c)) both appear linearly in the Kac determinant at level 2. Therefore
these points are associated with nonunitary representations. This is true of all the
points lying left of the vanishing curves represented on that figure. The points not
excluded from unitarity at some level by this argument will be excluded at some
higher level. Indeed, atc¢ = 1, the vanishing curve C, s endsup ath, s = ;(r —s)*.
For a given value of r — s, the vanishing curve lies closer and closer to the c = 1
axis as the product s increases. Each time rs increases by one step (for a fixed
value of r — s), a new set of points is excluded from unitarity by this argument at
level [ = rs, since p(I — rs) is then one and no other vanishing curve lies between
C, s and the ¢ = 1 axis. This argument excludes from unitarity all the points in the
region R, except maybe the points lying on the vanishing curves themselves.

Verma modules associated with points on vanishing curves contain null vec-
tors, but may contain negative-norm states as well. Indeed, the second element
of the nonunitarity proof is that points on the vanishing curves also correspond
to nonunitary representations, except the so-called first intersections. Consider a
given vanishing curve, at a given level; the first intersection associated with that
curve, if it exists, is the point intersected by another vanishing curve (at the same
level) that lies closest to the ¢ = 1 axis. At any point on the vanishing curve C, s,
the Verma module has a null vector at level 7s. The characteristic of first intersec-
tions is that this null state is the highest-weight state of a representation that in turn
contains a null state. It can be shown that first intersections are indeed located as
indicated in Eq. (7.41). On Fig. 7.1, all intersections (indicated by dots) are first
intersections, the origin included (it intersects C, ; and Cj,1).

§7.3. Overview of Minimal Models

This section is a constructive introduction to minimal models. The consequences
of the existence of null vectors on correlation functions and the operator algebra are
illustrated with the help of simple examples. The general construction of minimal
models is presented in a heuristic fashion, formal proofs being reported in the next
chapter. Throughout this section we shall work in the holomorphic sector only.

7.3.1. A Simple Example

We study a simple example of reducible Verma module. Consider, in V(c, k), the
following state at level 2:

Ix) = [L—2 + nL2,] |h) (7.42)
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We want to tune 7 and % in such a way that | x) is a null state (or singular vector).
As mentioned earlier, the conditions L;|x) = L,|x) = 0 are sufficient for this,
since it then follows from the Virasoro algebra (7.4) that L,,|x) = O for all n > 3.
By acting on this state with L, and L, and bringing these operators in contact with
|l2) with the help of the algebra (7.4), we find

Lilx) = (3+2n + 4hn)L_,|h)

1 (7.43)
Lalx) = (¢ + 4h + 6hn) )
The conditions imposed on 7 and % for | x) to be singular are thus
I N
12(2h +1) (7.44)
h=— {5 —c+/(c-1)(c-25) }

The latter condition may also be inferred from Eq. (7.30) applied to level-2 states
(cf. Eq. (7.26)), since singular vectors exist if and only if the Kac determinant
vanishes. In the notation of Eq. (7.30), the above constraint on % is simply 2 = h, »
orh = hy; (recall that the first null state in the reducible Verma module V(c, 4, 5)
occurs at level ] = rs).

As discussed in Sect. 6.6.1, to each state of the Verma module one associates
a descendant field, as defined in Eq. (6.148) for the simplest case. In particular,
one associates a null field x(z) with the null state |x). This field is a descendant
of the primary field ¢(z) of conformal dimension /%, but is itself a primary field of
dimension % + 2. Following the discussion of Sect. 6.6.1, the explicit expression
for this null field is

3 82
2(2h + 1) 822

That the null state is orthogonal to the whole Verma module translates, in the field
language, into the vanishing of the correlator ( x(z)X), wherein X is a string of local
fields: X = ¢,(z1) - - - pn(zn). Equivalently, we say that the field x decouples from
the other fields. According to Eq. (6.152), this implies the following differential
equation for the correlator {(¢(z)X):

x(2) = ¢2(z) — #(2) (7.45)

3 2 _
{ﬁ_z - mﬁ_l} (¢(Z)X) =0 (746)

More explicitly, this is

~[ 1 3 hi 3 82
{Z[Z—Zié—z-;_*- (Z—Zi)z] - 2(2h+])527] (P(2)X) =0 (7.47)

i=1

(recall that £_, is equivalent to 9,).
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This differential equation should bring nothing new to our knowledge of the
two-point function. Indeed, if we let X = ¢(w), Eq. (7.47) becomes simply

1 h 3
{z W awe T 2t 1)63} @@pte)) =0 749

which is trivially satisfied, given the general form (5.25) for the two-point function:
(@@pW)) = (z —w)~ 2.

However, the differential equation (7.47) has a nontrivial effect on the three-
point function (5.26). We consider X = ¢,(z;)¢,(z2). The three-point function
is

g(h,hy,hy)
(z—z1 Y2~ (zy =z Yt ~ha (g —zp Y —h—ha
where g(h, k1, hy) is a constant not fixed by global conformal invariance alone,
but by the operator algebra of the theory (cf. Sect. 6.6.3). The differential equation
(7.47) imposes constraints on the conformal dimensions %, /2, and /. It turns out,
after an explicit calculation, that a single independent constraint remains:

2@h+1D)h+2h, —h) =3t —hy+h))h—hy +hy + 1) (7.50)

This equation may be solved explicitly for A,:

(7.49)

(¢(2)1(21)92(22)) =

1 1 2 1 3 1
— - - 2 - - —_—
hy=-+ 3’1 +h + 3Jh + 3hh, 2h + 2h1 + (7.51)

6 16

This solution for /2, is more elegant if we adopt a notation close to that of Eq. (7.30)
and parametrize the conformal dimensions as

1 1
h(a) = ho + Z“Z hy = 2—4(0 -1) (7.52)

If a; and o, correspond respectively to ; and h,, we then have the following
solutions:

ay = o) oy (h =hy))

o =a; ta_ (h=h2)
Thus, the existence of a null vector at level 2 imposes additional constraints
on the three-point functions, which are equivalent to constraints imposed on the

operator algebra. If we denote by ¢(,) the primary field of dimension /(c) these
constraints on the operator algebra take the following symbolic form:

(7.53)

9@2,1) X Pe) = Pa—a,) + Patas)
¢(1;2) X ¢(o:) = ¢(u—a_) + ¢(ot+ot_)

The notation introduced here requires some explanation. By the above, we mean
that the operator product expansion of ¢, ;) with ¢, (or of fields belonging to their
families) may contain terms belonging only to the conformal families of ¢(y—q,)
and P(a+q,)- The symbol x stands for an operator product expansion, and @)
stands not for the primary field only, but for its entire conformal family. Generally

(7.54)



214 7. Minimal Models I

speaking, we call fusion the process of taking the short-distance product of two
local fields. The conditions under which a given conformal family occurs in the
short-distance product of two conformal fields are called the fusion rules of the
theory. These may be thought of as selection rules for the conformal dimensions
of fields appearing in a three-point correlator. We say, for instance, that the fusion
of two conformal fields ¢; and ¢, onto a third field ¢; is possible if the three-
point function (¢;$2¢3) is not zero. This topic will be examined in more detail in
Sect. 8.4. It is implicit that there are coefficients multiplying the families on the
r.h.s. of Eq. (7.54): They are the structure constants of the operator algebra. Not
only are they not specified here, but they may vanish.>

We finally point out the possibility of having a null state at level one. The
only state at this level is L_;|k), and its norm vanishes only if » = h;; = 0
(cf. Eq. (7.26)). The corresponding null field is 3,¢(;,1)(z), and the differential
equation satisfied by the correlator (¢ 1)(2)X) is

d
% (Pa,n(@)X) =0 (7.55)

Because the correlator is independent of z, the only conclusion to be drawn is
that ¢ 1) is a constant, since it is, by hypothesis, a purely holomorphic field. We
call ¢, 1) the identity field or the identity operator (sometimes denoted by I). The
obvious consequence of the above differential equation on three-point functions
involving ¢ ) is the trivial operator algebra:

D1,1) X D) = D) (7.56)

Incidently, the energy-momentum tensor 7(z) is a descendant of the identity field,
according to Eq. (6.148): T(z) = 12,

7.3.2. Truncation of the Operator Algebra

The constraint (7.54) on the operator algebra coming from the existence of a null
vector at level 2 may be generalized. If 4 = A, 5, then there exists a null vector
at level rs, as follows from the Kac determinant formula (7.28). This null vector
imposes a similar constraint on the operator algebra:

k=r—1 I=s—1
Prs) X b = D D Platka,tia) (7.57)
k=1-r I=1-s

k+r=1mod 2 I+s=1 mod 2

(The summation indices are incremented by 2). In other words, k takes only even
values if 7 is odd and vice versa. We shall not prove this statement here. For the
moment, we simply draw its consequences.

3 Of course, when writing the complete fusion rules later on, none of the implicit coefficients will
vanish.
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The first consequence of Eq. (7.57) is that the conformal families [¢(, )] asso-
ciated with reducible modules form a closed set under the operator algebra. For
instance, we see immediately that

$1.2) X Prs) = Pr,s—1) + Prs+1)

(7.58)
P21 X Prs) = P-15) + De+1,5)

This means that the fields ¢(; 2) and ¢(3,;) act as ladder operators in the operator
algebra. That the families [¢(, )] form a closed set under the operator algebra is a
profound dynamical statement, which holds only for certain values of ¢ and certain
highest-weight representations associated with those values. Again, we stress that
the coefficients implicit on the r.h.s. of (7.57) may be zero; the above notation
simply means that no other conformal family, other that those shown, may appear
in the operator product expansion. Indeed, many conformal families can be shown
not to occur in the OPE, by using the commutativity of the operator algebra. For
instance, we write

931,2) X $2,1) = 2,0 + P2.2)

(7.59)
P X ¢a,2) = b2 + d22)

Since the two OPEs are equivalent, this shows that ¢, 0y and ¢ ) are excluded
from both (their coefficients vanish). Thus, in this example, the operator algebra
truncates to

ba,2) X P21 = d2,2) (7.60)
This truncation phenomenon may be generalized, with the following result:

k=r+r;—1 I=s)+4s;—1

S5y X Py = D > s (7.61)
k=1+|ry—r,| I=14]|s,—s3|

k+ry+r;=1 mod 2 l+s,+s;=1 mod 2
Here again, the summation variables k and / are incremented by 2. The truncation
is such that only the families ¢, ) with positive values of 7 and s occur on the
r.h.s. of (7.61).

7.3.3. Minimal Models

For a generic value of the central charge c, the truncated operator algebra (7.61)
implies that an infinite number of conformal families are present in the theory,
since families [¢(, 5)] with 7, s arbitrary large are generated by applying repeatedly
the fusion rules (7.61). In order to understand the situation graphically, we consider
the “diagram of dimensions” of Fig. 7.2. The points (7, s) in the first quadrant label
the various conformal dimensions appearing in the Kac formula. The dotted line
has a slope tanf = —a,/x_, fixed by the central charge c. If 8 is the Cartesian
distance between a point (7, s) and the dotted line, it can easily be shown that (cf.
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Ex. 7.6)
1
hys = ho + Zﬁz(ai +a?) (7.62)

If the slope tan @ is irrational, it will never go through any integer point (7, s),
although some of these points will be arbitrarily close to it. Thus, given the fusion
rules (7.61), there will be an infinite number of distinct primary fields in the theory,
and moreover, an infinity of them will have negative conformal dimensions, since
hy <0ifc < 1.
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Figure 7.2. The “diagram of dimensions” for a generic value of c. The points on the
first quadrant are associated with the conformal dimensions /4, of the Kac formula. The
conformal dimension is related by Eq. (7.62) to the distance between a point (7, s) and the
dashed line.

However, if the slope tan € is rational, that is, if there exist two coprime integers
p and p’ such that
poe_ +pay =0, (7.63)

the dotted line of Fig. (7.2) goes through the point (p’, p) and the conformal weights
h, s do not form a dense set. Indeed, we then have the periodicity property:

hr,s = hr+p’ S+p (7.64)
In terms of these two integers, the central charge and the Kac formula become
)2
o1 @EY
PP (7.65)

| _@r—psY-@-p»
” 4pp’
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If ¢ < 1, the parameter ¢ of Eq. (7.31) is real and positive, and equal to ¢ =
—ay/a_ = plp’. The two integers p and p’ may therefore be taken as positive.
Because of the symmetry ¢ — 1/t of this parametrization, one may also assume

that p > p” without loss of generality. Note also the obvious symmetry property
hes =hy_rp_s (7.66)
From Egq. (7.65) we easily demonstrate the following identities:

kr,s +rs= hp’+r,p—s = hp’—r,p+s

hr,s + (P’ - 7’)({7 - S) = hr,Zp—s = h2p'—r,s

This means that the null vector at level s contained in the Verma module V, ¢
is itself the highest weight of a degenerate Verma module, since it fits in the Kac
formula! Moreover, the module V/ ; also contains a null vector at level (p’ —r)(p —
s). These two null vectors give rise to submodules that also contain null vectors of
the same form, and so on (this is illustrated in Fig. 8.1 of Chap. 8). Thus, there is
an infinite number of null vectors within the Verma module V, ; if ¢ is of the form
(7.65). Each null vector has its own differential equation acting as a constraint on
the correlators and the operator algebra. The net effect is an additional truncation
of the operator algebra, yielding a finite set of conformal families, which closes
under fusion. The corresponding finite set of conformal weights /4, ; is delimited
by

(7.67)

1<r<p and 1<s<p (7.68)

This rectangle in the (7, s) plane is called the Kac table. The symmetry k4, =
hy_r p-s makes half of this rectangle redundant:

¢(r,s) = <i’(p’ —r,p—s) @ 69)

There remain (p — 1)(p” — 1)/2 distinct fields in the theory.

The conformal theories defined by the conditions (7.65) and (7.68) are called
minimal models, since they contain a finite number of local fields with well-defined
scaling behavior. The truncated fusion rules existing between these fields are

kmax !max
bos) X ommy = D > ¢un (7.70)
k=1+jr—-m| 1=1+|s—n|

k+r+m=1mod 2 k+s+n=1 mod 2
wherein
kmor = min(r+m —1,2p' —1—r—m)

. (7.71)
Lpgx = min(s+n—-1,2p—1—-s—n)

and k and [ are incremented by 2. This expression will be proven in the next chapter.
Of course, the above discussion was restricted to the holomorphic sector. A

physical theory is in fact constructed out of tensor products of holomorphic and

antiholomorphic modules. A generic Hilbert space has the following form

H = @ Mlc,h) ® M(c,h) (1.72)
hh
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The question of how to combine the components of a minimal model into tensor
products will be addressed in detail in Chap. 10, in which conformal field theories
on a torus will be studied. However, a particularly simple solution is to associate to
each holomorphic module M(c, 4, ;) the corresponding antiholomorphic module
M(c, h,;). The Hilbert space of the theory is then

H= P Mc,hs)®Mc,hys) (1.73)

l<r<p’

1<s<p
The resulting theory is termed diagonal, since the two factors of each tensor product
are identical. We shall symbolically denote a minimal model associated with the
pair (p, p’) by M(p, p’) and, as mentioned above, will adopt the conventionp > p’.

7.3.4. Unitary Minimal Models

As seen in Sect. 7.2.1, the constraint of unitarity for a conformal field theory
requires that there be no states of negative norm. We have seen that a necessary
condition for the unitarity of a representation of the Virasoro algebra with highest
weight & is & > 0. Therefore, a unitary conformal field theory contains only
primary fields with nonnegative conformal dimensions. The physical implications
of this property are clear: The two-point correlation functions of primary fields
(except for the identity operator) have to fall off with distance, instead of exploding
at large distances:

(1,72, D), 5(0,0)) = (7.74)

72z

This is the case for the critical Ising model, to be discussed below: The spin-spin
correlator decreases when the separation of the spins increases. That such a behav-
ior is to be expected from any physical spin system with short-range interactions
is not quite true in general as we shall see in next section, with the (nonunitary)
example of the Yang—ILee edge singularity. It seems that the statistical models of
so-called hard objects (i.e., of bulky objects that cannot overlap, subject to simple
enough interactions) always admit critical continuum descriptions with nonunitary
conformal field theories. Moreover, many other physical systems such as polymers
in two dimensions have phases described by nonunitary minimal models. The
unitarity condition should therefore not be confused with a physical condition.

We now examine the consequence of the unitarity condition for the ¢ < 1 mini-
mal theories discussed above. Recall the form of admissible conformal dimensions
(7.65)

b o er—ps;-@-p7
” 4pp’

withl <7 <p'—1and1 <s < p — 1. The integers p and p’ being coprime,
Bezout’s lemma states that there exists a couple of integers (7o, 5o) in the above

(7.75)
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range such that

pro—p'so=1 (7.76)
Accordingly, the corresponding dimension
1— )2
gy = L@ P 7.77)
4pp
is always negative, except if [p — p’| = 1, in which case it vanishes. It turns

out that the primary field with smallest dimension (7.77) is always present in the
minimal theories. As we shall see in the study of modular invariance (Chap. 10),
the primary field with smallest dimension governs the leading anomalous behavior
of the free energy of the system through finite size effects. The minimal models can
be unitary only if [p —p’| = 1. In this case, k,, 5, = h1,1 = 0—thatis, ¢, s,) is the
identity—and the leading finite size effect in the free energy is governed only by the
central charge of the theory. That these models are indeed unitary will be proven in
Chap. 18 by means of the coset construction; this will provide an explicit unitary
realization of each minimal model with [p — p’| = 1. With no loss of generality,
we label the unitary minimal theories withc < 1 by (p = m + 1,p’ = m),
m = 2,3, 4, .... We note that the list of unitary representations given in Eq. (7.41)
coincides indeed with the list of highest weights /4, ; of unitary minimal models.

§7.4. Examples
7.4.1. The Yang-Lee Singularity

As mentioned in Sect. 3.2.1, the partition function of a lattice theory, such as the
Ising model, is an analytic function of the parameters of the model if the number
N of sites is finite. Nonanalytic behavior, hence a phase transition, can occur only
in the thermodynamic limit (N — o00). For definiteness, we consider the Ising
model at temperature T, in an external field H. The configuration energy is given
by Eq. (3.6). As a function of H, the zeros of the partition function cannot lie on
the real H-axis for N finite, since Z is then a finite sum of positive terms. These
zeros occur at complex values of H and at their complex conjugates. In a generic
ferromagnetic spin model, they tend to accumulate on various arcs on the complex
plane as N — oo. In the Ising model, it has been shown that they accumulate on
the imaginary axis H = i, and the free-energy F = InZ may then be expressed
in terms of the density p(h, T) of zeros on the imaginary axis:

F(h) = f * dx plx, T In(h — ix) (1.78)

The magnetization M is then

oF o ox,T)
M= —_— =
oH _wdxH—ix

(7.79)
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Below the critical temperature (T’ < T.), the distribution of zeros extends up to
the real axis (0(0, T) # 0) and the magnetization is discontinuous as H crosses
the origin along the real axis: There is a first-order phase transition. At T = T,
0(0, T) vanishes and this transition becomes continuous.* In the paramagnetic
phase (T > T.), the distribution p(h, T) stops at a critical value §.(7) on either
side of the real axis, the so-called Yang-Lee edge. We now suppose that, near b,
the density of zeros has a power-law behavior:’

p(h,T) = (h — b)’ (7.80)

It is then a simple matter to show that the magnetization M(ih) behaves also like
(h — b.)°. We may assert, using scaling arguments identical to those explained in
Sect. 3.2.2, that the exponent ¢ is related to the exponent 7 of the critical correlator
by the relation (3.49):

1 d-2+1 n
§ d+2-n 4-—7q
Here, however, the correlator with exponent 7 is not the correlator of the Ising spin
at the critical point (2 = 0, T,.), but that of another scaling field, yet unspecified,
describing the fluctuations of the model in an imaginary field close to 22 = ih,: As
h — ih,, the correlation length diverges.

It turns out that the relevant Landau-Ginzburg theory® contains a term in i ®3:

o =

d=2) (7.81)

Ly = %(au<p)2 +i(h — h)® + iy®®.

This model is, of course, not unitary, because of the imaginary magnetic field,
which translates into an imaginary coupling of the Landau-Ginzburg effective
field theory.

In trying to identify this critical point with one of the minimal models of confor-
mal field theory, we must keep in mind the following: First, the model is nonunitary.
Second, as shown by renormalization-group analyses, the composite field ®? is
redundant, which means that the operator product ®¢ does not give rise to any
new scaling field. In other words,

OxP=01+.

The only minimal model with such simple behavior is M(5, 2), with central charge
¢ = —22/5. Its operator content is very simple, with only two primary fields: ¢ 1)
(of dimension 0) and ¢(; ») = ¢ 3) (of dimension —1/5). These are, of course, the
chiral components of the physical operators I (the identity, of dimensions (0, 0))
and & (dimensions (—1/5, —1/5)). The scaling dimension of the field ® is thus

4 It is at this critical point (H = 0,T,) that the Ising model is studied within the formalism of
conformal field theory (see the next section).

5 In this section we adopt the standard notation & for the critical exponent, not to be confused with
the spin operator of the Ising model.

6 By Landau-Ginzburg theory, we mean a continuous, Lagrangian description of the statistical model.
See Sect. 7.4.7.
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= —2/5, and the corresponding exponent 7 is 2A = —4/5. According to the
relation (7.81), the critical exponent o is then equal to —1/6, a result entirely
compatible with the outcome of high-temperature series analyses, which yield
o = —0.163 £ 0.003.

7.4.2. The Ising Model

The simplest nontrivial unitary minimal model, M(4,3), describes the critical
Ising model. Since Chap. 12 is entirely dedicated to the two-dimensional Ising
model, we shall not explain in detail here the precise correspondence between this
lattice model and the minimal model M (4, 3). We simply state the results.

In addition to the identity operator, there are two local scaling operators in the
critical Ising model: the Ising spin o (a continuum version of the lattice spin o;)
and the energy density ¢ (a continuum version of the interaction energy 0;0;+1).
The latter is also called the thermal operator, since it is coupled to the inverse
temperature f in the partition function. The exponents 7 and v are defined by the
critical behavior of the following correlators (d = 2):

1 1 1 1

(0i0i4n) = @241 = np (€itiyn) = T = (7.82)

It is known, from the exact solution, that n = 1/4 and v = 1. Therefore, assuming
that the scaling fields o and ¢ have no spin (2 = %), it follows that their conformal
dimensions are

1 1
16’ 16
The three fields making up the holomorphic part of the theory have therefore con-
formal dimensions O, 11—6 ,and % This simple operator content leads to an identifica-

tion with the minimal model M (4, 3), with central chargec = % . The operator-field
correspondence is

Ry = (7, 72) B =(5.5) 783)

I < ¢an or ¢e3
O ¢(2,2) or ¢(1,2) (7.84)
€ = ¢ Or @3
The associated diagram of dimensions is illustrated on Fig. 7.3.
The fusion rules following from this identification with M(4,3) are the
following (cf. Eq. (7.70)):
oxo=I+¢
oOXE=0O (7.85)
exe=1

Note that these simple fusion rules are compatible with the Z, symmetry 0; — —o;
of the Ising model.
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Figure 7.3. The diagram of dimensions for the minimal model M, 3), associated with the
Ising model. There are six weights in the Kac table, but those below the dashed line are
simply a repetition of those above, which correspond to the three scaling fields I, o and €.

We know of another unitary conformal field theory with ¢ = %: the free Ma-
jorana fermion ¥ (cf. Sect. 5.3.2 and Sect. 6.4). The two theories must be equiv-
alent, and this equivalence is at the origin of Onsager’s exact solution of the two-
dimensional Ising model. The energy density, as a thermal operator, is readily
identified with the fermion mass term ¥ (recall that /2y, = hy = %). However,
the expression of the Ising spin o; in terms of the fermion field y is nonlocal. The
questions of locality and mutual locality of operators are well illustrated in this
model, and will be discussed in more detail in Chap. 12.

7.4.3. The Tricritical Ising Model

Following the Ising model, the next simplest unitary minimal model is M(5, 4),
with central charge ¢ = T76' The associated diagram of dimensions appears in

Fig. 7.4. There are six different scaling fields, listed in Table 7.2.

Table 7.2. List of all scaling fields of the minimal model M(5, 4), which describes
the tricritical point of the dilute Ising model.

(r,s) Dimension Symbol Meaning
(1,1) or (3,4 0 I identity
(1,2) or (3,3) Tl(—) e thermal op.
(1,3) or (3,2 % g thermal op.
(1,49 or (3,1) 2 g’ thermal op.
2,2) or (2,3) = o spin
(2,4) or (2,1) = o’ spin
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Figure 7.4. The diagram of dimensions for the minimal model M;s 4, associated with the
tricritical Ising model. There are six different weights in the Kac table.

The lattice model associated with this minimal conformal field theory is the
tricritical Ising model, or more properly said, the dilute Ising model at its tricritical
fixed point. This model is defined like an ordinary Ising model, except that vacant
sites are allowed and the number of spins on the lattice fluctuates. The configuration
energy is

Efo;,t;] = — Ztitj(K + 86,,0;) — 1 Z ti (7.86)
(i) i

where the variable t; = o7 is O if site i is vacant and 1 otherwise. K is the
energy of a pair of unlike spins, and K + 1 that of a pair of like spins. The
chemical potential u specifies the average number of occupied sites on the lattice.
At some value of (8, K, u), there is a critical point at which three phases meet and
coexist critically, hence the epithet tricritical. In addition to the identity operator,
five scaling operators emerge at this tricritical point: three energy-like operators
corresponding to the three terms of the configuration energy and two spin-like
operators. The fusion rules of these fields are listed in Table 7.3.

The tricritical Ising model is also one of the few physically relevant theories
endowed with supersymmetry. A detailed discussion of supersymmetric confor-
mal field theories does not belong to this chapter, but we nevertheless mention that
a supersymmetric generalization of conformal transformations exists (in a super-
space formulation) and leads to a supersymmetric generalization of the Virasoro
algebra: the so-called superconformal or super-Virasoro algebra:

1
[L,.,L,] = (m — n)Lm+n + '1—20(m3 - m)8m+n

1 1
{Gm,Gn} =2Lpin + §C(m2 - Z)‘sm-(-n (7.87)

1
[Lin, Gn] = (Em - n)Gm+n
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Table 7.3. Nontrivial fusion
rules in the tricritical Ising
model M(5, 4). It is implicit
here that the symbol used for
the fields stand in fact for the
associated conformal families.

Exe
exé
exé’
g xe
8Ix€II
ellxsl/
EXO
exo
g xo
g xo
&' xo
SIIXO,I
oxX0o
oxo
o xo

]

[

I+¢
e+é&"
8,
I+¢&
£

I
o+o
o
o+o
g

g

o’
I+e+é&+&"
e+¢
I[ + 6‘”

Table 7.4. List of all scaling fields of the minimal superconformal model
m = 3, associated with the tricritical Ising model. Superpartners are
indicated in the Neveu-Schwarz sector.

(r,s) Dimension Symbol Sector
(1,2) or (2,4 0 [, " NS
(1,3) or (2,2 o [e, €] NS
(1,2) or (2,3) & o R
(1, or (2,1) % o’ R

In the above, the modes G,,, are the Fourier components of the superpartner G(z) of
the energy-momentum tensor. This anticommuting field has conformal dimension
% and corresponds to ¢, 4 (or ¢ 1)) in Table 7.2.

Depending on the boundary conditions, the index of G, is either half-integral, in
which case the above algebra is known as the Neveu-Schwarz algebra, or integral,
in which case it is known as the Ramond algebra. It is possible to identify a discrete
series of unitary, minimal superconformal models, indexed by an integer m, with
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the following dimensions:

[rm+2) - sm]2 —4

hrs = 8m(m +2) + % [t =]
(Q<r<m,l<s<m+2) (7.88)
3 12
“T2 mm+2)

Of course, superconformal models are also conformal; however, they possess extra
symmetry. A model that is minimal with respect to the superconformal algebra need
not be minimal with respect to the plain Virasoro algebra: As is well-known in
group theory, when an irreducible representation of some algebra is restricted to a
subalgebra, it is generally no longer irreducible. From the relation (7.88), we see
that the case m = 3 is the only nontrivial model that is both Virasoro and super-
Virasoro minimal. This ¢ = 1—70 model is precisely the tricritical Ising model. The
Neveu-Schwarz sector of the theory contains the fields I, ¢, ¢ and ¢”, all even under
spin reversal. In terms of superconformal representations, £” is a descendant of the
identity, exactly like 7', and £’ is a descendant of ¢. In the Neveu-Schwarz sector,
every field has generically a superpartner with a conformal dimension differing
by %, and the pair forms what is called a superfield. In the case at hand, ¢ and &’
are superpartners, like 7" and G. The fusion algebra of these four fields closes onto
itself, as may be verified in Table 7.3. The Ramond sector contains the fields o
and o’, which are odd under spin reversal. The field assignments in both sectors
according to Eq. (7.88) are indicated on Table 7.4.

7.4.4. The Three-State Potts Model

The next model on the minimal unitary list is M(6, 5), with central charge ¢ = ‘5-'
and ten different scaling fields. It turns out that a subset of fields in this model
describes the critical point of the three-state Potts model.

The Q-state Potts model is defined in terms of a spin variable o; taking Q
different values. The configuration energy is

Eloil=— 00 (7.89)
(if)
In other words, a nearest-neighbor pair of like spins carries an energy —1 and all
other pairs carry no energy. The case Q = 2 is equivalent to the Ising model. A
related model is the Q-state clock model, defined in terms of a spin variable taking
its values among the Q-th roots of unity ¥, where Qg € 2xZ. Its configuration
energy is usually defined as

E[gi) = — ) cos(gi — 9)) (7.90)

(i)
The clock model has a Zp symmetry under ¢; — ez”i’QqJ; and a spin-reversal
symmetry ¢; — —¢;, whereas the Potts model has a permutation symmetry Sg of
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the spin labels. Both models are equivalent in the case Q = 3, since the clock model
Hamiltonian may then be rewritten as follows, modulo additive and multiplicative
constants:

2 1
Elpi] = (Z}; 3 [cos«o, o)+ 2]
(7.91)
== Z 8 &
(ij)

The Potts model has a self-duality point at a temperature 1/8. given by e =

1 + 4/O. For Q < 4 this corresponds to a continuous transition, whereas the

transition is of first order if Q > 4.

From Baxter’s exact solution of the three-state Potts model at the critical point,
one finds the critical exponents v = 5/6 and n = 4/15. It follows that the real field
cos ¢ = 1(o + &) must have conformal weights (%, /) = (35, %), and the energy
density ¢ has scaling dimension (%, %). These two fields correspond respectively
to ¢3,3) and ¢z ;) of the minimal model M(6, 5). However, not all scaling fields
allowed in this minimal model] are actually present in the Potts model. There exists
a subset of fields that closes under the fusion rules and forms a minimal, consistent
theory. These fields are listed in Table 7.5, and the nontrivial fusion rules appear
in Table 7.6. That a subset of the Kac table may in itself form a consistent theory
is an unexpected feature; the reasons for this will be discussed in Chap. 10.

Table 7.5. Scaling fields of the minimal model M(6, 5) included in the three-state
Potts model.

(r,s) Dimension Symbol Meaning
(1,1) or (4,5 0 I identity
2,1) or (3,5 % & thermal op.
(3,1) or (2,5 1 X
4,1) or (1,5) 3 Y
(3,3) or (2,3) 1—15- o spin
(4,3) or (1,3) z z

Of course, the physical operators occurring in the Potts model are products of
holomorphic and antiholomorphic fields; we denote them by @, ;, labeling them
by their conformal dimensions. The physical operators alluded to in Table 7.5 are
in fact the diagonal combinations @54 (2 = h). In addition to these diagonal
(or spinless) operators, the Potts model contains also the following operators with
spin:

Do 3 ®s3 ¢ [ (7.92)

[VINY
wiN
wiS
win
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Table 7.6. Nontrivial fusion rules of the
fields for the fields of the minimal model
M(6, 5) included in the three-state Potts
model. It is implicit here that the symbol
used for the fields stand in fact for the
associated conformal families.

exe = I+X
exo = o+2
exX = eg+4Y
exY =X

ex”Z = o

oxo = I+e+o0+X+Y+2Z
oxX = o+2
oxY = o

oxZ = eg+o0+X
XxX = I+X
XxY = ¢

XxZ = o
YxY =1

YxZ = Z

ZxZ = 1+Y+2Z

The presence in Table 7.5 of a field of conformal dimension 3 indicates the
presence of an additional symmetry for which this field is the current, much like
the field of dimension % in the tricritical Ising model signals the presence of
supersymmetry. This additional symmetry is embodied in an infinite-dimensional
algebra called the W3 algebra, which contains the Virasoro algebra as a subset. It
is possible to construct a sequence of “minimal models” with representations of
this algebra, of which the three-state Potts model is the simplest realization, and
the only one that is at the same time a minimal model of the Virasoro algebra.

However, we shall not study the W3 algebra in this volume.

7.4.5. RSOS Models

A correspondence has been suggested, based on known critical exponents, between
the unitary minimal models M(m + 1,m) (m > 3) and a sequence of exactly
solved statistical models, the RSOS models. A solid-on-solid (SOS) model is
defined by associating to each lattice site an integer height I;, constrained by the
condition |I; —[;| = 1 between nearest-neighbor sites. A Boltzmann weight is then
associated with each plaquette according to the sequence of heights around the
plaquette. In the restricted solid-on-solid (RSOS) model, the heights /; cannot take
all integer values, but only those in the range 1 < ; < g — 1, where g is an integer
characterizing the model (g > 4). Let [, I3, I5, and I, be the heights associated
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with the four corners of a plaquette, circled clockwise. Then the Boltzmann weight
associated with the plaquette is defined as

W, 15, 13, 1) = wl)ww(lw(la)y(ly, 13)z(L2, 1s) (7.93)

where the on-site weight w(l) satisfies the relation w(l) = w(g — [) and the
next-nearest neighbor interactions y and z are defined as

1 if 1£7
y(z,l')={ o
V=Yg if U=l

1 if l # l, ( )

Z=2g if =1

Thus, the number of parameters in this model is (3g — 8)/2 (g even) or (3g — 9)/2
(g odd).

The constraint |/; — /;| = 1 naturally divides the lattice into two sublattices, on
which the height variables are odd and even, respectively. If q is even, it is possible
to define a spin variable s; = f;(q — 2I;), with integer spins on one sublattice and
half-integer spins on the other. The parameters z; and y; then represent nearest-
neighbor interactions between spins on each sublattice. The simplest case (g = 4)
is then equivalent to the Ising model.

The RSOS model has been solved exactly in a two-dimensional submanifold of
the full parameter space, and four different regimes have been identified, denoted
I'to IV. In regime III, ¢ — 2 phases are in coexistence, whereas in regime IV, g — 3
phases are in coexistence. Regimes III and IV meet at a multicritical point, which,
in the Ising case (@ = 4) is nothing but the ordinary critical point between the
ordered and the disordered phases. A sequence of g — 3 order parameters have
been constructed for this transition, with exponents

k+1)2—1
= (7.95
Br 8@ -1 )
The heat capacity exponent « has also been calculated:
a=2-q/2 (7.96)

The scaling laws of Table 3.2 allow us to express the scaling dimension A =
h+h= %n in terms of o and 8. We thus find a sequence of conformal dimensions

(assuming & = h):

o G121
T @ -

These coincide with the dimensions %444, of the unitary minimal models
M(q,q — 1), as readily checked from the Kac formula. This is the correspon-
dence between the. multicritical points of the RSOS models and the sequence of.
unitary minimal models.

(1<k=<g-3,9=4 (7.97)
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7.4.6. The O(n) Model
The O(n) model is a generalization of the Ising model in which the spin degree

the model is more tractable on a trivalent lattice, and we shall consider the O(n)
model on the honeycomb lattice of Fig. 7.5. The configuration energy of the model
reads

E(S) = -J) S5 (7.98)
(if)
where (ij) denote neighboring sites of the lattice. The partition function is an
integral

Z, = / ]__[ds,- e PEIS] (7.99)
with the following integration rules for the vector components:
f ds® (§%) = 0
/ ds® (§%)? =1 (7.100)
/ ds® (5 = 0
With these rules, we thus have
/d332 =n (7.101)

.......

Figure 7.5. A typical loop configuration of the O(n) model on the honeycomb lattice.

The study of the model is greatly simplified if we consider, instead of (7.99),
the slightly modified partition function

2,8 = [[]ds.J]a+&s.s) (7.102)
i (ij)
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Strictly speaking, the two partition functions Z,, and Z, coincide only in the large
K = BJ limit, but both systems are expected to belong to the same universality
class. We shall use the partition function (7.102) in the remainder of this section.
The partition function (7.102) of the O(12) model may be perturbatively expanded
in powers of K as a sum over loop configurations on the lattice. Indeed, due to
the integration rules (7.100), for the integral of a product of spin components to
be nonzero, the latter must be taken along a set of closed nonintersecting loops of
neighboring sites of the lattice. Moreover, each such loop receives a contribution
from the integration over the spin components, and K per loop bond. For instance,
the typical loop configuration of Fig. 7.5 contributes for 72K ?2. We may therefore
rewrite

Z,(K) = Y nNt KN (7.103)

loops

where N and Np denote, respectively, the numbers of loops and of bonds in
the configuration. The expression (7.103) for the partition function of the O(#2)
model enables us to analytically continue its definition to any real value of #.
The model can be further explored by transforming it into a solid-on-solid (SOS)
model. In the latter, the degree of freedom is a height variable [/ at the center of
each hexagon of the lattice, for which the previous loops are domain walls. More
precisely, orienting the loops, the height [ increases (resp. decreases) by a fixed
amount Jp across a wall pointing to the right (resp. left). In the SOS language,
the partition function Z,, is rewritten as a sum over oriented loops. The weights
in Eq. (7.103) can be reproduced by attaching a weight K per oriented bond of
loop, and a weight e’ (resp. e ™) per right turn (resp. left turn) along the loop
at each loop vertex. Summing over the two orientations of each loop gives a net
contribution of 2 cos6v per loop (a loop on the honeycomb lattice always has
a difference n; — n, = +6 between its numbers of left and right turns), which
reproduces the factor » provided we take

n = 2cos6v (7.104)
This transformation is instrumental in the study of critical properties of the model.
Itcan indeed be shown that the O(n) model undergoes a continuous phase transition
at the critical value
K =K@ = 2++v2—-n)"" forne[-2,2] (7.105)
The continuum limit of the critical model is in turn described for
n = —2cosn(p/p’), 1<plp'<2 (7.106)
by the minimal model (p, p’). More generally, for

n = —2cosng, gell,2] (7.107)
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the central charge of the conformal theory describing the continuum limit of the
critical O(71) model is

-1
g

Forn = 1 (g = 4/3), we recover the central charge ¢; = 1/2 of the Ising model.
Forn =2 (g = 1), the model is called the XY model and is described at criticality
(Kosterlitz-Thouless point) by a conformal theory of central charge ¢, = 1. When
n = 0 (g = 3/2), the partition function is simply

chn =1-6 (7.108)

Zy, =1 (7.109)

Although trivial looking, the model captures the physics of polymers in two di-
mensions. For instance, nontrivial information such as multipolymer correlations,
which exhibit nontrivial scaling behavior, may be obtained by differentiating the
critical partition function with respect to n before taking n — 0. The simplest
example is the configuration sum of a single polymer, which reads (see Ex. 10.24)

3
—Z 7.110
| (7.110)

7.4.7. Effective Landau-Ginzburg Description of Unitary
Minimal Models

Most conformal theories have no path-integral formulation based on an action.
For a special class of minimal theories, however, there exists a simple effective
Lagrangian description, which we now present.

This class is referred to as the (m + 1,72) diagonal unitary minimal models
with central charge

6

]l - =2,3,4,... 7.111
mm+1) m ( )

Cm =

and the primary fields have dimensions

ho = (m+Dr—ms)? -1
T 4mm +1)

The epithet diagonal means that the primary fields of the theory are built out of

identical left and right Virasoro representations, which cover the entirety of the

Kac table modulo the equivalence (r,s) < (m + 1 — r,m — s). In other words,
the primary fields of a diagonal theory are the spinless combinations

D;5)(2,2) = 9452 @ ¢ () (7.113)

l1<r<m-1,1<s<m (7.112)

withh=h =h,;.
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The fusion rules (7.70) for the left part of Virasoro minimal theories extend
to the diagonal association of identical left and right Virasoro representations. By
setting p = m + 1 and p’ = m, we can write

min (n+r—1,2m+1—n—r) min(k+s—1,2m—1-k—s)

D(r5) X Py = > > Don (1114
k=|n—r|+1 I=|k—s|+1
k—n+r—1 even I—k+s—1 even

Eq. (7.114) differs from Eq. (7.70) in that it describes the fusions of the complete
left-right association of Virasoro representations, instead of just the left represen-
tations of the Virasoro algebra. Nevertheless, the fusions (7.114) are generated
by repeated fusions of X = &(;;) and Y = ®(; . This provides an effective
description of the fusion rules (7.114) by a theory of two fields X and Y. A La-
grangian description of the interactions between these two fields would offer an
alternative description of the minimal theories, allowing, in particular, to compute
correlation functions involving X and Y, directly from the action. Unfortunately,
no such description has been found so far. The only known effective description
contains one self-interacting field @, corresponding to ® = @, 5). It is governed
by a Lagrangian of the form

L= /dzz [%(a¢)2+V(¢)} . (7.115)

This Lagrangian is an effective Landau-Ginzburg Lagrangian, in which the field ¢
stands for the order parameter of some physical system (especially in the continuum
formulations of the critical phases of discrete interacting spin systems, such as the
archetypical Ising model). The potential term is some general polynomial V(®),
whose extrema correspond to the various critical phases of the system. The potential
is usually chosen to be invariant under the reflection & — —&. For a polynomial
potential V(®) of degree 2(m — 1), this ensures the existence of 72 — 1 minima
separated by m — 2 maxima. Several critical phases of the system can coexist if
the corresponding extrema coincide. The most critical potential is therefore just a
monomial of the form

Vin(®) = p2m=D (7.116)

As we shall show, the fusion rules of the (#2+1, m) diagonal unitary minimal model
are effectively described by the multicritical Landau-Ginzburg theory (7.115),
with potential V = V,,,(®) as above (we shall denote by L,, the corresponding
Lagrangian). The physical implication of this result is deep: The diagonal unitary
minimal models (1 + 1, 72) can be viewed as the multicritical points of a system
described by one scalar field. Clearly, a single scalar field description simplifies
substantially the computation of the correlators in the theory, releasing it from
all the sophistication (differential equations from singular vectors) encountered
so far. Incidentally, Chap. 9 is devoted to another scalar-field representation of
minimal conformal field theories—the Coulomb-gas formalism—which allows for
an actual computation of correlation functions of conformal fields. However, in that
approach, one somehow loses track of the underlying physics which, by contrast,
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is quite transparent in the present Landau-Ginzburg approach. The advantage is a
global treatment of all the relevant operators of the theory, appearing as composite
descendants of the order parameter ®.7 Moreover, the effective Landau-Ginzburg
theory provides an interesting conceptual bridge between the pure field-theoretical
problem and the statistical mechanics of related discrete spin systems.

Starting from the field ®, we can construct renormalized composite fields by
repeated operator product expansions and subtractions of the most singular terms.
For instance, the operator product

1
®(z,2) x ¢(0,0) = W[H(G, 0) + 227 ®,(0,0) + less singular --- ]
z 1

defines a composite field
O, =: % (7.117)

(renormalized square of ®). The dimensions 2d; and 2d, are the anomalous di-
mensions of @ and &, in the renormalization group sense (and coincide with their
respective scaling dimensions A; = 2k, and A, = 2h,). We point out that the
normal order : - -- : in (7.117) is not the usual normal ordering, in which all the
singular terms are subtracted; here only the most singular term is subtracted. In
particular, note that d, # 2d;. Composite fields also include renormalized prod-
ucts involving derivatives of ®. Higher renormalized powers of ® are obtained by
operator expansion and subtraction of only the most singular terms therein, which
have already been identified as lower renormalized powers of &, namely

$ @412 (0,0) = lim o]+ [0(z,2)x : @ : (0,0)
>

k+1/2) (7.118)
— Z Crlzldk+|—2r—d1—dk - piHI-2r . ]

r=1

The even power shifts of 2r enforce the & — —& symmetry, and the constants C,
are completely fixed by the OPE. This construction can be safely repeated, until
the equation of motion of the £,,, Landau-Ginzburg theory,

t @3~ 5,3;d (7.119)

is reached. When compared to the actual operator product expansion of primary
fields of the (m + 1, m2) unitary minimal theory, the definition (7.118) allows for
the identification

(o1 for k=0,1,...m—2
k= { (+1k+D) (7.120)

Dpi3—mi+2-my for k=m—1m,..,2m—

7 For instance, in the Ising model, the energy operator can be viewed as some composite of the spin
operator, as expressed through the fusion rule o x o = I+ ¢. The Coulomb-gas formalism of Chap. 9
does not express this “descendant property”, whereas it is crucial in the present Landau-Ginzburg -
approach.
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Indeed, due to the fusion rules
D22 X Py = Po-1,-1) + Po—tr41) + Pirirr—1) + Prsrr4ny  (7.121)

the term P ,4+1) is the most singular, after subtraction of ®¢_;,_;). When
r = m — 1 in Eq. (7.121), the most singular term after subtraction of ® ;2 ,,_2)
is

<I)(m—2,m) = 4)(2,1) (7.122)

(®(n,m) and S, ,,—2) lie outside of the Kac table, and do not belong to the theory)
which explains the second line of (7.120). Beyond the power 2m — 4, the identi-
fication is more subtle as the equation of motion of the Landau-Ginzburg theory
(7.119) introduces a mixing between & and its derivatives (descendants of ).
The order parameters of the theory are the collection of renormalized powers of ¢
before the equation of motion is reached; they correspond to the first and second
diagonals of the unitary Kac table. To complete the above identification, we check,
from the unitary minimal theory point of view, that the Landau-Ginzburg equation
of motion (7.119) is satisfied by ®(,3). Due to the unitary minimal fusion rules
(7.114), we deduce that

O DY i= Dpg) X Pin—tm-2) = Pion-2m-3) + Pom—zm-1y  (7.123)

Defining : ®2"~3 : by Eq. (7.118), we have to subtract the two most singular
contributions allowed by this fusion rule, namely : ®2"~% := ®(,,_3,,_2) and
® = P(22) = P(n—2,m-1)- The most singular contribution after these subtractions
comes from the first descendant of the field ®, 3,9; ®. This is indeed the operator
with lowest dimension among the descendants of  and : ®>™~> :. This establishes,
at least formally, the equation of motion (7.119) within the framework of the
minimal model.

In addition to providing a physical picture for the minimal models, the Landau-
Ginzburg description sheds some light on the issue of perturbation of conformal
theories away from the critical points, and of the renormalization group flows
between the various theories. A naive way of interpolating between the (m+1, m)
and (r2, m — 1) unitary minimal theories consists in replacing the potential V,,
(7.116) by the linear combination V,,, 4+ AV,,,_;. The case A = 0 corresponds to the
(m + 1,m) fixed point, whereas the limit A — oo is the fixed point (2, m — 1).
So a flow between the various unitary theories can be obtained by perturbing the
(m+1, m) theory by its most relevant operator (with conformal dimension smaller
than 1 but closest to it), namely

. pAM-2) . — Pin_1m-2) = D3 (7.124)

Finally, multiple fusions with ®(, 5y do not generate the whole unitary minimal
fusion algebra, except in the lower cases m = 2,3, 4 (see Ex. 8.20). This is not
in conflict with the above results, but points to the subtlety of the actual meaning
of the Landau-Ginzburg description. Beyond the first two diagonals of the Kac
table, the description of the other primary fields of the theory in terms of @ is



Exercises 235

more involved; the equation of motion (7.119) has to be taken into account, and
this causes a proliferation of derivatives of &.

Exercises

7.1 Inner product
Show that the norm of the state (L_,)"|h) is

2"n! ['[ (h — G- 1)/2)
i=1

7.2 Gram matrix
Show that the Gram matrix for level 3 is

24h(1 + )1 +2k)  12h(1 +3k) 24h
M® = 12h(1 + 3h) h(8+c+8h) 10k
24h 10k 2c + 6h

(the states are ordered as in Table 7.1).

7.3 Gram matrix and vectors of fixed length as h — oo
Check explicitly Eq. (7.40) at level 2 with vectors of length 2.

7.4 Explicit expression of simple null vectors

Find the explicit expression of the null vectors x, 3, 1,4, and 2. Proceed as in the beginning
of Sect. 7.3.1, by writing the most general state at level rs and imposing the highest-weight
condition

Lilx) = La[x) = 0

7.5 Constraint on the conformal dimensions from the differential equation associated with
a null vector

Show explicitly how the constraint (7.50) follows from applying the differential equation
(7.47) to the three-point function (7.49).

7.6 Diagram of dimensions

Prove formula (7.62) for the dimensions in the Kac table as a function of the distance §
between the point (7,s) on the plane and the line with slope —ary/a_ that goes through
the origin. To do so, simply subtract from the vector (r, s) its projection on the unit vector
(cos 8, sin 8), where tan § = —a.,./o_, calculate the length squared of the result, and compare
with (7.30).

7.7 Fusion rules in the Ising model

From the simple ladder operations (7.58), obtain the fusion rules of this Ising model
(M(4,3)) by applying repeatedly the truncation procedure leading to Eq. (7.60). Thus,
check explicitly the validity of the fusion rules (7.70).

1.8 Tricritical Potts model

Write the field content and the fusion rules (given by Eq. (7.70)) for the minimal model
M(7,6). Check that there is a subset of fields that closes under the fusion algebra, like in
the minimal model M(6, 5). It turns out that this subset is associated with the tricritical
Potts model.
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7.9 Equation of motion for the Yang-Lee model
Consider the minimal model M(5, 2) associated with the Yang-Lee edge singularity. The
module of the identity operator I = ¢(,1) = ¢1,4) contains a null vector at level four:

3
b0 = (LZ; = SL-0)I0) (7.125)
a) Show that the field associated with the state |x) is

Ti@) = (1) ~ 1"

b) Compute the singular terms in the short-distance product of this field with any primary
field @ of the theory, with dimension A.
Result:

Tu@®(O) = 2*h(h + O(O)

+z7 20+ %)mb(o)

+z‘2<z: i i Fo(0) + 2hq><2>(0))

-1 Sh+1 6h_ . _ Do®
+z ( a3<1>(0)+h+2¢ 0) +2(h - 1N®®(0)

Ch+1D)(h+1)
where
3
2) _ _ 2
Y = (L, CTeT +1)L_1)<b
2 1
3 _ _ I3
e T L L Rl ey L g

¢) Deduce that the only possible primary fields of the theory have dimensions 0 or —1/5.
Show, moreover, that when 2 = —1/5, we have ®® = ®® = 0.

The vanishing of T4(z) therefore implies most of the structure of the corresponding minimal
model: It may be viewed as the equation of motion of the Yang-Lee model. This may
be generalized to any minimal model (p,p’). In those cases, the identity has a nontrivial
singular descendant at level (p — 1)(p’ — 1): It is a composite field T(,_1),y—1y of T and
its derivatives. Its vanishing forms the equation of motion of the corresponding minimal
model and completely determines the spectrum of the theory.

7.10 Singular vectors of the Ising model
a) Using the representation of 7 in terms of the Ising fermion,

1
T= *‘5('#310)

and the rearrangement lemmas of Sect. 6.C, check the following field transcriptions of the
¥ = ¢,1) = ¢ 3) singular vector equations:

2
Foe) = 3(2}12,1 + 1) (To@.)
Fpa3 = (s + 1) [2(Td¢q,3) — M1 38T 3)]

b) Find the level-6 vacuum singular vector and verify that the corresponding field identity
is also satisfied with the above representation of T.
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7.11 Fields dual to each other
Primary fields that satisfy the condition

[f dz ¢(rs)(Z)» f dw ¢(,»/,;’)(W)] =0

are said to be dual of each other.
a) Verify that fields whose OPE contains a single family ¢y, that is,

D05 @b sHW) ~ (2 — W) 2 (dn(W) + adg(w) + - - ) (7.126)
where a is some constant and
AEh,’s +h,1’sr —h

are dual to each other if A = 2. It is crucial here to have a single pole whose residue is
a total derivative (and this is the unique possibility when the residue is proportional to the
lowest dimensional descendant of a primary field: L_;¢y, is the unique descendant of ¢, at
level 1).

b) Find all pairs of primary fields that satisfy Eq. (7.126) with A = 2.
Result:

{903, P60} {902, P50} {P21), D05} (7.127)

¢) We will now prove that Eq. (7.126) with A = 2 gives all the solutions to the duality
condition. Consider first the case where A = 3. Argue that the duality requirement can be
satisfied only if there exists a relation between L2_,¢h and L_,¢5, which forces ¢, to be
either ¢ 2) or @(2,1). But show that this is incompatible with the OPE (7.126) with A = 3
and ¢, ), ¢ sy being both primary fields. Use a similar argument to rule out A > 3.

d) What is the value of the constant a in Eq. (7.126)?

Notes

The representation theory of infinite-dimensional algebras is discussed extensively in the
mathematical literature. We note the set of lectures by Kac and Raina [216] and by Saint-
Aubin [313].

The formula for the Kac determinant was proposed by Kac [213], and proven by Feigin
and Fuchs [127]. The proof is explained in more detail by Kac and Raina [216] and Itzykson
and Drouffe [203]. The Kac determinant was also obtained by Thorn [334] in a more physical
fashion, in the context of dual resonance models.

The conditions for unitarity of ¢ < 1 models were obtained by Friedan, Qiu, and
Shenker [140]. A detailed proof of these conditions is provided by the same authors in
Ref. [143], where the unitarity of ¢ > 1, > 0 representations is also discussed. Langlands
[250] offers a more detailed proof of the unitarity of ¢ > 1,4 > O representations and an
alternate proof of the nonunitarity conditions for ¢ < 1.

The Yang-Lee edge singularity was studied by Fisher [131], who correctly guessed the
relevant Landau-Ginzburg theory. Its relation with the nonunitary minimal model M(5, 2)
was pointed out by Cardy [66].

The identification of the Ising model with the minimal model M (4, 3) is due to Belavin,
Polyakov, and Zamolodchikov (BPZ) [36].
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The tricritical Ising model was related to the minimal model M(5, 4) and to the simplest
model of the superconformal discrete series by Friedan, Qiu, and Shenker [141]. Supercon-
formal models were also discussed by Bershadsky, Knizhnik, and Teitelman [45] and by
Eichenherr [122].

The Q-state Potts model was solved by Temperley and Lieb [333] and first studied
in the context of conformal field theory by Dotsenko [107] for Q = 3. Minimal models
based on the W3 algebra, of which the three-state Potts model is the simplest example,
were introduced by Fateev and Zamolodchikov [123]. The three-state Potts model is also a
special case of Zy parafermionic theories, introduced by Zamolodchikov and Fateev [366]).

The RSOS model was introduced and solved for a restricted set of parameters by An-
drews, Baxter, and Forrester [14]. Critical exponents for this class of models were obtained
by Huse [197] who conjectured the correspondence with unitary minimal models.

The O(7) model was rephrased in Coulomb-gas terms and solved by Nienhuis [283]
at criticality. The identification of the precise underlying conformal theories was realized
by computing the torus partition function of the model [95, 96]. The physics of polymers
(O(n = 0)) in solvents was investigated with conformal theory techniques by Duplantier
and Saleur [115, 116].

The Landau-Ginzburg description of minimal models was suggested by Zamolod-
chikov [364]. Exercise 7.11 is based on Ref. [267].



CHAPTER 8

Minimal Models |l

This chapter, the second devoted to minimal models, completes the somewhat
heuristic point of view adopted in some parts of the previous chapter. We stress
at once that the four sections below are to some extent independent. They are
intended for an easy reading, the main technical difficulties being left in the large
appendix.

In Sect. 8.1, we describe the structure of irreducible Verma modules, as a con-
sequence of the Kac determinant formula (8.1). In particular, we derive the expres-
sions for the characters of the irreducible representations of the Virasoro algebra
and give a number of examples to illustrate this point. In Sect.8.2, we turn to the
study of singular vectors of the Virasoro algebra. Instead of proving the Kac de-
terminant formula in an abstract mathematical way, in the spirit of the original
proofs (see also the exercises at the end of this chapter), we shall present a more
constructive approach, in which we explicitly derive expressions for the singular
vectors. These expressions are particularly beautiful for the fields located at the
border of the Kac table, namely, of the form ¢, ;) or ¢ 5), for which we present
a complete construction. The general case ¢, ) is presented in the (very large)
App. 8.A: after describing all the mathematical implications of the covariance of
the operator product expansion of conformal fields (in particular the mechanism of
fusion of two Verma modules), we construct the (7, s) singular vectors as a result
of the fusion of two particular Verma modules. The proof of the Kac determinant
formula is just a by-product of this latter study.

The singular vectors can be used to derive differential equations for the corre-
lation functions of the corresponding fields. The precise mechanism is described
in Sect. 8.3. In particular, we derive differential equations of the hypergeometric
type for the four-point functions involving ¢ 1) or ¢(; 2). Section 8.4 is devoted
to the complete derivation of the fusion rules for minimal models, hidden in the
leading behavior of the differential equations for correlators.
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§8.1. Irreducible Modules and Minimal Characters

In this section, we describe the structure of inclusions of Virasoro modules in re-
ducible highest-weight representations of the Virasoro algebra. The result is sum-
marized in the minimal character formula (8.17). This structure is a consequence
of the Kac determinant formula’

detM® = o [] tr - A1, s()P ®8.1)

rs>1
rs<l

where

h,s(t) = %(r2 -t + %(52 - 1)% - %(rs -1)

1 (8.2)
c=13-6 (t + —)
t
For the (p’, p) minimal model, we have in addition
t=plp 8.3)
hence
— ') )2
hr's=(pr p's) ’(p p) l<r<p' —1,1<s<p—1
4pp
P (8.4)
c=1-62=27
pp

The representation with highest weight / is reducible if and only if /2 has the form
(8.4), for some nonnegative integers 7, s > 1.

8.1.1. The Structure of Reducible Verma Modules for
Minimal Models

We consider in detail the structure of the reducible Verma modules for the
minimal models specified by Eq. (7.65). Let V,; denote the Verma module
Vic(p,p’), h,s(p,p’)) built on the highest weight 4, ; appearing in the Kac ta-
ble (8.4). According to the Kac determinant formula (8.1), the reducible Verma
module with highest weight %, s has its first singular vector at level / = rs. This is
the first level at which the determinant vanishes, because of the exponent p(l —rs).
We deduce, from the symmetry property (7.66), that it must necessarily have
another singular vector at level (p’ — r)(p — s). Using the identity

h,_s—h,s =rs 8.5)

! Note that p(I — rs) denotes here the number of integer partitions of the integer [ — rs. It should not
be confused with the product p x (I — rs).



§8.1. Irreducible Modules and Minimal Characters 241

and the periodicity property
hf+P',S+p = hm (8.6)
to properly shift the indices, we find that the corresponding dimensions read
respectively
hes+rs=hpyrps =hy_rpys
hrs +@ =) —8)=hrops =hyp s

The possibilities of labeling the resulting states are exhausted if we insist on hav-
ing dimensions indexed by pairs of positive integers, which are minimal with
respect to translations of (p’, p). We may therefore write the following inclusion
of submodules

8.7

Vp’+r,p—s UVr,Zp—s C Vr,s (88)

To build an irreducible representation (the irreducible Virasoro module M, ), we
have to factor out V, ; by the direct sum of these two submodules

Mr,s = Vr,s/[Vp’+r,p—s 2] Vr,2p——s] (8-9)

Unfortunately, the direct sum Vi, s @ V; 2, is a complicated object, as
these two Verma modules in turn share two submodules. This is readily seen by
applying the reducibility condition to each of the two corresponding submodules
Vorirp—s and V, 5, . We find two submodules in Vi, p_s = Vi pys at levels

(@ +7r)(p — s) and (p’ — r)(p + s), namely
V2p'+r,s U Vr,2p+s C Vp’+r,p—s (8.10)

Similarly, we find two submodules in V, 5,5 = V5, at levels r(2p — s) and
(2p’ — r)s, namely

Vp’-r,3p—5 U V3p’—r,p—s C Vr,2p—s (8-11)

Note that the submodules in (8.10) and (8.11) coincide by the symmetry property
(7.66): Vopryrs = Viyr_yp3p—s and Vy gp s = V3, . Hence the direct sum of the
two modules is a quotient

Vp’+r,p—5 S Vr,2p-s = Vp'+rp-s U Vr,2p—s/ [VZp’-{—r,s 5] Vr,2p+s] (8.12)

Iterating this, we find the infinite ladder of inclusions of modules, depicted
in Fig. 8.1. At each step, the two Verma modules have two common maximal
submodules, given by the Kac determinant formula, whose intersection contains
in turn two maximal submodules, and so on. The irreducible representation M,
(8.9) is therefore obtained as the following succession of subtractions and additions
of modules

Mr,? = Vr»s - (Vp’+r,p—s U Vr,?.p—s) + (V2p’+r,s U Vr,2p+s) — e (8-13)

We note that the first subtraction of V4, ,_s UV, 2, is too large, because we have
to subtract the two maximal submodules V4, and V; 3,4 s from the intersection
Vi 4rp—s N Vy2p_s, and this phenomenon propagates along the ladder of Fig. 8.1.
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(p4+7,p-8) ——»——(2p%41,s) . ..

(kptr, (-1 +1-(-1)Mp/2) . . .
(r,5)

(rkp+ (-1 s+[1-(-1)]p/2) . . .

Figure 8.1. The infinite structure of submodules of the Verma module V,(p,p’). Each
module V,; is represented by a pair of Kac indices (a, b). Each arrow represents an inclu-
sion: A — B means B C A, and arrows are transitive. Each module contains two maximal
submodules.

8.1.2. Characters

(r2p-8) “——»—— (r2p+s) ...

A simple way of summarizing these repeated subtractions is to write the character
of the irreducible representation M, ;. Each Verma module with highest weight &
and central charge ¢ contributes according to the Virasoro character (7.16):

h—c/24

Xew @) = (8.14)

v(q)
Taking into account all the subtractions of states implied in Eq. (8.13), we find the
irreducible character

—c/24

q h = SN N o
Xer.9(q) = [q s 4y (=1) r+kp' (= 1Es+[1-(=1)1p/2
rsH\g 2@ ; {q

+ A H s -1 1pr2 }]

(8.15)
where the three terms in the bracket correspond respectively to the Verma module
V, s of the left of the ladder of Fig. 8.1, and the contribution of the modules of the
top (resp. bottom) of the ladder weighted by a sign (—1)* enforcing the successive
additions-subtractions along the ladder. The irreducible character (8.15) can be
reexpressed in terms of the functions

K(Iw ) _ (2pp'n+pr—p's)*/4pp’ 8.16
(@)= (q) nezzjq (8.16)

as
Xe@) = K&P(@) — KPP (g) (8.17)

The small g expansions of the characters for the minimal models discussed in
Sect. 7.4 are displayed in Table 8.1, up to order 6. The Kac indices (7, s) for the
representations have been chosen in such a way that the product 7s is minimal.
Indeed, comparing these expansions with that of 1/¢(g)

1

oG = 149 +29* +3¢° +5¢* +7¢° +11¢° + .-~ (8.18)
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Table 8.1. Expansion of a few minimal characters up to order 6.

@.p) hrs q s 24 x5 (@)
(5,2) h1,1=0 1+q2+q3+q4+q5+2q6+...
Yang-Lee  hio=-2/5 14+q9+¢*+q*+29*+29° +3¢°+---
(4.3) hiy=0 1+¢2+q° +2g* +29° +3¢°---
Ising hy, = 1/16 149+¢*+q> +29* +2¢° + 3¢5 + - -
h1'2=1/2 1+q+q2+2q3+2q4+3q5+4q6+...
(5,4) h ;=0 14+¢*+q¢*+29* +29° + 495 + - - -
Tricrit. hy, =17/16 1+q+q*+2q°+3¢*+49° +64° + - - -
Ising hia = 1/10 14+g+¢>+29>+3¢* +49° + 6¢° + - --
hy3=3/5 14+q+29%+2¢° +49* +5¢° + 7¢° + - --
h,, = 3/80 1+q+2¢>+3q>+49* +6q° +8g° + - --
hsy =3/2 1+9+g>+29°+3q* +49° +69° + - --
6,5) h1,1=0 1+q2+q3+2q4+2q5+4q6+...
3-state hyy =2/5 14+g+q*>+2g°+3¢*+4g° +69° + - --
Potts hs, =175 149+2¢>+2¢° +49* +5¢° +8¢° + - - -
h1_3=2/3 1+q+2q2+2q3+4q4+5q5+8q6+...
hy)y =3 14+q+2¢>+3¢°+49* +5¢° +8¢° + - --

hys = 1/15 1+q+29*+3¢>+5¢* +79° +10g5 + - - -

it is easy to verify that the first singular vector in each representation occurs at
level rs, whereas the second one occurs at level (p — r)(p” — s).

§8.2. Explicit Form of Singular Vectors

In this section, we give an explicit construction of the singular vector at level
r in the Verma module V,;, with 4 and ¢ as in Eq. (8.2). The result appears in
Eq. (8.26) below, in the form of the determinant A, ; of a matrix operator expressed
in a representation of su(2) of spin (r — 1)/2. More precisely, the singular vector
|h,1 + ) is obtained by acting on the highest-weight state |/, ;) with this operator
A, 1. Such arepresentation is easily obtained in the classical limit ¢ — —oo of the
Virasoro algebra,? where the limits of (r, 1) singular vectors are associated with

2 This limit may be taken by sending # — 0 in Eq. (8.2). Note that the dimensions /4, s(t) diverge in
this limit, unless s = 1.
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covariant differential operators. In this limit, the highest-weight property translates
into the fact that the state behaves as a true differential form, with weight

1—r

CEI_DOO hr'l = 2

The limit of the singular vector expression simply means that a differential form
of weight (1 + r)/2 (the classical limit of |k, + 7)) is obtained by acting on a
differential form of weight (1 — r)/2 (the classical limit of |/, ;)) with a covariant
differential operator of degree r (the classical limit of A, ;). The expression of
covariant differential operators in the form of a determinant, using su(2) repre-
sentation matrices, is natural in this classical context, since a covariant differential
operator of order 7 is naturally expressed as the determinant of an r x r matrix
differential operator of first order (see Ex. 8.8 for details).

The idea here is to write the “quantum” singular vector as the result of the
action of the formal determinant of a matrix operator, with entries linear in the
L,,’s, on the highest-weight state of V. This matrix itself lives in a spin (r — 1)/2
representation of the Lie algebra su(2). The latter is the r-dimensional irreducible
matrix representation of su(2):

1 .
Wolij = E(r —2i+1)5;

{ 8i,i+1 (] = 1,2,..,7— 1)
V)=
J 0 G=n (8.19)
i(r— i)5i+1',' (l = 1,2,. o r— ])
Uilij=
(i=r)
which satisfy
J,J_1=2J
Ve, J-1 0 (8.20)
Vo, J+l = HJs.
For instance, for r = 4, these matrices read
(g 0 0 0
o1 o o
= 2
=10 o -1 0
\o 0 o -3
0 00O
1 0 0O
J-= 01 00 @.21)
\0 010
03 0O
_ {0 0 4 0
J+=10 0 0 3
0 0 0O



§8.2. Explicit Form of Singular Vectors 245

This representation differs from the one generally used in quantum mechanics in
that the ladder operators J;. are not Hermitian conjugates of each other. Since J, is
strictly upper triangular and J_ strictly lower triangular, we have (J.) = (J_)" =
0. We consider the » x r matrix operator:

[e°]
D) =—J_+ Y (~tJ)"L 1. (8.22)
m=0
whose entries are polynomials in the negative Virasoro modes L_;,L_;,...Onlya
finite number of terms contributes to the sum, since J', = 0. The operator D, acts
on r-vectors of states of the form (f1,/2, .. .,f,)!. The formal determinant of this
operator, A, (), is defined as follows. The triangular system of linear equations

fi fo
D, (1) f:2 = ? (8.23)
f 0

can be inverted, and fo,f1, . . . ,f»—1 become explicit functions of f,. For instance,
we have

fr-1 =Lfy

fr—2=[L%, — (r — ItL,]f,

frea=[L2, —t(r — 1)L_;L_, — 2t(r — 2)L_,L_,
+2%(r — 1)(r — 2)L_s]fs

and so on. The formal determinant operator applies £, to fo
fo= 810, (8.25)

and by a slight abuse of notation we denote it by

(8.24)

[, ¢]
Ar'l(t) = det [—J_ + Z(—-‘t]+)mL_m_]:] (8.26)
m=0
With this definition, we find
A =L,
M) =L*, —tL_, (8.27)

A3,1(t) = Li] —20(L_L_,+L_,L_;)+ 412L_3.
The state

1xr) = Ar1(®) 1A, (D) (8.28)

will now be proved to be a singular vector of the Verma module V, ; at level r. To
verify this, we need to prove that |x,) satisfies the highest-weight condition

La\xr) = 8nolhry +1)xr) n=0 (8.29)
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As mentioned earlier, it is actually sufficient to prove it forn = 0, 1, 2, since the
condition L, |x,) = 0 (n > 2) can be obtained from L;|x,) = La|x,) = O by
commutation of L, and L,. In other words, for n > 2,

L= —— L= S @y (8.30)
mn — n-2 1»En-1 ‘*’(n_z)! 1 2 .
where the adjoint action of an operator x is defined as
ad(x)y = [x,y] (8.31)

We thus proceed in three steps:
() Lol x,) = (k1 + P)|x»)- Using the definition of the formal determinant (8.25),
we start from the state f; = |h,1),and buildf;, i =r — 1,r —2,...,0,fo = |x,)-
It is clear by construction that Lof; = (h,,; + r — j)f;, hence the property follows
for fo = x,).
(ii) L | x,) = 0. The operator L, acts on the components f; as

r —
Lif = ¢ - )
forj = 0,1,...,r — 1. Upon extending the linear space by one dimension, and
introducing an extra component f, 1, this holds also for j = r. This enables us to
set f,+1 = 0, in which case we simply get the highest-weight condition L,f, =
Ly |k, 1(2)) = 0. Eq. (8.32) is easily proven by recursion on j. We get the desired
result forj = 0.
(iii) Lp]x,) = 0. As in the previous case, the operator L, acts recursively on the
components f;:

[(2 +3 — Nt — 2fi, (832)

Lofj = f—g’(r — NG+ D —j— D4 +6 -1t — Tf 42, (8.33)

forj =0,1,2,...,r—1. Weextend this toj = r by introducing an extra coordinate
fr+2, but we can set f,,, = 0, which translates into the second highest-weight
condition L,f, = L,lh,(t)) = 0. We finally get the desired result forj = 0.
This completes the proof of Eq. (8.28).
A few comments are in order:
(a) An analogous result holds for the Verma module V s, if we change simultane-
ously r <> s and t < 1/t, under which c(¢) remains unchanged.
(b) If we perform explicitly the elimination between the components f;, we get a
closed expression for the singular vector:

[r—1)1P(=ty*
IXr) = L, ---L_,lh. @) (839
r pzzx T @i 4pd—pi—=p) P
pr++pr=r

(c) It is easy to derive the action of L,, for n > 2 on the vector f = (fi,...,)T
using Eqgs. (8.30), (8.32), and (8.33). We find
3n+1 3n+1

L.f=[(Jo— 2 )+ n (=T )L (8.35)
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The expressions for the singular vectors of V, ; are thus relatively simple. They
correspond to states located on the boundary of the Kac table. No simple closed
expressions are known for states located inside the Kac table. However, we shall
develop in App. 8.A an elementary scheme to write them in all generality.

§8.3. Differential Equations for the Correlation
Functions

Section 8.2 was dedicated to the study and construction of singular vectors of
Verma modules, which carry reducible representations of the Virasoro algebra. As
already stated above, the primary fields of a minimal conformal theory are attached
to highest-weight vectors of such representations of the Virasoro algebra. But we
actually require that the corresponding representation of the Virasoro algebra be
irreducible. All singular vectors must therefore be set to zero. This results in a
highly nontrivial set of constraints. Their consequence on the OPE of conformal
fields is described in App. 8.A, Sect. 8.A.1. The subject of this section is to analyze
their effect on the correlators of the primary fields, a point briefly addressed in
Sect. 7.3.

Before plunging into this analysis, we emphasize a subtlety concerning the
field-state equivalence in a conformal theory. Recall that the primary fields ¢(z, Z)
are in one-to-one correspondence with products of representations of the holo-
morphic and antiholomorphic (or left and right) Virasoro algebras. In a minimal
theory, the primary fields will therefore correspond to a pair of Verma modules
pertaining respectively to the left and right Virasoro algebras. Minimality requires,
as explained before, that both modules have central charge and highest weights of
the form (7.65), with 7, s in the Kac table: 1 <7 <p’,1 < s < p. Moreover, in
order to make both representations irreducible, we have to set the singular vectors
of both modules to zero and we finally get a decomposition of the Hilbert space
of the theory, as in Eq. (7.72). The two sets of constraints obtained this way are
factorized, in the sense that they act only on the left (resp. right) part of the pri-
mary fields. Actually, as we shall see below, one can solve independently the left
and right constraints for any correlator (¢o(zo,Zo)$1(21,21) - - ), in the form of
several possible left and right conformal blocks F(zo, 21, - - -) and F(Zp,Zy, - - -), $0
that the full correlator is a sum of products of left xright blocks of this form. The
particular association of left xright blocks involves further complications, which
will be studied in great detail in Chap. 9. In the following, we mainly concentrate
on the consequences of, say, the left singular vector vanishing conditions on the
left conformal blocks.

8.3.1. From Singular Vectors to Differential Equations

The basic ingredients in the computation of correlation functions in a field theory
are the Ward identities. They summarize the behavior of any correlator under
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infinitesimal reparametrizations (cf. Sect. 5.2). The Ward identity (5.41) was used
in Sect. 6.6.1 to express the correlator of a descendant field in terms of the correlator
of the primary, acted on by a string of differential operators. These are Egs. (6.152)
and (6.156), which we repeat here:

(@S 20)1(21) - - ) = Ly, (20) - - - Lr, (20)(P0(Zo)p1(z1) - ) (8.36)

L, )=) {(’ — U ! az,.} 8.37)

SGle-2y (@-27!

‘We drop the explicit dependence of the fields on the antiholomorphic variable Z,
as the equations involve only the holomorphic dependence.

We suppose that the left Virasoro representation of ¢ is a reducible Verma
module V(c, hy), with a singular vector at level 1o given by

le,ho+n0) = D ayL_ylc,ho)

Y,|Y|=no
where Y stands for>

Y ={r,...,x} with 1<rn<n=<..-<n
Yl =nrn+---+n (8.38)
Ly=L,L, L,

Setting to zero this singular vector, we get Y ayL_y¢o = 0, which, inserted into
a correlator, leads to

> ay Loy (zo)(¢o(z0)pr(z1)---) =0 (8.39)
Y

We used the Ward identity (8.36) to rewrite the singular vector vanishing condition
as adifferential equation, withL_y = L_,, --- L_, .Let Ag = ), ayL_y denote
the operator that creates the singular vector in V(c, /). The differential equation
(8.39) is obtained by acting on the correlator {(¢o(z0)91(21) - - -) with the differential
operator*

¥0(zi, 8,) = Ao(L-r = L£_(20)) (8.40)

The differential equation (8.39) can be further simplified by using the global
conformal invariance of the correlator (see Sect. 5.2.2). The SL(2, C) invariance

3 The symbol Y refers actually to Young tableaux. In this language, r; denotes the number of boxes
in the j line of the tableau, counted from the bottom to the top.

4 This should be compared with the substitution (8.178) used in App. 8.A, in the discussion of
the operator product coefficients: Eq. (8.40) actually coincides with (8.178) in the case of two-point
functions, and expresses the transfer of the action of Ag from the point zq to the other points z;.
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of the correlator can be recast into the three differential equations (5.51), which
we reproduce here:

3 8, (o(z0)i(z)- ) =0

i=0,1,..
(2idy + 1) (@o(20)i(21) --+) = O (8.41)
i=0,1,..
Y (220, + 22) (do@o)i (21) ) = O
i=0,1,..
They are easily solved as
(po(z0)p1(z1) - - ) = {l—[(Zi - Zj)"""] G({Z{-C,-I}) (8.42)
i<j
where u;; is any solution of
Z wij = 2h; (8.43)
j#

and G is an arbitrary function of the anharmonic ratios
X = (zi — zj)(zx — 21)
T @)z - 7))
Another way of writing the solution (8.42) is to fix the SL(2, C) gauge, by sending
three points of the correlator to fixed values, forinstancez;, — 0,2, — 1,23 — oo.

We now illustrate Eq. (8.39) in a few cases. For V(c, hy) = V>, degenerate at
level 2, we have

(8.44)

Ao = Ayi(t) = L2, —tL, (8.45)

Hence

% —t [ i L a] (b@1@)$1@1)¢2(22) ---) = 0 (8.46)
L l@—-2? zi-z

This is a second-order partial differential equation, obtained previously in
Eq. (7.47). It admits two linearly independent solutions. Singular vector vanishing
conditions for the other fields should be implemented as well, further constraining
the correlator.

For V(c, hy) = V,; (the label 0 is then replaced by the label (r,1) in y and
A), which is degenerate at level 7, we have the explicit differential operator (see
Sect. 8.2)

}’r,l(zir az;) =
mh,' 1
det [ AR AP B COD ((zi o Gz a)]

m>1 i>1

= dct[Dr,l(Zi; 32;)]
(8.47)
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expressed as a formal determinant in the manner of Eq. (8.26). It leads to the partial
differential equation of order r

Y1 (Zi, 32, ) (@, 1) (20)P1(21)2(22) - - -) = 0 (8.48)

Using the definition of the formal determinant (8.25)-(8.26), we can translate
Eq. (8.48) into a matrix differential system

D, (zi,8,)f =0 (8.49)
for the 7-vector f = (f1,/2, . .., )", whose last component is the desired correlator

fr = (po(zo)p1(z1) - - -)

Each componentf, is a correlator involving a level r —p descendant of ¢, expressed
as the action of a differential operator of order  — p on the correlator f,.

The differential equation (8.39) is somewhat involved in general. However, in
the cases of two-, three- and four-point functions, it can be transformed, using
global conformal invariance, into an ordinary differential equation in the variable
Z = Zo.

8.3.2. Differential Equations for Two-Point Functions in
Minimal Models

As already noted before (cf. Sect. 4.3.1), the global conformal invariance (8.41)
almost fixes the two- and three-point correlators. Actually they are fixed up to
some multiplicative constant, which might be zero. The aim of the present section
is to exploit the differential equation satisfied by a two-point function of primary
fields to get a useful sum rule (Eq. (8.55)) on the coefficients of the corresponding
singular vector.

The basic requirement for two-point functions is orthonormality:’

(D1 (D) n, (0)) = 8o 1,27 200 (8.50)

It is instructive to check that this expression is compatible with the differential
equation (8.39):

(7‘ - l)ho _ 1
w-z2y Ww-21!

Ao (L_, R aw) (G@dow) =0 (851

By translational invariance (the first of the three conditions (8.41)), the two-point
function is a function of x = z — w, subject to

(=1

xr

Ao (L_, S EV e e ~x3x]) (G6(x)g0(0)) = 0 (8.52)

5 Here and in the following, we omit the antiholomorphic dependence of the fields. This is harmless,
as the differential equations we write are essentially holomorphic.
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For any nondecreasing sequence of integers Y, the action of £L_y(x) on the
correlator

(Po(x)o(0)) = x~ Pz~ (8.53)
reads
(- l)IYl
e ﬂ[(r, Dho ~ x3:1(d0(x)¢0(0))
_
= i LI+ Dho triss .+ 1100610 0)

(8.54)
Eq. (8.51) is satisfied if and only if the following sum rule for the coefficients of
Ao =Yy ayL_y holds

k
Z Ar\ry, i ]—[[(ri + l)hO +riq+.+ r]=0 (8.55)
1= <.2n, i=1
Tri=ng

This is indeed the consequence of the following necessary condition for the singular
vector

LY Y ayL_ylc,ho) =0 (8.56)

Y,|Y|=no

It is clear that for any sequence 4, .., 71, (not necessarily ordered) of nonnegative
integers with r; + .. 4+ 7, = ng, we have

L?OL—V‘]L—YZ Tt L—Yk |C’ hO) = P(rlr Y ' ho)lct h()) (8'57)

where P is some polynomial of %, and the 7’s. This is due to the highest-weight
condition on |c, k), ensuring that the result, at level 0, is proportional to |c, ko).
Writing L}° = L'1’°"1L1, we find a recursion relation for the polynomials P

k
P(ry, ..., 15 ho) = Z(Ti + DP(ry, .., 71,7 — 1, Tig1, .., 7% o) (8.58)

i=1
By the definition (8.57), P satisfies
P(rl.--,ri—l,o'ri+1,--.rk§h0) = (8,59)
[ho +7ig1 + .. + 1 JP(r1, s Tim1, Figts s s Fo0)
when 7; vanishes. Together with the obvious result fork = 1,ng=r, =r
P(r; ho) = (r + 1)hg (8.60)

this determines the P’s completely:

k
P(ry,...,n; ho) = (no) [ [1Gri + Dho + ris + .. + 1] (8.61)
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With this value of P, the necessary condition (8.56) yields the sum rule (8.55), up
to the constant multiplicative factor (71¢!). Note that the fulfillment of the condition
(8.39) leads to more sum rules on the coefficients ay (see also Ex. 8.22 for a very
similar sum rule for OPE coefficients).

Once the normalization of two-point functions is fixed, all the correlators in the
theory have fixed normalizations. In particular, the three-point functions are fixed,
by SL(2,C) invariance, to be of the form (7.49) (x its antiholomorphic counterpart).
Global conformal invariance does not fix the structure constants g(?o, 211, h3). We
have seen in Sect. 7.3 how the differential equations impose constraints on these
structure constants. The precise study of these constants, following the lines of
App. 8.A, although straightforward in principle, turns out to be tedious. A simpler
route consists first in the derivation of the four-point correlators, and then reading
off the structure constants at coinciding points.

8.3.3. Differential Equations for Four-Point Functions in
Minimal Models

In this section we find the differential equation for the four-point functions of
minimal models involving ¢(,,1). It takes the form of the hypergeometric equation
(8.71).

The four-point functions have a more complicated structure than the two- and
three-point correlators, since global conformal invariance leaves some function
of the cross ratio of the points undetermined. More precisely, global conformal
invariance forces the correlator to take the form (8.42)

(#o(z0)1 (2)2(22)93(z3)) = [] @ —2)" G(2) (8.62)
0<i<j<3

with

1 4
Wi = 3 (; hk) —hi — b, (8.63)

We still have to determine the function G of the cross-ratio
_ (z0 — 21)(z2 — 23)
- (zo — 23)(22 — 21)
With the change of function (8.62), the differential equation (8.39) translates into
an ordinary differential equation of order nq for G(z).
We illustrate this mechanism in the case V(c, ko) = V1, degenerate at level 2.

We substitute Eq. (8.62) into Eq. (8.46), and use the action of the derivatives d,,
on Eq. (8.62):

(8.64)

Mot Ho2 Ho3

Oy = + + + 9,,(2)o

“ Z0—21 20—22  Z0—23 2 (23,

3, = — Ho1 + Hi12 + H13 + 8, (Z)az (8.65)
20— % 21— 22 21— 23

8, = — Hoz  Hn2 + K23 +d, (z)Bz

20— 22 21 — 22 22—23
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Ho3 H13 K23

S B - + 8,,(2)3,
20— 23 21—23 2—23
with

(=222 —23)

aZQ(Z) - (22 - Zl)(zo —_ 23)2
= (2o — 22)(22 — 23)

3,() = (2o —23)(z2 — 21)? 66

3, (2) = — (21 —z3)(z0 — 21) .

N @ -)@—a)

b0 = 2= —2)

(z2 — 21 )(z0 — 23)?

We also need to rewrite the action of 32 in terms of z

mor(nor — 1) poa(oz — 1) pos(pos — 1)
(zo —21)? (20 — 22)? (zo — z3)?
+ 2[ Ho1 + Ho2 + HMo3 ] 3,,(2)3, (8.67)
20— 21 20 — 22 20— 23
+ aZO(Z)az + (3z<,(z))233

Upon all these substitutions, the prefactor of G(z) in (8.62) can be factored out of
the differential equation. Once this is done, we can take the limitsz; — 0,22 — 1,
and z3 — 00, hence zo — z, and we are left with an ordinary differential equation
for G(z). The latter is then obtained from Eq. (8.46) through the substitutions
(8.65), (8.66), and (8.67), which, in the above limits, read

2
azo—

3, = Ba | B2 5
b4 z—1
n
by = == —pun+ G- 13
3, = _ Moz + p12 +28,
z—1
3, =0 (8.68)
2 = woi(por — 1) + mo2(poz — 1)
20 P z—1)
Mo1 Ho2 2
2{— )
+2 z Tz= 1] 2+ O
This leads finally to the equation
1 o1 Ho2 2z -1 to1(por — 1)
~Z+[2=—+ +
{ c+1 tz  tz-1)  zz- 1)] ¢ 122

+

-1 —-h —h
woz2(teo2 ) o 1 Ho2 2 M2 }G(Z) -0
2(z—1)

tH(z — 1)? 22 (-1
(8.69)
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This equation simplifies a great deal when expressed in terms of the function
H@Z) = 21 - 2)"* G(2) (8.70)

for which we have

1, 2z —1 hy hs I’lo+h1+h2—h3}
Z —— — — H(z) =0
[ taz 2(z—1) 22 (z—1) + z2(z—-1) @
8.71)

This can be transformed into the so-called hypergeometric equation, and thereby
solved in terms of hypergeometric functions (Ex. 8.9, 8.10, 8.11, and 8.12 below,
give a detailed illustration of this transformation and show how to obtain the
solutions of the differential equation (8.71) in a few explicit cases. A more general
study of the solutions to Eq. (8.71) will be performed in Sect. 9.2.3.)

More generally, a correlation function involving the operator ¢, 5y will satisfy
a differential equation of order rs, obtained by transforming the singular vector
condition at level s into a differential operator of order rs. In general, there will be
rs independent solutions to this differential equation, referred to as the conformal
blocks of the correlation function under study. The full correlator is a sesquilinear
combination of these blocks (a sum of holomorphic x antiholomorphic solutions
to, respectively, the differential equation and its complex conjugate). Fixing this
combination can be done by using the symmetry of the correlation function under
the permutation of its fields. This relates different sesquilinear combinations of
the same conformal blocks, and completely fixes their relative coefficients. This
procedure will be described in Chap. 9.

An important remark is in order: 7s may not be the lowest order of the differen-
tial equation satisfied by the correlation function (8.42). Indeed, the equivalence
D@ —rp—s) = P(.s) shows that this correlation should also satisfy a differential
equation of order (p’ — r)(p — s). One can slightly simplify the problem by sim-
ple eliminations between the two differential equations. Set rs = N, and suppose
@' — r)(p — s) = N + a. By differentiating the first equation a times, we can
eliminate the highest-order term in the second one by taking a suitable linear
combination of the two. This reduces by one the degree of the second equation.
Reiterating this process should in principle reduce the degree of the differential
equations we started with. Of course, it can happen that at some step the two equa-
tions are no longer independent, which means that the lowest possible order has
been reached.

Solving the differential equations above should lead to a complete determination
of correlators in a minimal theory. However, a more efficient approach to the
calculation of conformal correlators is provided by the Coulomb gas formalism
described in Chap. 9. The latter is more constructive, in the sense that correlators
are directly built from the singular vector conditions. Therefore, the differential
equations derived in this section will be automatically satisfied. In the end, this will
provide a beautiful and systematic way of solving the equations (8.39) by means
of contour integrals of free boson correlators.
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§8.4. Fusion Rules

The primary fields of a minimal theory correspond to highest weights in the Kac
table (7.65). The object of this section is to derive the fusion rules between all such
states, namely, to find which primaries and descendants are created by the short
distance product of two given fields. The differential equations of the previous
section provide a systematic way of studying fusion rules. Those of the (p,p’)
minimal theories turn out to be polynomially generated by the fusions of the two
fundamental fields ¢(2,1) and ¢, 2), as stated in Sect. 7.3.

8.4.1. From Differential Equations to Fusion Rules

The differential equations for correlators can be used to derive the fusion rules of
the minimal conformal theories. In this subsection, we use this path to obtain the
fusion rules (8.84) for the degenerate field ¢, 1).

On the one hand, we have the OPE (8.141):

P (W) = (z —w)' 17" N " g(ho, h, h)
h

(8.72)
x Z(Z —w)¥By(ho, b1, B)L_y p(w)
Y

(we dropped the right, or antiholomorphic contributions for notational simplic-
ity), involving the structure constants g(/, k11, #). Determining the fusion rules
amounts to finding the values of / present on the r.h.s. of (8.72) in terms of /2o and
h,.

On the other hand, we have the differential equation (8.39) for the correlator
(@0(z0)91(z1) - - -). Substituting the above OPE in the correlator, we obtain a set
of constraints for the coefficients g and g, in the form

Zg(ho, hy,h) Z By (ho, k1, h)yo(zi, 8;;)
H 1% (8.73)

x (zo — 21 HH YLy ¢)(21)¢2(22) - - ) = O

The leading term when zo — z; corresponds to |Y| = 0, 8 = 1, A maximal, and
also to a maximum number of derivatives with respect to zo or z;, and/or powers of
(zo — 21)~! taken from yq. This leading term yields a nontrivial equation relating
h to hy and A4, expressing a fusion rule of the theory.

Take, for instance, the case V(c, ko) = V> ;. In the four-point function (8.62),
the leading contribution to Eq. (8.73) is made of three terms: 32, (zo — z1)~2, and
(zo — 21)7'3,,, which give the constraint

1
—t-(h—ho—hl)(h—l—ho—h1)+(h—ho—hl)—h1=0 (8.74)
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This constraint is equivalent to Eq. (7.50), written in a different notation. We recall
that
3 1

ho = hy () = Zt_ 3 (8.75)

and %, is a weight of the minimal Kac table (7.65) of the form A, = A, s(t), with
t = p/p’. The quadratic equation (8.74) for % is easily solved

1—1 1—t
(h—ho—hi~—=)' = (=) +1h

s (8.76)

- (%y

and the two solutions have the simple form
h=h,, ) €==1 8.77)

This implies the following allowed fusions:

D21 X Prs) = Pr-1,5) + Plr+1.5) (8.78)

As mentioned in Sect. 7.3.1, the above is by no means an equality between fields,
it is rather an abusive way of describing the allowed fusions and should be taken
as such. Strictly speaking, we derived the fusion rule only for the larger of the two
values of 4, as we looked only at the leading term in Eq. (8.73). However, we note
that

hr+l,s(prp,) - hr—l,s'(p;p,) = 7'5 —-S (8.79)

which, for (r, s) in the Kac table, never takes an integer value. Therefore, the two
leading terms of Eq. (8.73) pertaining to either values of % can never be mixed
with descendant contributions, which all have integer-spaced weights with respect
to k. Hence both terms are present, except if one of the indices is outside of the
Kac table, in which case the corresponding fusion is forbidden (the corresponding
state is not in the theory under consideration).

More generally, we take V(c, ky) = V,,1, degenerate at level r. Starting from
the differential equation (8.48) for the correlator, with the differential operator
¥1(2i, 8;,) defined in Eq. (8.47), we substitute the OPE (8.72) and look for the
leading contribution as zog — z;. This procedure is equivalent to retaining only the
terms involving powers of (2o — 21), 3,,, and 8;, in y,,;. This amounts to replacing
¥r,1 by ¥,1, defined by the substitutions

(7’ - l)hl 1
L., — - — 0,

(@1 —20) (21 —20) (8.80)
L,— az

into the operator A, ;(¢) of Eq. (8.26). The operator 7, acts on the leading term
Z'=Po=M1 of the OPE. Comparing this situation with that of Egs. (8.178)(8.179),
we see that the leading action of the operator ¥,,; on the leading piece of the
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correlator is exactly given by the determinant 8, (A, ) (see Egs. (8.195)—(8.196),
with A = —h; and u = ho + h; — h), given by

r

(Or’l)z = I—I {[ho +h1 —h+ (r—m)(l -tm)]

m=1
r+1 2
(8.81)
Therefore the fusion is allowed if and only if
67, =0 (8.82)
Substituting the values
-1 1-r
ho :hr'l(t)z 2 t+ 5
(8.83)
o=l = © 1 B 1M
1= (t) = —4 pr 2

in the condition (8.82) leads to a very simple result: The allowed fusions fork > r
andk +r < p’ are

k+r—1

¢y X Pny = Z Pm.l) (8.84)
m=k—r+1
m—k+r—1 even
Working out the details of the derivation of Eq. (8.84) is left as an exercise (Ex. 8.15)
at the end of this chapter. If k is larger than r or p’ — r, Eq. (8.84) becomes more
involved. The complete result will be derived in Sect. 8.4.3.

8.4.2. Fusion Algebra

The concept of fusion rules leads to the definition of fusion numbers M,-" € {0,1)¢
as the characteristic functions of the structure constants g(%;, 4}, i) in Eq. (8.72).

Mjkz{

We use the indices 7, j, k as a shorthand notation for the corresponding conformal
dimensions 4;, h;, hy. In the particular case of minimal models, the index i stands
for Kac indices (r, s), but the concept of a fusion algebra applies to more general
situations; hence, one should simply think of the index i as labeling the primary
fields (more precisely, its holomorphic, or left part). Here again, we concentrate
on the holomorphic dependence of the fields. The same numbers describe allowed

0 iff g(hirhi-hk) =0

. (8.85)
1 otherwise

6 We stress that, in full generality, the fusion numbers may be larger than one, but it is not so for
the Virasoro minimal models. Ultimately, this reflects the absence of multiplicity greater than one in
ordinary tensor products of representations of su(2), as will be made clear in Chap. 18.
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fusions of the modules of the right Virasoro algebra. The full fusion numbers fac-
torize as Mieq X NViigh- To these fusion numbers there corresponds an abstract notion
of fusion algebra, namely a commutative and associative algebra with generators
¢i.,j = 1,...,r, an identity element ¢, = I (the identity field), and a product x,
defined by the multiplication rules

¢ix ¢ =) Ni* (8.86)
k

In particular, the product with the identity ¢; implies that

Nk = 8ix (8.87)
and the commutativity of the product simply means that

Ni¥ = NGk (8.88)

A direct consequence of the associativity of the OPE of primary fields is the
associativity of the fusion algebra. We have

¢ x (¢ x ¢) =i x Y _ N o
1

(8.89)
= ZMklMlm bm
Im
and
(@i < ) x ¢ = D Nty x ¢
! (8.90)

= ZMilem ¢m
Lm

Identifying the coefficient of ¢, in both expressions yields (using the commuta-
tivity (8.88))

D NN = YNNG (8.91)
1 7

Defining the  x » matrix operators N;, with entries
(N = Nif* (8.92)

the associativity condition (8.91) can be rephrased in the sense of an ordinary
matrix product as

N; N = Ni N; (8.93)
But Eq. (8.91) can also be written in the form
NiNe = D Nu! Ny (8.94)
1
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Hence the A’s form a representation of their own fusion algebra. This has much
in common with the notion of adjoint representation for a Lie group. To make the
fusion less abstract, it is useful to bear in mind this adjoint matrix representation
(8.94). Notice that, in this matrix representation, the associativity condition (8.91)
takes the form of the commutativity condition (8.93).

8.4.3. Fusion Rules for the Minimal Models

We return to the minimal models M(p, p) to complete the analysis of their fusion
rules. The result (8.131) relies on the assumption that the representations with
highest weights /4, ; and % , are present in the theory.” This means that both p
and p’ are larger than, or equal to 3.

For the sake of accuracy, we replace the labels i by the corresponding pairs of
Kac indices (7, s) in the fusion numbers (8.85). In particular,

M],I)(r,s)(m'n) = sr,m‘ss,n (895)
The result (8.78) may be recast as
MZ,I)(r,S)(m’n) = 8n,s (6111,r+1 + am,r—l) (8.96)

where it is implied that the Kronecker symbols vanish whenever the exterior border
of the Kac table (12 = 0 or mz = p’) is reached. There is an analogous relaticn for
the (1, 2) fusions, obtained by exchanging all Kac indices within the pairs (which
is the same as the ¢ — 1/t transformation):

Ml.l)(r.s)(m'n) = ‘Sm,r (8n,S-H + 6;’1,5‘«]) (8.97)

These are the key relations for the computation of the general fusion numbers
/\/'(,,S)(m,n)(k"), or equivalently, the matrices N, ;) defined by Eq. (8.92), with (, s)
in the Kac table. Indeed, our main result will be that the fusions of (2, 1) and (1, 2)
generate all the others polynomially, meaning that the matrix N, ;) is a polynomial
of the matrices N1y and N(; 3. This is intuitively obvious from Fig. 8.2, where
the (2, 1) fusion generates the two horizontal moves r — 7 + 1, and the (1,2)
fusion generates the vertical moves s — s £ 1. By recursionon m = r + s, we
see that the (+’, s") fusions with 7 + s’ = m + 1 are generated by such moves. To
make this statement more precise, we set

X=Nay Y=Nay (8.98)
Eqgs. (8.96) and (8.95) translate respectively into the recursion relation
N1y = XNgy = Ne-1 (8.99)
with the initial conditions

Ngy=1 and Ng)=X (8.100)

7 This may not be the case in general (even for p, p’ > 2), since the conformal weights have to
form only a subset of the Kac table, with possible repetitions of some weights. The whole issue of
determining consistent field contents for minimal models will be studied in Chap. 10.
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This is exactly the recursive definition of the Chebyshev polynomials of the second

kind, usually defined by

sin(m + 1)0

Un(2cos8) =

with the recursion relation

sin @

Un(x) = xUp—1(x) — Up—2(x)

and initial conditions
U, 0 (x) =1

This enables us to identify

and U1=x

Ney = Urmi(X)

Likewise, we find

Nqs) = Us—1(Y)
The finiteness of the Kac table can be expressed as the vanishing of the states on

its exterior border, namely

Ngo) = Ngp) = Nos)y = Nprs) = 0

This implies, in particular, the two constraints

Up’—l(X) =0 Up——l(Y) =0
p-1
8 @ .‘_.\_,.
L NN
®
é N \‘\m+1
VAN
3e e
2e
123 r

p'-1

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)

Figure 8.2. The Kac table of minimal (p, p’) models. The horizontal arrows describe the
effect of fusion by (2, 1), whereas the vertical arrows describe that of fusion by (1,2). The
combination of the two enables us to reach any point of the table by recursion on the value

ofm=r+s.
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‘We now mix the two generators X and Y, and prove by recursion that
Nisy = Urni(X) Us(Y) (8.108)

This is true for N(;,;) = 1. Suppose Eq. (8.108) is true for any (7, s) such that
r + s < m. The fusion by (2, 1) then gives

XN¢s) = Nit1,5) + Np—1,9) (8.109)
Therefore, we have, by the recursion hypothesis,

N(r+],s) = (XUr—l(X) - Ur—Z(X))Us-—l(n
= Ur(X)Us—l(n

where, in the second step, the Chebyshev recursion has been used. Likewise, we
find

(8.110)

Nesin = Ur1(00 Us(Y) @.111)

Hence the recursion hypothesis is proven for m — m + 1 (see Fig. 8.2),
and Eq. (8.108) holds for any (r,s) in the Kac table. The fusions are therefore
polynomially generated by X and Y, as announced before.

Of course, X and Y are subject to the constraints (8.107), but this is not all. We
still have to implement the symmetry (7.66) of the Kac table

Ny —rp—s) = Ngs) (8.112)
This is satisfied if and only if
Up'—r—l(X)Up—s—l(Y) = Ur-l(X)Us—l(m (8113)

In particular, ifr = 1 and s = p — 1, we have

Up—2(X) = Up_a(Y) 8.114)

We prove that this condition, together with the constraints (8.107), is sufficient to
ensure the symmetry (8.113). From Eq. (8.107), it can be shown that

Up 2X)U,1(X) = Uy —r1(X) (8.115)
This is trivially true for r = 1. Suppose that it is true for r, then
Up 200U, (X) = Uy_2(0(XU,1(X) — Uy2(X))
= XUp’—r—l(X) - Up’—r—Z(X) (8-1 16)
= Up’—r(X);

which shows that the property (8.115) holds for r — r + 1, and therefore for any
r. A similar argument leads to

Up—-Z(mUs—l (Y) = Up—s—l (Y) (8-1 17)
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for any s. Now, using Eqgs. (8.114), (8.115), and (8.117), we derive

Up’—r—l(X)Us—l(Y) = Up’—Z(X)Ur~1(X)US—1(Y)
= U1 (X)Up2(Y)U,_1(Y) (8.118)
= r—-l(X)Up—s—-l(Y)
For s — p — s, this is exactly the desired result (8.113).
Summarizing, we found that the fusion algebra A, ,» of a minimal conformal

theory with central charge c(p, p’) containing the primary fields ¢(;,1) and ¢, 2) is
polynomially generated by X = Ny and Y = N(; 5 as

N = Upo1 QOUs-1(Y) 8.119)

where U is the Chebyshev polynomial of the second kind, and X and Y are
constrained by the three relations

Upy-10) = Up1(Y) = Up—2(X) — Up—2(¥) = 0 (8.120)

These constraints form an ideal Z,, ,,(X, Y) of the ring C[X, Y] of polynomials of
X and Y, and the fusion algebra is endowed with a quotient ring structure®

Ay =CIX, YVT, (X, Y) (8.121)

This result is in agreement with the direct computation of the (7, 1) fusion rules
(8.84). First we note that

Nonn) = Un—1(XOU,-1(Y) = Non, )N ) (8.122)
for any m, n. Hence
Ni)yNonny = (NoyNon,n)Nan (8.123)

We compute the fusion of (r,1) and (#1, 1). First, we extend, for convenience,
the definition of the polynomials U,,(x) to negative integers #1, by their defining
recursion relation. For instance, U_;(x) = 0, U_»(x) = —1, and so on. It is easy
to derive that

U-m-2X) = ~Um(X) (8.124)

We can prove by recursion on r that

m+r

U XU = ) UkX) (8.125)

k=m-—r
k—m+r even

8 See Ex. 8.17 for a summary of the basic definitions of ring, ideal, and quotient.
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where the sum may include negative indices. This relation is trivially true forr = 0.
Suppose Eq. (8.125) is true for r. Then

m+r m+r—1
Un@UnX) =X 3 U0~ Y U
k=m-r k=m-r+1
k—m-+r even k—m+r—1 even
m+r
= Y XU -UaX) (8.126)
k=m-—r

k—m-+r even
m+r+1
= Z Ur(X)
k=m—r—1

k—m-+r+1 even
The property (8.125) is thus true forr — 7 + 1; hence, it holds for all . This is in
agreement with Eq. (8.84), for r < m and m + 7 < p’. We now still have to take
care of the possible terms with negative indices in Eq. (8.125). They arise ifr > m.
Thanks to the property (8.124), the net effect of the presence of U,,,_,, Upp—r42, . - -
with negative indices is to cancel the corresponding terms U, 12—y, Ur—p, - . . With
positive indices in the sum (8.125). This results in a modification of the lower
bound in Eq. (8.125)

m+r

U,00Un0)= ). UX) (8.127)
k={m—r|
k—m-+r even
Moreover, due to the constraint U, _1(X) = 0, we have still some polynomials
whose index goes out of the Kac table whenever m + r > p’. To take this into ac-
count, note that the constraint U, (X) = 0 propagates itself through the recursion
relations of the Chebyshev polynomials to yield a reflection property

Up’—1+k(X) = - p’—l—k(X) (8.128)

This shows that, in Eq. (8.125), the terms U4+, Usn+r—2, . - . With indices larger
than p’ — 1 cancel the corresponding terms Uzp 2 m—r, Uzp'—m—r, - . . With indices
smaller than p’ — 1. This results in a modification of the upper bound of the
summation in Eq. (8.125). Together with the modification of the lower bound
(8.127), this yields

min (m+r,2p’' -2-m-r)

U, (OUn(X) = > Ux () (8.129)

k=|m—r|
k~m-+r even

We finally get the (r, 1) fusion from Eq. (8.123)
min (m+r—1,2p"—1-m—r)

N yNonm = > Ny (8.130)

k=|m-r|+1
k—m-+r—1 even
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and the general fusion rules

min (m+r—1,2p'—1—m~—r) min(n+s—1,2p—1-n-s)

N¢s)Nonn) = E E N (8.131)
k=|m—r|+1 I=|n—s|+1
k—m+r—1 even I-n+s-1 even

This is the result announced in Eq. (7.70).
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